Statistics
| Branch: | Revision:

root / qemu-doc.texi @ d7739d75

History | View | Annotate | Download (61.9 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item 
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item 
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance. 
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E or 1026E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@item ARM RealView Emulation baseboard (ARM926EJ-S)
83
@end itemize
84

    
85
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
86

    
87
@node Installation
88
@chapter Installation
89

    
90
If you want to compile QEMU yourself, see @ref{compilation}.
91

    
92
@menu
93
* install_linux::   Linux
94
* install_windows:: Windows
95
* install_mac::     Macintosh
96
@end menu
97

    
98
@node install_linux
99
@section Linux
100

    
101
If a precompiled package is available for your distribution - you just
102
have to install it. Otherwise, see @ref{compilation}.
103

    
104
@node install_windows
105
@section Windows
106

    
107
Download the experimental binary installer at
108
@url{http://www.free.oszoo.org/@/download.html}.
109

    
110
@node install_mac
111
@section Mac OS X
112

    
113
Download the experimental binary installer at
114
@url{http://www.free.oszoo.org/@/download.html}.
115

    
116
@node QEMU PC System emulator
117
@chapter QEMU PC System emulator
118

    
119
@menu
120
* pcsys_introduction:: Introduction
121
* pcsys_quickstart::   Quick Start
122
* sec_invocation::     Invocation
123
* pcsys_keys::         Keys
124
* pcsys_monitor::      QEMU Monitor
125
* disk_images::        Disk Images
126
* pcsys_network::      Network emulation
127
* direct_linux_boot::  Direct Linux Boot
128
* pcsys_usb::          USB emulation
129
* gdb_usage::          GDB usage
130
* pcsys_os_specific::  Target OS specific information
131
@end menu
132

    
133
@node pcsys_introduction
134
@section Introduction
135

    
136
@c man begin DESCRIPTION
137

    
138
The QEMU PC System emulator simulates the
139
following peripherals:
140

    
141
@itemize @minus
142
@item 
143
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
144
@item
145
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
146
extensions (hardware level, including all non standard modes).
147
@item
148
PS/2 mouse and keyboard
149
@item 
150
2 PCI IDE interfaces with hard disk and CD-ROM support
151
@item
152
Floppy disk
153
@item 
154
NE2000 PCI network adapters
155
@item
156
Serial ports
157
@item
158
Creative SoundBlaster 16 sound card
159
@item
160
ENSONIQ AudioPCI ES1370 sound card
161
@item
162
Adlib(OPL2) - Yamaha YM3812 compatible chip
163
@item
164
PCI UHCI USB controller and a virtual USB hub.
165
@end itemize
166

    
167
SMP is supported with up to 255 CPUs.
168

    
169
Note that adlib is only available when QEMU was configured with
170
-enable-adlib
171

    
172
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
173
VGA BIOS.
174

    
175
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
176

    
177
@c man end
178

    
179
@node pcsys_quickstart
180
@section Quick Start
181

    
182
Download and uncompress the linux image (@file{linux.img}) and type:
183

    
184
@example
185
qemu linux.img
186
@end example
187

    
188
Linux should boot and give you a prompt.
189

    
190
@node sec_invocation
191
@section Invocation
192

    
193
@example
194
@c man begin SYNOPSIS
195
usage: qemu [options] [disk_image]
196
@c man end
197
@end example
198

    
199
@c man begin OPTIONS
200
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
201

    
202
General options:
203
@table @option
204
@item -M machine
205
Select the emulated machine (@code{-M ?} for list)
206

    
207
@item -fda file
208
@item -fdb file
209
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
210
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
211

    
212
@item -hda file
213
@item -hdb file
214
@item -hdc file
215
@item -hdd file
216
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
217

    
218
@item -cdrom file
219
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
220
@option{-cdrom} at the same time). You can use the host CD-ROM by
221
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
222

    
223
@item -boot [a|c|d|n]
224
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
225
is the default.
226

    
227
@item -snapshot
228
Write to temporary files instead of disk image files. In this case,
229
the raw disk image you use is not written back. You can however force
230
the write back by pressing @key{C-a s} (@pxref{disk_images}).
231

    
232
@item -no-fd-bootchk
233
Disable boot signature checking for floppy disks in Bochs BIOS. It may
234
be needed to boot from old floppy disks.
235

    
236
@item -m megs
237
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
238

    
239
@item -smp n
240
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
241
CPUs are supported.
242

    
243
@item -nographic
244

    
245
Normally, QEMU uses SDL to display the VGA output. With this option,
246
you can totally disable graphical output so that QEMU is a simple
247
command line application. The emulated serial port is redirected on
248
the console. Therefore, you can still use QEMU to debug a Linux kernel
249
with a serial console.
250

    
251
@item -no-frame
252

    
253
Do not use decorations for SDL windows and start them using the whole
254
available screen space. This makes the using QEMU in a dedicated desktop
255
workspace more convenient.
256

    
257
@item -vnc display
258

    
259
Normally, QEMU uses SDL to display the VGA output.  With this option,
260
you can have QEMU listen on VNC display @var{display} and redirect the VGA
261
display over the VNC session.  It is very useful to enable the usb
262
tablet device when using this option (option @option{-usbdevice
263
tablet}). When using the VNC display, you must use the @option{-k}
264
option to set the keyboard layout if you are not using en-us.
265

    
266
@var{display} may be in the form @var{interface:d}, in which case connections
267
will only be allowed from @var{interface} on display @var{d}. Optionally,
268
@var{interface} can be omitted.  @var{display} can also be in the form
269
@var{unix:path} where @var{path} is the location of a unix socket to listen for
270
connections on.
271

    
272

    
273
@item -k language
274

    
275
Use keyboard layout @var{language} (for example @code{fr} for
276
French). This option is only needed where it is not easy to get raw PC
277
keycodes (e.g. on Macs, with some X11 servers or with a VNC
278
display). You don't normally need to use it on PC/Linux or PC/Windows
279
hosts.
280

    
281
The available layouts are:
282
@example
283
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
284
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
285
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
286
@end example
287

    
288
The default is @code{en-us}.
289

    
290
@item -audio-help
291

    
292
Will show the audio subsystem help: list of drivers, tunable
293
parameters.
294

    
295
@item -soundhw card1,card2,... or -soundhw all
296

    
297
Enable audio and selected sound hardware. Use ? to print all
298
available sound hardware.
299

    
300
@example
301
qemu -soundhw sb16,adlib hda
302
qemu -soundhw es1370 hda
303
qemu -soundhw all hda
304
qemu -soundhw ?
305
@end example
306

    
307
@item -localtime
308
Set the real time clock to local time (the default is to UTC
309
time). This option is needed to have correct date in MS-DOS or
310
Windows.
311

    
312
@item -full-screen
313
Start in full screen.
314

    
315
@item -pidfile file
316
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
317
from a script.
318

    
319
@item -daemonize
320
Daemonize the QEMU process after initialization.  QEMU will not detach from
321
standard IO until it is ready to receive connections on any of its devices.
322
This option is a useful way for external programs to launch QEMU without having
323
to cope with initialization race conditions.
324

    
325
@item -win2k-hack
326
Use it when installing Windows 2000 to avoid a disk full bug. After
327
Windows 2000 is installed, you no longer need this option (this option
328
slows down the IDE transfers).
329

    
330
@item -option-rom file
331
Load the contents of file as an option ROM.  This option is useful to load
332
things like EtherBoot.
333

    
334
@end table
335

    
336
USB options:
337
@table @option
338

    
339
@item -usb
340
Enable the USB driver (will be the default soon)
341

    
342
@item -usbdevice devname
343
Add the USB device @var{devname}. @xref{usb_devices}.
344
@end table
345

