Statistics
| Branch: | Revision:

root / qemu-doc.texi @ d796321b

History | View | Annotate | Download (53 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU CPU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU CPU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU Linux User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item 
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item 
60
User mode emulation (Linux host only). In this mode, QEMU can launch
61
Linux processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance. 
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E or 1026E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@end itemize
83

    
84
For user emulation, x86, PowerPC, ARM, MIPS, and Sparc32/64 CPUs are supported.
85

    
86
@node Installation
87
@chapter Installation
88

    
89
If you want to compile QEMU yourself, see @ref{compilation}.
90

    
91
@menu
92
* install_linux::   Linux
93
* install_windows:: Windows
94
* install_mac::     Macintosh
95
@end menu
96

    
97
@node install_linux
98
@section Linux
99

    
100
If a precompiled package is available for your distribution - you just
101
have to install it. Otherwise, see @ref{compilation}.
102

    
103
@node install_windows
104
@section Windows
105

    
106
Download the experimental binary installer at
107
@url{http://www.free.oszoo.org/@/download.html}.
108

    
109
@node install_mac
110
@section Mac OS X
111

    
112
Download the experimental binary installer at
113
@url{http://www.free.oszoo.org/@/download.html}.
114

    
115
@node QEMU PC System emulator
116
@chapter QEMU PC System emulator
117

    
118
@menu
119
* pcsys_introduction:: Introduction
120
* pcsys_quickstart::   Quick Start
121
* sec_invocation::     Invocation
122
* pcsys_keys::         Keys
123
* pcsys_monitor::      QEMU Monitor
124
* disk_images::        Disk Images
125
* pcsys_network::      Network emulation
126
* direct_linux_boot::  Direct Linux Boot
127
* pcsys_usb::          USB emulation
128
* gdb_usage::          GDB usage
129
* pcsys_os_specific::  Target OS specific information
130
@end menu
131

    
132
@node pcsys_introduction
133
@section Introduction
134

    
135
@c man begin DESCRIPTION
136

    
137
The QEMU PC System emulator simulates the
138
following peripherals:
139

    
140
@itemize @minus
141
@item 
142
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143
@item
144
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145
extensions (hardware level, including all non standard modes).
146
@item
147
PS/2 mouse and keyboard
148
@item 
149
2 PCI IDE interfaces with hard disk and CD-ROM support
150
@item
151
Floppy disk
152
@item 
153
NE2000 PCI network adapters
154
@item
155
Serial ports
156
@item
157
Creative SoundBlaster 16 sound card
158
@item
159
ENSONIQ AudioPCI ES1370 sound card
160
@item
161
Adlib(OPL2) - Yamaha YM3812 compatible chip
162
@item
163
PCI UHCI USB controller and a virtual USB hub.
164
@end itemize
165

    
166
SMP is supported with up to 255 CPUs.
167

    
168
Note that adlib is only available when QEMU was configured with
169
-enable-adlib
170

    
171
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172
VGA BIOS.
173

    
174
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175

    
176
@c man end
177

    
178
@node pcsys_quickstart
179
@section Quick Start
180

    
181
Download and uncompress the linux image (@file{linux.img}) and type:
182

    
183
@example
184
qemu linux.img
185
@end example
186

    
187
Linux should boot and give you a prompt.
188

    
189
@node sec_invocation
190
@section Invocation
191

    
192
@example
193
@c man begin SYNOPSIS
194
usage: qemu [options] [disk_image]
195
@c man end
196
@end example
197

    
198
@c man begin OPTIONS
199
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
200

    
201
General options:
202
@table @option
203
@item -M machine
204
Select the emulated machine (@code{-M ?} for list)
205

    
206
@item -fda file
207
@item -fdb file
208
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209
use the host floppy by using @file{/dev/fd0} as filename.
210

    
211
@item -hda file
212
@item -hdb file
213
@item -hdc file
214
@item -hdd file
215
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216