    
346
Network options:
347

    
348
@table @option
349

    
350
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
351
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
352
= 0 is the default). The NIC is currently an NE2000 on the PC
353
target. Optionally, the MAC address can be changed. If no
354
@option{-net} option is specified, a single NIC is created.
355
Qemu can emulate several different models of network card.  Valid values for
356
@var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
357
@code{smc91c111} and @code{lance}.  Not all devices are supported on all
358
targets.
359

    
360
@item -net user[,vlan=n][,hostname=name]
361
Use the user mode network stack which requires no administrator
362
priviledge to run.  @option{hostname=name} can be used to specify the client
363
hostname reported by the builtin DHCP server.
364

    
365
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
366
Connect the host TAP network interface @var{name} to VLAN @var{n} and
367
use the network script @var{file} to configure it. The default
368
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
369
disable script execution. If @var{name} is not
370
provided, the OS automatically provides one.  @option{fd=h} can be
371
used to specify the handle of an already opened host TAP interface. Example:
372

    
373
@example
374
qemu linux.img -net nic -net tap
375
@end example
376

    
377
More complicated example (two NICs, each one connected to a TAP device)
378
@example
379
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
380
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
381
@end example
382

    
383

    
384
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
385

    
386
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
387
machine using a TCP socket connection. If @option{listen} is
388
specified, QEMU waits for incoming connections on @var{port}
389
(@var{host} is optional). @option{connect} is used to connect to
390
another QEMU instance using the @option{listen} option. @option{fd=h}
391
specifies an already opened TCP socket.
392

    
393
Example:
394
@example
395
# launch a first QEMU instance
396
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
397
               -net socket,listen=:1234
398
# connect the VLAN 0 of this instance to the VLAN 0
399
# of the first instance
400
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
401
               -net socket,connect=127.0.0.1:1234
402
@end example
403

    
404
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
405

    
406
Create a VLAN @var{n} shared with another QEMU virtual
407
machines using a UDP multicast socket, effectively making a bus for 
408
every QEMU with same multicast address @var{maddr} and @var{port}.
409
NOTES:
410
@enumerate
411
@item 
412
Several QEMU can be running on different hosts and share same bus (assuming 
413
correct multicast setup for these hosts).
414
@item
415
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
416
@url{http://user-mode-linux.sf.net}.
417
@item Use @option{fd=h} to specify an already opened UDP multicast socket.
418
@end enumerate
419

    
420
Example:
421
@example
422
# launch one QEMU instance
423
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
424
               -net socket,mcast=230.0.0.1:1234
425
# launch another QEMU instance on same "bus"
426
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
427
               -net socket,mcast=230.0.0.1:1234
428
# launch yet another QEMU instance on same "bus"
429
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
430
               -net socket,mcast=230.0.0.1:1234
431
@end example
432

    
433
Example (User Mode Linux compat.):
434
@example
435
# launch QEMU instance (note mcast address selected
436
# is UML's default)
437
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
438
               -net socket,mcast=239.192.168.1:1102
439
# launch UML
440
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
441
@end example
442

    
443
@item -net none
444
Indicate that no network devices should be configured. It is used to
445
override the default configuration (@option{-net nic -net user}) which
446
is activated if no @option{-net} options are provided.
447

    
448
@item -tftp dir
449
When using the user mode network stack, activate a built-in TFTP
450
server. The files in @var{dir} will be exposed as the root of a TFTP server.
451
The TFTP client on the guest must be configured in binary mode (use the command
452
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
453
usual 10.0.2.2.
454

    
455
@item -bootp file
456
When using the user mode network stack, broadcast @var{file} as the BOOTP
457
filename.  In conjunction with @option{-tftp}, this can be used to network boot
458
a guest from a local directory.
459

    
460
Example (using pxelinux):
461
@example
462
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
463
@end example
464

    
465
@item -smb dir
466
When using the user mode network stack, activate a built-in SMB
467
server so that Windows OSes can access to the host files in @file{dir}
468
transparently.
469

    
470
In the guest Windows OS, the line:
471
@example
472
10.0.2.4 smbserver
473
@end example
474
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
475
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
476

    
477
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
478

    
479
Note that a SAMBA server must be installed on the host OS in
480
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
481
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
482

    
483
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
484

    
485
When using the user mode network stack, redirect incoming TCP or UDP
486
connections to the host port @var{host-port} to the guest
487
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
488
is not specified, its value is 10.0.2.15 (default address given by the
489
built-in DHCP server).
490

    
491
For example, to redirect host X11 connection from screen 1 to guest
492
screen 0, use the following:
493

    
494
@example
495
# on the host
496
qemu -redir tcp:6001::6000 [...]
497
# this host xterm should open in the guest X11 server
498
xterm -display :1
499
@end example
500

    
501
To redirect telnet connections from host port 5555 to telnet port on
502
the guest, use the following:
503

    
504
@example
505
# on the host
506
qemu -redir tcp:5555::23 [...]
507
telnet localhost 5555
508
@end example
509

    
510
Then when you use on the host @code{telnet localhost 5555}, you
511
connect to the guest telnet server.
512

    
513
@end table
514

    
515
Linux boot specific: When using these options, you can use a given
516
Linux kernel without installing it in the disk image. It can be useful
517
for easier testing of various kernels.
518

    
519
@table @option
520

    
521
@item -kernel bzImage 
522
Use @var{bzImage} as kernel image.
523

    
524
@item -append cmdline 
525
Use @var{cmdline} as kernel command line
526

    
527
@item -initrd file
528
Use @var{file} as initial ram disk.
529

    
530
@end table
531

    
532
Debug/Expert options:
533
@table @option
534

    
535
@item -serial dev
536
Redirect the virtual serial port to host character device
537
@var{dev}. The default device is @code{vc} in graphical mode and
538
@code{stdio} in non graphical mode.
539

    
540
This option can be used several times to simulate up to 4 serials
541
ports.
542

    
543
Use @code{-serial none} to disable all serial ports.
544

    
545
Available character devices are:
546
@table @code
547
@item vc
548
Virtual console
549
@item pty
550
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
551
@item none
552
No device is allocated.
553
@item null
554
void device
555
@item /dev/XXX
556
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
557
parameters are set according to the emulated ones.
558
@item /dev/parportN
559
[Linux only, parallel port only] Use host parallel port
560
@var{N}. Currently SPP and EPP parallel port features can be used.
561
@item file:filename
562
Write output to filename. No character can be read.
563
@item stdio
564
[Unix only] standard input/output
565
@item pipe:filename
566
name pipe @var{filename}
567
@item COMn
568
[Windows only] Use host serial port @var{n}
569
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
570
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
571

    
572
If you just want a simple readonly console you can use @code{netcat} or
573
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
574
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
575
will appear in the netconsole session.
576

    
577
If you plan to send characters back via netconsole or you want to stop
578
and start qemu a lot of times, you should have qemu use the same
579
source port each time by using something like @code{-serial
580
udp::4555@@:4556} to qemu. Another approach is to use a patched
581
version of netcat which can listen to a TCP port and send and receive
582
characters via udp.  If you have a patched version of netcat which
583
activates telnet remote echo and single char transfer, then you can
584
use the following options to step up a netcat redirector to allow
585
telnet on port 5555 to access the qemu port.
586
@table @code
587
@item Qemu Options:
588
-serial udp::4555@@:4556
589
@item netcat options:
590
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
591
@item telnet options:
592
localhost 5555
593
@end table
594

    
595

    
596
@item tcp:[host]:port[,server][,nowait][,nodelay]
597
The TCP Net Console has two modes of operation.  It can send the serial
598
I/O to a location or wait for a connection from a location.  By default
599
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
600
the @var{server} option QEMU will wait for a client socket application
601
to connect to the port before continuing, unless the @code{nowait}
602
option was specified.  The @code{nodelay} option disables the Nagle buffering
603
algoritm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
604
one TCP connection at a time is accepted. You can use @code{telnet} to
605
connect to the corresponding character device.
606
@table @code
607
@item Example to send tcp console to 192.168.0.2 port 4444
608
-serial tcp:192.168.0.2:4444
609
@item Example to listen and wait on port 4444 for connection
610
-serial tcp::4444,server
611
@item Example to not wait and listen on ip 192.168.0.100 port 4444
612
-serial tcp:192.168.0.100:4444,server,nowait
613
@end table
614

    
615
@item telnet:host:port[,server][,nowait][,nodelay]
616
The telnet protocol is used instead of raw tcp sockets.  The options
617
work the same as if you had specified @code{-serial tcp}.  The
618
difference is that the port acts like a telnet server or client using
619
telnet option negotiation.  This will also allow you to send the
620
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
621
sequence.  Typically in unix telnet you do it with Control-] and then
622
type "send break" followed by pressing the enter key.
623

    
624
@item unix:path[,server][,nowait]
625
A unix domain socket is used instead of a tcp socket.  The option works the
626
same as if you had specified @code{-serial tcp} except the unix domain socket
627
@var{path} is used for connections.
628

    
629
@item mon:dev_string
630
This is a special option to allow the monitor to be multiplexed onto
631
another serial port.  The monitor is accessed with key sequence of
632
@key{Control-a} and then pressing @key{c}. See monitor access
633
@ref{pcsys_keys} in the -nographic section for more keys.
634
@var{dev_string} should be any one of the serial devices specified
635
above.  An example to multiplex the monitor onto a telnet server
636
listening on port 4444 would be:
637
@table @code
638
@item -serial mon:telnet::4444,server,nowait
639
@end table
640

    
641
@end table
642

    
643
@item -parallel dev
644
Redirect the virtual parallel port to host device @var{dev} (same
645
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
646
be used to use hardware devices connected on the corresponding host
647
parallel port.
648

    
649
This option can be used several times to simulate up to 3 parallel
650
ports.
651

    
652
Use @code{-parallel none} to disable all parallel ports.
653

    
654
@item -monitor dev
655
Redirect the monitor to host device @var{dev} (same devices as the
656
serial port).
657
The default device is @code{vc} in graphical mode and @code{stdio} in
658
non graphical mode.
659

    
660
@item -echr numeric_ascii_value
661
Change the escape character used for switching to the monitor when using
662
monitor and serial sharing.  The default is @code{0x01} when using the
663
@code{-nographic} option.  @code{0x01} is equal to pressing
664
@code{Control-a}.  You can select a different character from the ascii
665
control keys where 1 through 26 map to Control-a through Control-z.  For
666
instance you could use the either of the following to change the escape
667
character to Control-t.
668
@table @code
669
@item -echr 0x14
670
@item -echr 20
671
@end table
672

    
673
@item -s
674
Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
675
@item -p port
676
Change gdb connection port.  @var{port} can be either a decimal number
677
to specify a TCP port, or a host device (same devices as the serial port).
678
@item -S
679
Do not start CPU at startup (you must type 'c' in the monitor).
680
@item -d             
681
Output log in /tmp/qemu.log
682
@item -hdachs c,h,s,[,t]
683
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
684
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
685
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
686
all thoses parameters. This option is useful for old MS-DOS disk
687
images.
688

    
689
@item -L path
690
Set the directory for the BIOS, VGA BIOS and keymaps.
691

    
692
@item -std-vga
693
Simulate a standard VGA card with Bochs VBE extensions (default is
694
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
695
VBE extensions (e.g. Windows XP) and if you want to use high
696
resolution modes (>= 1280x1024x16) then you should use this option.
697

    
698
@item -no-acpi
699
Disable ACPI (Advanced Configuration and Power Interface) support. Use
700
it if your guest OS complains about ACPI problems (PC target machine
701
only).
702

    
703
@item -no-reboot
704
Exit instead of rebooting.
705

    
706
@item -loadvm file
707
Start right away with a saved state (@code{loadvm} in monitor)
708

    
709
@item -semihosting
710
Enable "Angel" semihosting interface (ARM target machines only).
711
Note that this allows guest direct access to the host filesystem,
712
so should only be used with trusted guest OS.
713
@end table
714

    
715
@c man end
716

    
717
@node pcsys_keys
718
@section Keys
719

    
720
@c man begin OPTIONS
721

    
722
During the graphical emulation, you can use the following keys:
723
@table @key
724
@item Ctrl-Alt-f
725
Toggle full screen
726

    
727
@item Ctrl-Alt-n
728
Switch to virtual console 'n'. Standard console mappings are:
729
@table @emph
730
@item 1
731
Target system display
732
@item 2
733
Monitor
734
@item 3
735
Serial port
736
@end table
737

    
738
@item Ctrl-Alt
739
Toggle mouse and keyboard grab.
740
@end table
741

    
742
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
743
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
744

    
745
During emulation, if you are using the @option{-nographic} option, use
746
@key{Ctrl-a h} to get terminal commands:
747

    
748
@table @key
749
@item Ctrl-a h
750
Print this help
751
@item Ctrl-a x    
752
Exit emulator
753
@item Ctrl-a s    
754
Save disk data back to file (if -snapshot)
755
@item Ctrl-a t
756
toggle console timestamps
757
@item Ctrl-a b
758
Send break (magic sysrq in Linux)
759
@item Ctrl-a c
760
Switch between console and monitor
761
@item Ctrl-a Ctrl-a
762
Send Ctrl-a
763
@end table
764
@c man end
765

    
766
@ignore
767

    
768
@c man begin SEEALSO
769
The HTML documentation of QEMU for more precise information and Linux
770
user mode emulator invocation.
771
@c man end
772

    
773
@c man begin AUTHOR
774
Fabrice Bellard
775
@c man end
776

    
777
@end ignore
778

    
779
@node pcsys_monitor
780
@section QEMU Monitor
781

    
782
The QEMU monitor is used to give complex commands to the QEMU
783
emulator. You can use it to:
784

    
785
@itemize @minus
786

    
787
@item
788
Remove or insert removable medias images
789
(such as CD-ROM or floppies)
790

    
791
@item 
792
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
793
from a disk file.
794

    
795
@item Inspect the VM state without an external debugger.
796

    
797
@end itemize
798

    
799
@subsection Commands
800

    
801
The following commands are available:
802

    
803
@table @option
804

    
805
@item help or ? [cmd]
806
Show the help for all commands or just for command @var{cmd}.
807

    
808
@item commit  
809
Commit changes to the disk images (if -snapshot is used)
810

    
811
@item info subcommand 
812
show various information about the system state
813

    
814
@table @option
815
@item info network
816
show the various VLANs and the associated devices
817
@item info block
818
show the block devices
819
@item info registers
820
show the cpu registers
821
@item info history
822
show the command line history
823
@item info pci
824
show emulated PCI device
825
@item info usb
826
show USB devices plugged on the virtual USB hub
827
@item info usbhost
828
show all USB host devices
829
@item info capture
830
show information about active capturing
831
@item info snapshots
832
show list of VM snapshots
833
@item info mice
834
show which guest mouse is receiving events
835
@end table
836

    
837
@item q or quit
838
Quit the emulator.
839

    
840
@item eject [-f] device
841
Eject a removable media (use -f to force it).
842

    
843
@item change device filename
844
Change a removable media.
845

    
846
@item screendump filename
847
Save screen into PPM image @var{filename}.
848

    
849
@item mouse_move dx dy [dz]
850
Move the active mouse to the specified coordinates @var{dx} @var{dy}
851
with optional scroll axis @var{dz}.
852

    
853
@item mouse_button val
854
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
855

    
856
@item mouse_set index
857
Set which mouse device receives events at given @var{index}, index
858
can be obtained with
859
@example
860
info mice
861
@end example
862

    
863
@item wavcapture filename [frequency [bits [channels]]]
864
Capture audio into @var{filename}. Using sample rate @var{frequency}
865
bits per sample @var{bits} and number of channels @var{channels}.
866

    
867
Defaults:
868
@itemize @minus
869
@item Sample rate = 44100 Hz - CD quality
870
@item Bits = 16
871
@item Number of channels = 2 - Stereo
872
@end itemize
873