    
217
@item -cdrom file
218
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219
@option{-cdrom} at the same time). You can use the host CD-ROM by
220
using @file{/dev/cdrom} as filename.
221

    
222
@item -boot [a|c|d]
223
Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224
the default.
225

    
226
@item -snapshot
227
Write to temporary files instead of disk image files. In this case,
228
the raw disk image you use is not written back. You can however force
229
the write back by pressing @key{C-a s} (@pxref{disk_images}). 
230

    
231
@item -no-fd-bootchk
232
Disable boot signature checking for floppy disks in Bochs BIOS. It may
233
be needed to boot from old floppy disks.
234

    
235
@item -m megs
236
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
237

    
238
@item -smp n
239
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240
CPUs are supported.
241

    
242
@item -nographic
243

    
244
Normally, QEMU uses SDL to display the VGA output. With this option,
245
you can totally disable graphical output so that QEMU is a simple
246
command line application. The emulated serial port is redirected on
247
the console. Therefore, you can still use QEMU to debug a Linux kernel
248
with a serial console.
249

    
250
@item -vnc d
251

    
252
Normally, QEMU uses SDL to display the VGA output.  With this option,
253
you can have QEMU listen on VNC display d and redirect the VGA display
254
over the VNC session.  It is very useful to enable the usb tablet device
255
when using this option (option @option{-usbdevice tablet}).
256

    
257
@item -k language
258

    
259
Use keyboard layout @var{language} (for example @code{fr} for
260
French). This option is only needed where it is not easy to get raw PC
261
keycodes (e.g. on Macs or with some X11 servers). You don't need to
262
use it on PC/Linux or PC/Windows hosts.
263

    
264
The available layouts are:
265
@example
266
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
267
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
268
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
269
@end example
270

    
271
The default is @code{en-us}.
272

    
273
@item -audio-help
274

    
275
Will show the audio subsystem help: list of drivers, tunable
276
parameters.
277

    
278
@item -soundhw card1,card2,... or -soundhw all
279

    
280
Enable audio and selected sound hardware. Use ? to print all
281
available sound hardware.
282

    
283
@example
284
qemu -soundhw sb16,adlib hda
285
qemu -soundhw es1370 hda
286
qemu -soundhw all hda
287
qemu -soundhw ?
288
@end example
289

    
290
@item -localtime
291
Set the real time clock to local time (the default is to UTC
292
time). This option is needed to have correct date in MS-DOS or
293
Windows.
294

    
295
@item -full-screen
296
Start in full screen.
297

    
298
@item -pidfile file
299
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
300
from a script.
301

    
302
@item -win2k-hack
303
Use it when installing Windows 2000 to avoid a disk full bug. After
304
Windows 2000 is installed, you no longer need this option (this option
305
slows down the IDE transfers).
306

    
307
@end table
308

    
309
USB options:
310
@table @option
311

    
312
@item -usb
313
Enable the USB driver (will be the default soon)
314

    
315
@item -usbdevice devname
316
Add the USB device @var{devname}. @xref{usb_devices}.
317
@end table
318

    
319
Network options:
320

    
321
@table @option
322

    
323
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
324
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
325
= 0 is the default). The NIC is currently an NE2000 on the PC
326
target. Optionally, the MAC address can be changed. If no
327
@option{-net} option is specified, a single NIC is created.
328
Qemu can emulate several different models of network card.  Valid values for
329
@var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
330
@code{smc91c111} and @code{lance}.  Not all devices are supported on all
331
targets.
332

    
333
@item -net user[,vlan=n][,hostname=name]
334
Use the user mode network stack which requires no administrator
335
priviledge to run.  @option{hostname=name} can be used to specify the client
336
hostname reported by the builtin DHCP server.
337

    
338
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
339
Connect the host TAP network interface @var{name} to VLAN @var{n} and
340
use the network script @var{file} to configure it. The default
341
network script is @file{/etc/qemu-ifup}. If @var{name} is not
342
provided, the OS automatically provides one.  @option{fd=h} can be
343
used to specify the handle of an already opened host TAP interface. Example:
344