    
874
@item stopcapture index
875
Stop capture with a given @var{index}, index can be obtained with
876
@example
877
info capture
878
@end example
879

    
880
@item log item1[,...]
881
Activate logging of the specified items to @file{/tmp/qemu.log}.
882

    
883
@item savevm [tag|id]
884
Create a snapshot of the whole virtual machine. If @var{tag} is
885
provided, it is used as human readable identifier. If there is already
886
a snapshot with the same tag or ID, it is replaced. More info at
887
@ref{vm_snapshots}.
888

    
889
@item loadvm tag|id
890
Set the whole virtual machine to the snapshot identified by the tag
891
@var{tag} or the unique snapshot ID @var{id}.
892

    
893
@item delvm tag|id
894
Delete the snapshot identified by @var{tag} or @var{id}.
895

    
896
@item stop
897
Stop emulation.
898

    
899
@item c or cont
900
Resume emulation.
901

    
902
@item gdbserver [port]
903
Start gdbserver session (default port=1234)
904

    
905
@item x/fmt addr
906
Virtual memory dump starting at @var{addr}.
907

    
908
@item xp /fmt addr
909
Physical memory dump starting at @var{addr}.
910

    
911
@var{fmt} is a format which tells the command how to format the
912
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
913

    
914
@table @var
915
@item count 
916
is the number of items to be dumped.
917

    
918
@item format
919
can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
920
c (char) or i (asm instruction).
921

    
922
@item size
923
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
924
@code{h} or @code{w} can be specified with the @code{i} format to
925
respectively select 16 or 32 bit code instruction size.
926

    
927
@end table
928

    
929
Examples: 
930
@itemize
931
@item
932
Dump 10 instructions at the current instruction pointer:
933
@example 
934
(qemu) x/10i $eip
935
0x90107063:  ret
936
0x90107064:  sti
937
0x90107065:  lea    0x0(%esi,1),%esi
938
0x90107069:  lea    0x0(%edi,1),%edi
939
0x90107070:  ret
940
0x90107071:  jmp    0x90107080
941
0x90107073:  nop
942
0x90107074:  nop
943
0x90107075:  nop
944
0x90107076:  nop
945
@end example
946

    
947
@item
948
Dump 80 16 bit values at the start of the video memory.
949
@smallexample 
950
(qemu) xp/80hx 0xb8000
951
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
952
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
953
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
954
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
955
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
956
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
957
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
958
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
959
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
960
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
961
@end smallexample
962
@end itemize
963

    
964
@item p or print/fmt expr
965

    
966
Print expression value. Only the @var{format} part of @var{fmt} is
967
used.
968

    
969
@item sendkey keys
970

    
971
Send @var{keys} to the emulator. Use @code{-} to press several keys
972
simultaneously. Example:
973
@example
974
sendkey ctrl-alt-f1
975
@end example
976

    
977
This command is useful to send keys that your graphical user interface
978
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
979

    
980
@item system_reset
981

    
982
Reset the system.
983

    
984
@item usb_add devname
985

    
986
Add the USB device @var{devname}.  For details of available devices see
987
@ref{usb_devices}
988

    
989
@item usb_del devname
990

    
991
Remove the USB device @var{devname} from the QEMU virtual USB
992
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
993
command @code{info usb} to see the devices you can remove.
994

    
995
@end table
996

    
997
@subsection Integer expressions
998

    
999
The monitor understands integers expressions for every integer
1000
argument. You can use register names to get the value of specifics
1001
CPU registers by prefixing them with @emph{$}.
1002

    
1003
@node disk_images
1004
@section Disk Images
1005

    
1006
Since version 0.6.1, QEMU supports many disk image formats, including
1007
growable disk images (their size increase as non empty sectors are
1008
written), compressed and encrypted disk images. Version 0.8.3 added
1009
the new qcow2 disk image format which is essential to support VM
1010
snapshots.
1011

    
1012
@menu
1013
* disk_images_quickstart::    Quick start for disk image creation
1014
* disk_images_snapshot_mode:: Snapshot mode
1015
* vm_snapshots::              VM snapshots
1016
* qemu_img_invocation::       qemu-img Invocation
1017
* host_drives::               Using host drives
1018
* disk_images_fat_images::    Virtual FAT disk images
1019
@end menu
1020

    
1021
@node disk_images_quickstart
1022
@subsection Quick start for disk image creation
1023

    
1024
You can create a disk image with the command:
1025
@example
1026
qemu-img create myimage.img mysize
1027
@end example
1028
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1029
size in kilobytes. You can add an @code{M} suffix to give the size in
1030
megabytes and a @code{G} suffix for gigabytes.
1031

    
1032
See @ref{qemu_img_invocation} for more information.
1033

    
1034
@node disk_images_snapshot_mode
1035
@subsection Snapshot mode
1036

    
1037
If you use the option @option{-snapshot}, all disk images are
1038
considered as read only. When sectors in written, they are written in
1039
a temporary file created in @file{/tmp}. You can however force the
1040
write back to the raw disk images by using the @code{commit} monitor
1041
command (or @key{C-a s} in the serial console).
1042

    
1043
@node vm_snapshots
1044
@subsection VM snapshots
1045

    
1046
VM snapshots are snapshots of the complete virtual machine including
1047
CPU state, RAM, device state and the content of all the writable
1048
disks. In order to use VM snapshots, you must have at least one non
1049
removable and writable block device using the @code{qcow2} disk image
1050
format. Normally this device is the first virtual hard drive.
1051

    
1052
Use the monitor command @code{savevm} to create a new VM snapshot or
1053
replace an existing one. A human readable name can be assigned to each
1054
snapshot in addition to its numerical ID.
1055

    
1056
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1057
a VM snapshot. @code{info snapshots} lists the available snapshots
1058
with their associated information:
1059

    
1060
@example
1061
(qemu) info snapshots
1062
Snapshot devices: hda
1063
Snapshot list (from hda):
1064
ID        TAG                 VM SIZE                DATE       VM CLOCK
1065
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1066
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1067
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1068
@end example
1069

    
1070
A VM snapshot is made of a VM state info (its size is shown in
1071
@code{info snapshots}) and a snapshot of every writable disk image.
1072
The VM state info is stored in the first @code{qcow2} non removable
1073
and writable block device. The disk image snapshots are stored in
1074
every disk image. The size of a snapshot in a disk image is difficult
1075
to evaluate and is not shown by @code{info snapshots} because the
1076
associated disk sectors are shared among all the snapshots to save
1077
disk space (otherwise each snapshot would need a full copy of all the
1078
disk images).
1079

    
1080
When using the (unrelated) @code{-snapshot} option
1081
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1082
but they are deleted as soon as you exit QEMU.
1083

    
1084
VM snapshots currently have the following known limitations:
1085
@itemize
1086
@item 
1087
They cannot cope with removable devices if they are removed or
1088
inserted after a snapshot is done.
1089
@item 
1090
A few device drivers still have incomplete snapshot support so their
1091
state is not saved or restored properly (in particular USB).
1092
@end itemize
1093

    
1094
@node qemu_img_invocation
1095
@subsection @code{qemu-img} Invocation
1096

    
1097
@include qemu-img.texi
1098

    
1099
@node host_drives
1100
@subsection Using host drives
1101

    
1102
In addition to disk image files, QEMU can directly access host
1103
devices. We describe here the usage for QEMU version >= 0.8.3.
1104

    
1105
@subsubsection Linux
1106

    
1107
On Linux, you can directly use the host device filename instead of a
1108
disk image filename provided you have enough proviledge to access
1109
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1110
@file{/dev/fd0} for the floppy.
1111