    
345
@example
346
qemu linux.img -net nic -net tap
347
@end example
348

    
349
More complicated example (two NICs, each one connected to a TAP device)
350
@example
351
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
352
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
353
@end example
354

    
355

    
356
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
357

    
358
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
359
machine using a TCP socket connection. If @option{listen} is
360
specified, QEMU waits for incoming connections on @var{port}
361
(@var{host} is optional). @option{connect} is used to connect to
362
another QEMU instance using the @option{listen} option. @option{fd=h}
363
specifies an already opened TCP socket.
364

    
365
Example:
366
@example
367
# launch a first QEMU instance
368
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
369
               -net socket,listen=:1234
370
# connect the VLAN 0 of this instance to the VLAN 0
371
# of the first instance
372
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
373
               -net socket,connect=127.0.0.1:1234
374
@end example
375

    
376
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
377

    
378
Create a VLAN @var{n} shared with another QEMU virtual
379
machines using a UDP multicast socket, effectively making a bus for 
380
every QEMU with same multicast address @var{maddr} and @var{port}.
381
NOTES:
382
@enumerate
383
@item 
384
Several QEMU can be running on different hosts and share same bus (assuming 
385
correct multicast setup for these hosts).
386
@item
387
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
388
@url{http://user-mode-linux.sf.net}.
389
@item Use @option{fd=h} to specify an already opened UDP multicast socket.
390
@end enumerate
391

    
392
Example:
393
@example
394
# launch one QEMU instance
395
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
396
               -net socket,mcast=230.0.0.1:1234
397
# launch another QEMU instance on same "bus"
398
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
399
               -net socket,mcast=230.0.0.1:1234
400
# launch yet another QEMU instance on same "bus"
401
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
402
               -net socket,mcast=230.0.0.1:1234
403
@end example
404

    
405
Example (User Mode Linux compat.):
406
@example
407
# launch QEMU instance (note mcast address selected
408
# is UML's default)
409
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
410
               -net socket,mcast=239.192.168.1:1102
411
# launch UML
412
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
413
@end example
414

    
415
@item -net none
416
Indicate that no network devices should be configured. It is used to
417
override the default configuration (@option{-net nic -net user}) which
418
is activated if no @option{-net} options are provided.
419

    
420
@item -tftp prefix
421
When using the user mode network stack, activate a built-in TFTP
422
server. All filenames beginning with @var{prefix} can be downloaded
423
from the host to the guest using a TFTP client. The TFTP client on the
424
guest must be configured in binary mode (use the command @code{bin} of
425
the Unix TFTP client). The host IP address on the guest is as usual
426
10.0.2.2.
427

    
428
@item -smb dir
429
When using the user mode network stack, activate a built-in SMB
430
server so that Windows OSes can access to the host files in @file{dir}
431
transparently.
432

    
433
In the guest Windows OS, the line:
434
@example
435
10.0.2.4 smbserver
436
@end example
437
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
438
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
439

    
440
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
441

    
442
Note that a SAMBA server must be installed on the host OS in
443
@file{/usr/sbin/smbd}. QEMU was tested succesfully with smbd version
444
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
445

    
446
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
447

    
448
When using the user mode network stack, redirect incoming TCP or UDP
449
connections to the host port @var{host-port} to the guest
450
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
451
is not specified, its value is 10.0.2.15 (default address given by the
452
built-in DHCP server).
453

    
454
For example, to redirect host X11 connection from screen 1 to guest
455
screen 0, use the following:
456

    
457
@example
458
# on the host
459
qemu -redir tcp:6001::6000 [...]
460
# this host xterm should open in the guest X11 server
461
xterm -display :1
462
@end example
463

    
464
To redirect telnet connections from host port 5555 to telnet port on
465
the guest, use the following:
466

    
467
@example
468
# on the host
469
qemu -redir tcp:5555::23 [...]
470
telnet localhost 5555
471
@end example
472