    
1112
@table @code
1113
@item CD
1114
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1115
specific code to detect CDROM insertion or removal. CDROM ejection by
1116
the guest OS is supported. Currently only data CDs are supported.
1117
@item Floppy
1118
You can specify a floppy device even if no floppy is loaded. Floppy
1119
removal is currently not detected accurately (if you change floppy
1120
without doing floppy access while the floppy is not loaded, the guest
1121
OS will think that the same floppy is loaded).
1122
@item Hard disks
1123
Hard disks can be used. Normally you must specify the whole disk
1124
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1125
see it as a partitioned disk. WARNING: unless you know what you do, it
1126
is better to only make READ-ONLY accesses to the hard disk otherwise
1127
you may corrupt your host data (use the @option{-snapshot} command
1128
line option or modify the device permissions accordingly).
1129
@end table
1130

    
1131
@subsubsection Windows
1132

    
1133
@table @code
1134
@item CD
1135
The prefered syntax is the drive letter (e.g. @file{d:}). The
1136
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1137
supported as an alias to the first CDROM drive.
1138

    
1139
Currently there is no specific code to handle removable medias, so it
1140
is better to use the @code{change} or @code{eject} monitor commands to
1141
change or eject media.
1142
@item Hard disks
1143
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1144
where @var{N} is the drive number (0 is the first hard disk).
1145

    
1146
WARNING: unless you know what you do, it is better to only make
1147
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1148
host data (use the @option{-snapshot} command line so that the
1149
modifications are written in a temporary file).
1150
@end table
1151

    
1152

    
1153
@subsubsection Mac OS X
1154

    
1155
@file{/dev/cdrom} is an alias to the first CDROM. 
1156

    
1157
Currently there is no specific code to handle removable medias, so it
1158
is better to use the @code{change} or @code{eject} monitor commands to
1159
change or eject media.
1160

    
1161
@node disk_images_fat_images
1162
@subsection Virtual FAT disk images
1163

    
1164
QEMU can automatically create a virtual FAT disk image from a
1165
directory tree. In order to use it, just type:
1166

    
1167
@example 
1168
qemu linux.img -hdb fat:/my_directory
1169
@end example
1170

    
1171
Then you access access to all the files in the @file{/my_directory}
1172
directory without having to copy them in a disk image or to export
1173
them via SAMBA or NFS. The default access is @emph{read-only}.
1174

    
1175
Floppies can be emulated with the @code{:floppy:} option:
1176

    
1177
@example 
1178
qemu linux.img -fda fat:floppy:/my_directory
1179
@end example
1180

    
1181
A read/write support is available for testing (beta stage) with the
1182
@code{:rw:} option:
1183

    
1184
@example 
1185
qemu linux.img -fda fat:floppy:rw:/my_directory
1186
@end example
1187

    
1188
What you should @emph{never} do:
1189
@itemize
1190
@item use non-ASCII filenames ;
1191
@item use "-snapshot" together with ":rw:" ;
1192
@item expect it to work when loadvm'ing ;
1193
@item write to the FAT directory on the host system while accessing it with the guest system.
1194
@end itemize
1195

    
1196
@node pcsys_network
1197
@section Network emulation
1198

    
1199
QEMU can simulate several networks cards (NE2000 boards on the PC
1200
target) and can connect them to an arbitrary number of Virtual Local
1201
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1202
VLAN. VLAN can be connected between separate instances of QEMU to
1203
simulate large networks. For simpler usage, a non priviledged user mode
1204
network stack can replace the TAP device to have a basic network
1205
connection.
1206

    
1207
@subsection VLANs
1208

    
1209
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1210
connection between several network devices. These devices can be for
1211
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1212
(TAP devices).
1213

    
1214
@subsection Using TAP network interfaces
1215

    
1216
This is the standard way to connect QEMU to a real network. QEMU adds
1217
a virtual network device on your host (called @code{tapN}), and you
1218
can then configure it as if it was a real ethernet card.
1219

    
1220
@subsubsection Linux host
1221

    
1222
As an example, you can download the @file{linux-test-xxx.tar.gz}
1223
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1224
configure properly @code{sudo} so that the command @code{ifconfig}
1225
contained in @file{qemu-ifup} can be executed as root. You must verify
1226
that your host kernel supports the TAP network interfaces: the
1227
device @file{/dev/net/tun} must be present.
1228

    
1229
See @ref{sec_invocation} to have examples of command lines using the
1230
TAP network interfaces.
1231

    
1232
@subsubsection Windows host
1233

    
1234
There is a virtual ethernet driver for Windows 2000/XP systems, called
1235
TAP-Win32. But it is not included in standard QEMU for Windows,
1236
so you will need to get it separately. It is part of OpenVPN package,
1237
so download OpenVPN from : @url{http://openvpn.net/}.
1238

    
1239
@subsection Using the user mode network stack
1240

    
1241
By using the option @option{-net user} (default configuration if no
1242
@option{-net} option is specified), QEMU uses a completely user mode
1243
network stack (you don't need root priviledge to use the virtual
1244
network). The virtual network configuration is the following:
1245

    
1246
@example
1247

    
1248
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1249
                           |          (10.0.2.2)
1250
                           |
1251
                           ---->  DNS server (10.0.2.3)
1252
                           |     
1253
                           ---->  SMB server (10.0.2.4)
1254
@end example
1255

    
1256
The QEMU VM behaves as if it was behind a firewall which blocks all
1257
incoming connections. You can use a DHCP client to automatically
1258
configure the network in the QEMU VM. The DHCP server assign addresses
1259
to the hosts starting from 10.0.2.15.
1260

    
1261
In order to check that the user mode network is working, you can ping
1262
the address 10.0.2.2 and verify that you got an address in the range
1263
10.0.2.x from the QEMU virtual DHCP server.
1264

    
1265
Note that @code{ping} is not supported reliably to the internet as it
1266
would require root priviledges. It means you can only ping the local
1267
router (10.0.2.2).
1268

    
1269
When using the built-in TFTP server, the router is also the TFTP
1270
server.
1271

    
1272
When using the @option{-redir} option, TCP or UDP connections can be
1273
redirected from the host to the guest. It allows for example to
1274
redirect X11, telnet or SSH connections.
1275

    
1276
@subsection Connecting VLANs between QEMU instances
1277

    
1278
Using the @option{-net socket} option, it is possible to make VLANs
1279
that span several QEMU instances. See @ref{sec_invocation} to have a
1280
basic example.
1281

    
1282
@node direct_linux_boot
1283
@section Direct Linux Boot
1284

    
1285
This section explains how to launch a Linux kernel inside QEMU without
1286
having to make a full bootable image. It is very useful for fast Linux
1287
kernel testing.
1288

    
1289
The syntax is:
1290
@example
1291
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1292
@end example
1293

    
1294
Use @option{-kernel} to provide the Linux kernel image and
1295
@option{-append} to give the kernel command line arguments. The
1296
@option{-initrd} option can be used to provide an INITRD image.
1297

    
1298
When using the direct Linux boot, a disk image for the first hard disk
1299
@file{hda} is required because its boot sector is used to launch the
1300
Linux kernel.
1301

    
1302
If you do not need graphical output, you can disable it and redirect
1303
the virtual serial port and the QEMU monitor to the console with the
1304
@option{-nographic} option. The typical command line is:
1305
@example
1306
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1307
     -append "root=/dev/hda console=ttyS0" -nographic
1308
@end example
1309

    
1310
Use @key{Ctrl-a c} to switch between the serial console and the
1311
monitor (@pxref{pcsys_keys}).
1312

    
1313
@node pcsys_usb
1314
@section USB emulation
1315

    
1316
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1317
virtual USB devices or real host USB devices (experimental, works only
1318
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1319
as necessary to connect multiple USB devices.
1320

    
1321
@menu
1322
* usb_devices::
1323
* host_usb_devices::
1324
@end menu
1325
@node usb_devices
1326
@subsection Connecting USB devices
1327

    
1328
USB devices can be connected with the @option{-usbdevice} commandline option
1329
or the @code{usb_add} monitor command.  Available devices are:
1330