    
473
Then when you use on the host @code{telnet localhost 5555}, you
474
connect to the guest telnet server.
475

    
476
@end table
477

    
478
Linux boot specific: When using these options, you can use a given
479
Linux kernel without installing it in the disk image. It can be useful
480
for easier testing of various kernels.
481

    
482
@table @option
483

    
484
@item -kernel bzImage 
485
Use @var{bzImage} as kernel image.
486

    
487
@item -append cmdline 
488
Use @var{cmdline} as kernel command line
489

    
490
@item -initrd file
491
Use @var{file} as initial ram disk.
492

    
493
@end table
494

    
495
Debug/Expert options:
496
@table @option
497

    
498
@item -serial dev
499
Redirect the virtual serial port to host character device
500
@var{dev}. The default device is @code{vc} in graphical mode and
501
@code{stdio} in non graphical mode.
502

    
503
This option can be used several times to simulate up to 4 serials
504
ports.
505

    
506
Available character devices are:
507
@table @code
508
@item vc
509
Virtual console
510
@item pty
511
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
512
@item null
513
void device
514
@item /dev/XXX
515
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
516
parameters are set according to the emulated ones.
517
@item /dev/parportN
518
[Linux only, parallel port only] Use host parallel port
519
@var{N}. Currently only SPP parallel port features can be used.
520
@item file:filename
521
Write output to filename. No character can be read.
522
@item stdio
523
[Unix only] standard input/output
524
@item pipe:filename
525
name pipe @var{filename}
526
@item COMn
527
[Windows only] Use host serial port @var{n}
528
@item udp:remote_port
529
UDP Net Console sent to locahost at remote_port
530
@item udp:remote_host:remote_port
531
UDP Net Console sent to remote_host at remote_port
532
@item udp:src_port:remote_host:remote_port
533
UDP Net Console sent from src_port to remote_host at the remote_port.
534

    
535
The udp:* sub options are primary intended for netconsole.  If you
536
just want a simple readonly console you can use @code{netcat} or
537
@code{nc}, by starting qemu with: @code{-serial udp:4555} and nc as:
538
@code{nc -u -l -p 4555}. Any time qemu writes something to that port
539
it will appear in the netconsole session.
540

    
541
If you plan to send characters back via netconsole or you want to stop
542
and start qemu a lot of times, you should have qemu use the same
543
source port each time by using something like @code{-serial
544
udp:4556:localhost:4555} to qemu. Another approach is to use a patched
545
version of netcat which can listen to a TCP port and send and receive
546
characters via udp.  If you have a patched version of netcat which
547
activates telnet remote echo and single char transfer, then you can
548
use the following options to step up a netcat redirector to allow
549
telnet on port 5555 to access the qemu port.
550
@table @code
551
@item Qemu Options
552
-serial udp:4556:localhost:4555
553
@item netcat options
554
-u -P 4555 -L localhost:4556  -t -p 5555 -I -T
555
@end table
556

    
557

    
558
@item tcp:remote_host:remote_port
559
TCP Net Console sent to remote_host at the remote_port
560
@item tcpl:host:port
561
TCP Net Console: wait for connection on @var{host} on the local port
562
@var{port}. If host is omitted, 0.0.0.0 is assumed. Only one TCP
563
connection at a time is accepted. You can use @code{telnet} to connect
564
to the corresponding character device.
565
@end table
566

    
567
@item -parallel dev
568
Redirect the virtual parallel port to host device @var{dev} (same
569
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
570
be used to use hardware devices connected on the corresponding host
571
parallel port.
572

    
573
This option can be used several times to simulate up to 3 parallel
574
ports.
575

    
576
@item -monitor dev
577
Redirect the monitor to host device @var{dev} (same devices as the
578
serial port).
579
The default device is @code{vc} in graphical mode and @code{stdio} in
580
non graphical mode.
581

    
582
@item -s
583
Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
584
@item -p port
585
Change gdb connection port.
586
@item -S
587
Do not start CPU at startup (you must type 'c' in the monitor).
588
@item -d             
589
Output log in /tmp/qemu.log
590
@item -hdachs c,h,s,[,t]
591
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
592
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
593
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
594
all thoses parameters. This option is useful for old MS-DOS disk
595
images.
596

    
597
@item -std-vga
598
Simulate a standard VGA card with Bochs VBE extensions (default is
599
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
600
VBE extensions (e.g. Windows XP) and if you want to use high
601
resolution modes (>= 1280x1024x16) then you should use this option.
602

    
603
@item -loadvm file
604
Start right away with a saved state (@code{loadvm} in monitor)
605
@end table
606

    
607
@c man end
608

    
609
@node pcsys_keys
610
@section Keys
611

    
612
@c man begin OPTIONS
613

    
614
During the graphical emulation, you can use the following keys:
615
@table @key
616
@item Ctrl-Alt-f
617
Toggle full screen
618

    
619
@item Ctrl-Alt-n
620
Switch to virtual console 'n'. Standard console mappings are:
621
@table @emph
622
@item 1
623
Target system display
624
@item 2
625
Monitor
626
@item 3
627
Serial port
628
@end table
629

    
630
@item Ctrl-Alt
631
Toggle mouse and keyboard grab.
632
@end table
633

    
634
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
635
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
636

    
637
During emulation, if you are using the @option{-nographic} option, use
638
@key{Ctrl-a h} to get terminal commands:
639

    
640
@table @key
641
@item Ctrl-a h
642
Print this help
643
@item Ctrl-a x    
644
Exit emulatior
645
@item Ctrl-a s    
646
Save disk data back to file (if -snapshot)
647
@item Ctrl-a b
648
Send break (magic sysrq in Linux)
649
@item Ctrl-a c
650
Switch between console and monitor
651
@item Ctrl-a Ctrl-a
652
Send Ctrl-a
653
@end table
654
@c man end
655

    
656
@ignore
657

    
658
@c man begin SEEALSO
659
The HTML documentation of QEMU for more precise information and Linux
660
user mode emulator invocation.
661
@c man end
662

    
663
@c man begin AUTHOR
664
Fabrice Bellard
665
@c man end
666

    
667
@end ignore
668

    
669
@node pcsys_monitor
670
@section QEMU Monitor
671

    
672
The QEMU monitor is used to give complex commands to the QEMU
673
emulator. You can use it to:
674

    
675
@itemize @minus
676

    
677
@item
678
Remove or insert removable medias images
679
(such as CD-ROM or floppies)
680

    
681
@item 
682
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
683
from a disk file.
684

    
685
@item Inspect the VM state without an external debugger.
686

    
687
@end itemize
688

    
689
@subsection Commands
690

    
691
The following commands are available:
692

    
693
@table @option
694

    
695
@item help or ? [cmd]
696
Show the help for all commands or just for command @var{cmd}.
697

    
698
@item commit  
699
Commit changes to the disk images (if -snapshot is used)
700

    
701
@item info subcommand 
702
show various information about the system state
703

    
704
@table @option
705
@item info network
706
show the various VLANs and the associated devices
707
@item info block
708
show the block devices
709
@item info registers
710
show the cpu registers
711
@item info history
712
show the command line history
713
@item info pci
714
show emulated PCI device
715
@item info usb
716
show USB devices plugged on the virtual USB hub
717
@item info usbhost
718
show all USB host devices
719
@end table
720

    
721
@item q or quit
722
Quit the emulator.
723

    
724
@item eject [-f] device
725
Eject a removable media (use -f to force it).
726

    
727
@item change device filename
728
Change a removable media.
729

    
730
@item screendump filename
731
Save screen into PPM image @var{filename}.
732

    
733
@item log item1[,...]
734
Activate logging of the specified items to @file{/tmp/qemu.log}.
735

    
736
@item savevm filename
737
Save the whole virtual machine state to @var{filename}.
738

    
739
@item loadvm filename
740
Restore the whole virtual machine state from @var{filename}.
741