    
1331
@table @var
1332
@item @code{mouse}
1333
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1334
@item @code{tablet}
1335
Pointer device that uses absolute coordinates (like a touchscreen).
1336
This means qemu is able to report the mouse position without having
1337
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1338
@item @code{disk:file}
1339
Mass storage device based on @var{file} (@pxref{disk_images})
1340
@item @code{host:bus.addr}
1341
Pass through the host device identified by @var{bus.addr}
1342
(Linux only)
1343
@item @code{host:vendor_id:product_id}
1344
Pass through the host device identified by @var{vendor_id:product_id}
1345
(Linux only)
1346
@end table
1347

    
1348
@node host_usb_devices
1349
@subsection Using host USB devices on a Linux host
1350

    
1351
WARNING: this is an experimental feature. QEMU will slow down when
1352
using it. USB devices requiring real time streaming (i.e. USB Video
1353
Cameras) are not supported yet.
1354

    
1355
@enumerate
1356
@item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1357
is actually using the USB device. A simple way to do that is simply to
1358
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1359
to @file{mydriver.o.disabled}.
1360

    
1361
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1362
@example
1363
ls /proc/bus/usb
1364
001  devices  drivers
1365
@end example
1366

    
1367
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1368
@example
1369
chown -R myuid /proc/bus/usb
1370
@end example
1371

    
1372
@item Launch QEMU and do in the monitor:
1373
@example 
1374
info usbhost
1375
  Device 1.2, speed 480 Mb/s
1376
    Class 00: USB device 1234:5678, USB DISK
1377
@end example
1378
You should see the list of the devices you can use (Never try to use
1379
hubs, it won't work).
1380

    
1381
@item Add the device in QEMU by using:
1382
@example 
1383
usb_add host:1234:5678
1384
@end example
1385

    
1386
Normally the guest OS should report that a new USB device is
1387
plugged. You can use the option @option{-usbdevice} to do the same.
1388

    
1389
@item Now you can try to use the host USB device in QEMU.
1390

    
1391
@end enumerate
1392

    
1393
When relaunching QEMU, you may have to unplug and plug again the USB
1394
device to make it work again (this is a bug).
1395

    
1396
@node gdb_usage
1397
@section GDB usage
1398

    
1399
QEMU has a primitive support to work with gdb, so that you can do
1400
'Ctrl-C' while the virtual machine is running and inspect its state.
1401

    
1402
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1403
gdb connection:
1404
@example
1405
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1406
       -append "root=/dev/hda"
1407
Connected to host network interface: tun0
1408
Waiting gdb connection on port 1234
1409
@end example
1410

    
1411
Then launch gdb on the 'vmlinux' executable:
1412
@example
1413
> gdb vmlinux
1414
@end example
1415

    
1416
In gdb, connect to QEMU:
1417
@example
1418
(gdb) target remote localhost:1234
1419
@end example
1420

    
1421
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1422
@example
1423
(gdb) c
1424
@end example
1425

    
1426
Here are some useful tips in order to use gdb on system code:
1427

    
1428
@enumerate
1429
@item
1430
Use @code{info reg} to display all the CPU registers.
1431
@item
1432
Use @code{x/10i $eip} to display the code at the PC position.
1433
@item
1434
Use @code{set architecture i8086} to dump 16 bit code. Then use
1435
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1436
@end enumerate
1437

    
1438
@node pcsys_os_specific
1439
@section Target OS specific information
1440

    
1441
@subsection Linux
1442

    
1443
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1444
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1445
color depth in the guest and the host OS.
1446

    
1447
When using a 2.6 guest Linux kernel, you should add the option
1448
@code{clock=pit} on the kernel command line because the 2.6 Linux
1449
kernels make very strict real time clock checks by default that QEMU
1450
cannot simulate exactly.
1451

    
1452
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1453
not activated because QEMU is slower with this patch. The QEMU
1454
Accelerator Module is also much slower in this case. Earlier Fedora
1455
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1456
patch by default. Newer kernels don't have it.
1457

    
1458
@subsection Windows
1459

    
1460
If you have a slow host, using Windows 95 is better as it gives the
1461
best speed. Windows 2000 is also a good choice.
1462

    
1463
@subsubsection SVGA graphic modes support
1464

    
1465
QEMU emulates a Cirrus Logic GD5446 Video
1466
card. All Windows versions starting from Windows 95 should recognize
1467
and use this graphic card. For optimal performances, use 16 bit color
1468
depth in the guest and the host OS.
1469

    
1470
If you are using Windows XP as guest OS and if you want to use high
1471
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1472
1280x1024x16), then you should use the VESA VBE virtual graphic card
1473
(option @option{-std-vga}).
1474

    
1475
@subsubsection CPU usage reduction
1476

    
1477
Windows 9x does not correctly use the CPU HLT
1478
instruction. The result is that it takes host CPU cycles even when
1479
idle. You can install the utility from
1480
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1481
problem. Note that no such tool is needed for NT, 2000 or XP.
1482

    
1483
@subsubsection Windows 2000 disk full problem
1484

    
1485
Windows 2000 has a bug which gives a disk full problem during its
1486
installation. When installing it, use the @option{-win2k-hack} QEMU
1487
option to enable a specific workaround. After Windows 2000 is
1488
installed, you no longer need this option (this option slows down the
1489
IDE transfers).
1490

    
1491
@subsubsection Windows 2000 shutdown
1492

    
1493
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1494
can. It comes from the fact that Windows 2000 does not automatically
1495
use the APM driver provided by the BIOS.
1496

    
1497
In order to correct that, do the following (thanks to Struan
1498
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1499
Add/Troubleshoot a device => Add a new device & Next => No, select the
1500
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1501
(again) a few times. Now the driver is installed and Windows 2000 now
1502
correctly instructs QEMU to shutdown at the appropriate moment. 
1503

    
1504
@subsubsection Share a directory between Unix and Windows
1505

    
1506
See @ref{sec_invocation} about the help of the option @option{-smb}.
1507

    
1508
@subsubsection Windows XP security problem
1509

    
1510
Some releases of Windows XP install correctly but give a security
1511
error when booting:
1512
@example
1513
A problem is preventing Windows from accurately checking the
1514
license for this computer. Error code: 0x800703e6.
1515
@end example
1516

    
1517
The workaround is to install a service pack for XP after a boot in safe
1518
mode. Then reboot, and the problem should go away. Since there is no
1519
network while in safe mode, its recommended to download the full
1520
installation of SP1 or SP2 and transfer that via an ISO or using the
1521
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1522

    
1523
@subsection MS-DOS and FreeDOS
1524

    
1525
@subsubsection CPU usage reduction
1526

    
1527
DOS does not correctly use the CPU HLT instruction. The result is that
1528
it takes host CPU cycles even when idle. You can install the utility
1529
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1530
problem.
1531

    
1532
@node QEMU System emulator for non PC targets
1533
@chapter QEMU System emulator for non PC targets
1534

    
1535
QEMU is a generic emulator and it emulates many non PC
1536
machines. Most of the options are similar to the PC emulator. The
1537
differences are mentionned in the following sections.
1538

    
1539
@menu
1540
* QEMU PowerPC System emulator::
1541
* Sparc32 System emulator invocation::
1542
* Sparc64 System emulator invocation::
1543
* MIPS System emulator invocation::
1544
* ARM System emulator invocation::
1545
@end menu
1546

    
1547
@node QEMU PowerPC System emulator
1548
@section QEMU PowerPC System emulator
1549

    
1550
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1551
or PowerMac PowerPC system.
1552

    
1553
QEMU emulates the following PowerMac peripherals:
1554

    
1555
@itemize @minus
1556
@item 
1557
UniNorth PCI Bridge 
1558
@item
1559
PCI VGA compatible card with VESA Bochs Extensions
1560
@item 
1561
2 PMAC IDE interfaces with hard disk and CD-ROM support
1562
@item 
1563
NE2000 PCI adapters
1564
@item
1565
Non Volatile RAM
1566
@item
1567
VIA-CUDA with ADB keyboard and mouse.
1568
@end itemize
1569

    
1570
QEMU emulates the following PREP peripherals:
1571

    
1572
@itemize @minus
1573
@item 
1574
PCI Bridge
1575
@item
1576
PCI VGA compatible card with VESA Bochs Extensions
1577
@item 
1578
2 IDE interfaces with hard disk and CD-ROM support
1579
@item
1580
Floppy disk
1581
@item 
1582
NE2000 network adapters
1583
@item
1584
Serial port
1585
@item
1586
PREP Non Volatile RAM
1587
@item
1588
PC compatible keyboard and mouse.
1589
@end itemize
1590

    
1591
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1592
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1593

    
1594
@c man begin OPTIONS
1595

    
1596
The following options are specific to the PowerPC emulation:
1597

    
1598
@table @option
1599

    
1600
@item -g WxH[xDEPTH]  
1601

    
1602
Set the initial VGA graphic mode. The default is 800x600x15.
1603

    
1604
@end table
1605

    
1606
@c man end 
1607

    
1608

    
1609
More information is available at
1610
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1611

    
1612
@node Sparc32 System emulator invocation
1613
@section Sparc32 System emulator invocation
1614

    
1615
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1616
(sun4m architecture). The emulation is somewhat complete.
1617

    
1618
QEMU emulates the following sun4m peripherals:
1619

    
1620
@itemize @minus
1621
@item
1622
IOMMU
1623
@item
1624
TCX Frame buffer
1625
@item 
1626
Lance (Am7990) Ethernet
1627
@item
1628
Non Volatile RAM M48T08
1629
@item
1630
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1631
and power/reset logic
1632
@item
1633
ESP SCSI controller with hard disk and CD-ROM support
1634
@item
1635
Floppy drive
1636
@end itemize
1637

    
1638
The number of peripherals is fixed in the architecture.
1639

    
1640
Since version 0.8.2, QEMU uses OpenBIOS
1641
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1642
firmware implementation. The goal is to implement a 100% IEEE
1643
1275-1994 (referred to as Open Firmware) compliant firmware.
1644

    
1645
A sample Linux 2.6 series kernel and ram disk image are available on
1646
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1647
Solaris kernels don't work.
1648

    
1649
@c man begin OPTIONS
1650

    
1651
The following options are specific to the Sparc emulation:
1652

    
1653
@table @option
1654

    
1655
@item -g WxH
1656

    
1657
Set the initial TCX graphic mode. The default is 1024x768.
1658

    
1659
@end table
1660

    
1661
@c man end 
1662

    
1663
@node Sparc64 System emulator invocation
1664
@section Sparc64 System emulator invocation
1665

    
1666
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1667
The emulator is not usable for anything yet.
1668

    
1669
QEMU emulates the following sun4u peripherals:
1670

    
1671
@itemize @minus
1672
@item
1673
UltraSparc IIi APB PCI Bridge 
1674
@item
1675
PCI VGA compatible card with VESA Bochs Extensions
1676
@item
1677
Non Volatile RAM M48T59
1678
@item
1679
PC-compatible serial ports
1680
@end itemize
1681

    
1682
@node MIPS System emulator invocation
1683
@section MIPS System emulator invocation
1684

    
1685
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1686
The emulator is able to boot a Linux kernel and to run a Linux Debian
1687
installation from NFS. The following devices are emulated:
1688

    
1689
@itemize @minus
1690
@item 
1691
MIPS R4K CPU
1692
@item
1693
PC style serial port
1694
@item
1695
NE2000 network card
1696
@end itemize
1697

    
1698
More information is available in the QEMU mailing-list archive.
1699

    
1700
@node ARM System emulator invocation
1701
@section ARM System emulator invocation
1702

    
1703
Use the executable @file{qemu-system-arm} to simulate a ARM
1704
machine. The ARM Integrator/CP board is emulated with the following
1705
devices:
1706

    
1707
@itemize @minus
1708
@item
1709
ARM926E or ARM1026E CPU
1710
@item
1711
Two PL011 UARTs
1712
@item 
1713
SMC 91c111 Ethernet adapter
1714
@item
1715
PL110 LCD controller
1716
@item
1717
PL050 KMI with PS/2 keyboard and mouse.
1718
@end itemize
1719

    
1720
The ARM Versatile baseboard is emulated with the following devices:
1721

    
1722
@itemize @minus
1723
@item
1724
ARM926E CPU
1725
@item
1726
PL190 Vectored Interrupt Controller
1727
@item
1728
Four PL011 UARTs
1729
@item 
1730
SMC 91c111 Ethernet adapter
1731
@item
1732
PL110 LCD controller
1733
@item
1734
PL050 KMI with PS/2 keyboard and mouse.
1735
@item
1736
PCI host bridge.  Note the emulated PCI bridge only provides access to
1737
PCI memory space.  It does not provide access to PCI IO space.
1738
This means some devices (eg. ne2k_pci NIC) are not useable, and others
1739
(eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1740
mapped control registers.
1741
@item
1742
PCI OHCI USB controller.
1743
@item
1744
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1745
@end itemize
1746

    
1747
The ARM RealView Emulation baseboard is emulated with the following devices:
1748

    
1749
@itemize @minus
1750
@item
1751
ARM926E CPU
1752
@item
1753
ARM AMBA Generic/Distributed Interrupt Controller
1754
@item
1755
Four PL011 UARTs
1756
@item 
1757
SMC 91c111 Ethernet adapter
1758
@item
1759
PL110 LCD controller
1760
@item
1761
PL050 KMI with PS/2 keyboard and mouse
1762
@item
1763
PCI host bridge
1764
@item
1765
PCI OHCI USB controller
1766
@item
1767
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1768
@end itemize
1769

    
1770
A Linux 2.6 test image is available on the QEMU web site. More
1771
information is available in the QEMU mailing-list archive.
1772

    
1773
@node QEMU User space emulator 
1774
@chapter QEMU User space emulator 
1775

    
1776
@menu
1777
* Supported Operating Systems ::
1778
* Linux User space emulator::
1779
* Mac OS X/Darwin User space emulator ::
1780
@end menu
1781

    
1782
@node Supported Operating Systems
1783
@section Supported Operating Systems
1784

    
1785
The following OS are supported in user space emulation:
1786

    
1787
@itemize @minus
1788
@item
1789
Linux (refered as qemu-linux-user)
1790
@item
1791
Mac OS X/Darwin (refered as qemu-darwin-user)
1792
@end itemize
1793

    
1794
@node Linux User space emulator
1795
@section Linux User space emulator
1796

    
1797
@menu
1798
* Quick Start::
1799
* Wine launch::
1800
* Command line options::
1801
* Other binaries::
1802
@end menu
1803

    
1804
@node Quick Start
1805
@subsection Quick Start
1806

    
1807
In order to launch a Linux process, QEMU needs the process executable
1808
itself and all the target (x86) dynamic libraries used by it. 
1809

    
1810
@itemize
1811

    
1812
@item On x86, you can just try to launch any process by using the native
1813
libraries:
1814

    
1815
@example 
1816
qemu-i386 -L / /bin/ls
1817
@end example
1818

    
1819
@code{-L /} tells that the x86 dynamic linker must be searched with a
1820
@file{/} prefix.
1821

    
1822
@item Since QEMU is also a linux process, you can launch qemu with
1823
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1824

    
1825
@example 
1826
qemu-i386 -L / qemu-i386 -L / /bin/ls
1827
@end example
1828

    
1829
@item On non x86 CPUs, you need first to download at least an x86 glibc
1830
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1831
@code{LD_LIBRARY_PATH} is not set:
1832

    
1833
@example
1834
unset LD_LIBRARY_PATH 
1835
@end example
1836

    
1837
Then you can launch the precompiled @file{ls} x86 executable:
1838

    
1839
@example
1840
qemu-i386 tests/i386/ls
1841
@end example
1842
You can look at @file{qemu-binfmt-conf.sh} so that
1843
QEMU is automatically launched by the Linux kernel when you try to
1844
launch x86 executables. It requires the @code{binfmt_misc} module in the
1845
Linux kernel.
1846

    
1847
@item The x86 version of QEMU is also included. You can try weird things such as:
1848
@example
1849
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1850
          /usr/local/qemu-i386/bin/ls-i386
1851
@end example
1852

    
1853
@end itemize
1854

    
1855
@node Wine launch
1856
@subsection Wine launch
1857

    
1858
@itemize
1859

    
1860
@item Ensure that you have a working QEMU with the x86 glibc
1861
distribution (see previous section). In order to verify it, you must be
1862
able to do:
1863

    
1864
@example
1865
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1866
@end example
1867

    
1868
@item Download the binary x86 Wine install
1869
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1870

    
1871
@item Configure Wine on your account. Look at the provided script
1872
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1873
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1874

    
1875
@item Then you can try the example @file{putty.exe}:
1876

    
1877
@example
1878
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1879
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1880
@end example
1881

    
1882
@end itemize
1883

    
1884
@node Command line options
1885
@subsection Command line options
1886

    
1887
@example
1888
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1889
@end example
1890

    
1891
@table @option
1892
@item -h
1893
Print the help
1894
@item -L path   
1895
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1896
@item -s size
1897
Set the x86 stack size in bytes (default=524288)
1898
@end table
1899

    
1900
Debug options:
1901

    
1902
@table @option
1903
@item -d
1904
Activate log (logfile=/tmp/qemu.log)
1905
@item -p pagesize
1906
Act as if the host page size was 'pagesize' bytes
1907
@end table
1908

    
1909
@node Other binaries
1910
@subsection Other binaries
1911

    
1912
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1913
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1914
configurations), and arm-uclinux bFLT format binaries.
1915

    
1916
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
1917
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1918
coldfire uClinux bFLT format binaries.
1919

    
1920
The binary format is detected automatically.
1921

    
1922
@node Mac OS X/Darwin User space emulator
1923
@section Mac OS X/Darwin User space emulator
1924

    
1925
@menu
1926
* Mac OS X/Darwin Status::
1927
* Mac OS X/Darwin Quick Start::
1928
* Mac OS X/Darwin Command line options::
1929
@end menu
1930

    
1931
@node Mac OS X/Darwin Status
1932
@subsection Mac OS X/Darwin Status
1933

    
1934
@itemize @minus
1935
@item
1936
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
1937
@item
1938
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
1939
@item
1940
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
1941
@item
1942
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
1943
@end itemize
1944

    
1945
[1] If you're host commpage can be executed by qemu.
1946

    
1947
@node Mac OS X/Darwin Quick Start
1948
@subsection Quick Start
1949

    
1950
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
1951
itself and all the target dynamic libraries used by it. If you don't have the FAT
1952
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
1953
CD or compile them by hand.
1954

    
1955
@itemize
1956

    
1957
@item On x86, you can just try to launch any process by using the native
1958
libraries:
1959

    
1960
@example 
1961
qemu-i386 /bin/ls
1962
@end example
1963

    
1964
or to run the ppc version of the executable:
1965

    
1966
@example 
1967
qemu-ppc /bin/ls
1968
@end example
1969

    
1970
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
1971
are installed:
1972

    
1973
@example 
1974
qemu-i386 -L /opt/x86_root/ /bin/ls
1975
@end example
1976

    
1977
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
1978
@file{/opt/x86_root/usr/bin/dyld}.
1979

    
1980
@end itemize
1981

    
1982
@node Mac OS X/Darwin Command line options
1983
@subsection Command line options
1984

    
1985
@example
1986
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1987
@end example
1988

    
1989
@table @option
1990
@item -h
1991
Print the help
1992
@item -L path   
1993
Set the library root path (default=/)
1994
@item -s size
1995
Set the stack size in bytes (default=524288)
1996
@end table
1997

    
1998
Debug options:
1999

    
2000
@table @option
2001
@item -d
2002
Activate log (logfile=/tmp/qemu.log)
2003
@item -p pagesize
2004
Act as if the host page size was 'pagesize' bytes
2005
@end table
2006

    
2007
@node compilation
2008
@chapter Compilation from the sources
2009

    
2010
@menu
2011
* Linux/Unix::
2012
* Windows::
2013
* Cross compilation for Windows with Linux::
2014
* Mac OS X::
2015
@end menu
2016

    
2017
@node Linux/Unix
2018
@section Linux/Unix
2019

    
2020
@subsection Compilation
2021

    
2022
First you must decompress the sources:
2023
@example
2024
cd /tmp
2025
tar zxvf qemu-x.y.z.tar.gz
2026
cd qemu-x.y.z
2027
@end example
2028

    
2029
Then you configure QEMU and build it (usually no options are needed):
2030
@example
2031
./configure
2032
make
2033
@end example
2034

    
2035
Then type as root user:
2036
@example
2037
make install
2038
@end example
2039
to install QEMU in @file{/usr/local}.
2040

    
2041
@subsection GCC version
2042

    
2043
In order to compile QEMU successfully, it is very important that you
2044
have the right tools. The most important one is gcc. On most hosts and
2045
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2046
Linux distribution includes a gcc 4.x compiler, you can usually
2047
install an older version (it is invoked by @code{gcc32} or
2048
@code{gcc34}). The QEMU configure script automatically probes for
2049
these older versions so that usally you don't have to do anything.
2050

    
2051
@node Windows
2052
@section Windows
2053

    
2054
@itemize
2055
@item Install the current versions of MSYS and MinGW from
2056
@url{http://www.mingw.org/}. You can find detailed installation
2057
instructions in the download section and the FAQ.
2058

    
2059
@item Download 
2060
the MinGW development library of SDL 1.2.x
2061
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2062
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2063
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2064
directory. Edit the @file{sdl-config} script so that it gives the
2065
correct SDL directory when invoked.
2066

    
2067
@item Extract the current version of QEMU.
2068
 
2069
@item Start the MSYS shell (file @file{msys.bat}).
2070

    
2071
@item Change to the QEMU directory. Launch @file{./configure} and 
2072
@file{make}.  If you have problems using SDL, verify that
2073
@file{sdl-config} can be launched from the MSYS command line.
2074

    
2075
@item You can install QEMU in @file{Program Files/Qemu} by typing 
2076
@file{make install}. Don't forget to copy @file{SDL.dll} in
2077
@file{Program Files/Qemu}.
2078

    
2079
@end itemize
2080

    
2081
@node Cross compilation for Windows with Linux
2082
@section Cross compilation for Windows with Linux
2083

    
2084
@itemize
2085
@item
2086
Install the MinGW cross compilation tools available at
2087
@url{http://www.mingw.org/}.
2088

    
2089
@item 
2090
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2091
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2092
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2093
the QEMU configuration script.
2094

    
2095
@item 
2096
Configure QEMU for Windows cross compilation:
2097
@example
2098
./configure --enable-mingw32
2099
@end example
2100
If necessary, you can change the cross-prefix according to the prefix
2101
choosen for the MinGW tools with --cross-prefix. You can also use
2102
--prefix to set the Win32 install path.
2103

    
2104
@item You can install QEMU in the installation directory by typing 
2105
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2106
installation directory. 
2107

    
2108
@end itemize
2109

    
2110
Note: Currently, Wine does not seem able to launch
2111
QEMU for Win32.
2112

    
2113
@node Mac OS X
2114
@section Mac OS X
2115

    
2116
The Mac OS X patches are not fully merged in QEMU, so you should look
2117
at the QEMU mailing list archive to have all the necessary
2118
information.
2119

    
2120
@node Index
2121
@chapter Index
2122
@printindex cp
2123

    
2124
@bye