    
742
@item stop
743
Stop emulation.
744

    
745
@item c or cont
746
Resume emulation.
747

    
748
@item gdbserver [port]
749
Start gdbserver session (default port=1234)
750

    
751
@item x/fmt addr
752
Virtual memory dump starting at @var{addr}.
753

    
754
@item xp /fmt addr
755
Physical memory dump starting at @var{addr}.
756

    
757
@var{fmt} is a format which tells the command how to format the
758
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
759

    
760
@table @var
761
@item count 
762
is the number of items to be dumped.
763

    
764
@item format
765
can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
766
c (char) or i (asm instruction).
767

    
768
@item size
769
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
770
@code{h} or @code{w} can be specified with the @code{i} format to
771
respectively select 16 or 32 bit code instruction size.
772

    
773
@end table
774

    
775
Examples: 
776
@itemize
777
@item
778
Dump 10 instructions at the current instruction pointer:
779
@example 
780
(qemu) x/10i $eip
781
0x90107063:  ret
782
0x90107064:  sti
783
0x90107065:  lea    0x0(%esi,1),%esi
784
0x90107069:  lea    0x0(%edi,1),%edi
785
0x90107070:  ret
786
0x90107071:  jmp    0x90107080
787
0x90107073:  nop
788
0x90107074:  nop
789
0x90107075:  nop
790
0x90107076:  nop
791
@end example
792

    
793
@item
794
Dump 80 16 bit values at the start of the video memory.
795
@smallexample 
796
(qemu) xp/80hx 0xb8000
797
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
798
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
799
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
800
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
801
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
802
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
803
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
804
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
805
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
806
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
807
@end smallexample
808
@end itemize
809

    
810
@item p or print/fmt expr
811

    
812
Print expression value. Only the @var{format} part of @var{fmt} is
813
used.
814

    
815
@item sendkey keys
816

    
817
Send @var{keys} to the emulator. Use @code{-} to press several keys
818
simultaneously. Example:
819
@example
820
sendkey ctrl-alt-f1
821
@end example
822

    
823
This command is useful to send keys that your graphical user interface
824
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
825

    
826
@item system_reset
827

    
828
Reset the system.
829

    
830
@item usb_add devname
831

    
832
Add the USB device @var{devname}.  For details of available devices see
833
@ref{usb_devices}
834

    
835
@item usb_del devname
836

    
837
Remove the USB device @var{devname} from the QEMU virtual USB
838
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
839
command @code{info usb} to see the devices you can remove.
840

    
841
@end table
842

    
843
@subsection Integer expressions
844

    
845
The monitor understands integers expressions for every integer
846
argument. You can use register names to get the value of specifics
847
CPU registers by prefixing them with @emph{$}.
848

    
849
@node disk_images
850
@section Disk Images
851

    
852
Since version 0.6.1, QEMU supports many disk image formats, including
853
growable disk images (their size increase as non empty sectors are
854
written), compressed and encrypted disk images.
855

    
856
@menu
857
* disk_images_quickstart::    Quick start for disk image creation
858
* disk_images_snapshot_mode:: Snapshot mode
859
* qemu_img_invocation::       qemu-img Invocation
860
* disk_images_fat_images::    Virtual FAT disk images
861
@end menu
862

    
863
@node disk_images_quickstart
864
@subsection Quick start for disk image creation
865

    
866
You can create a disk image with the command:
867
@example
868
qemu-img create myimage.img mysize
869
@end example
870
where @var{myimage.img} is the disk image filename and @var{mysize} is its
871
size in kilobytes. You can add an @code{M} suffix to give the size in
872
megabytes and a @code{G} suffix for gigabytes.
873

    
874
See @ref{qemu_img_invocation} for more information.
875

    
876
@node disk_images_snapshot_mode
877
@subsection Snapshot mode
878

    
879
If you use the option @option{-snapshot}, all disk images are
880
considered as read only. When sectors in written, they are written in
881
a temporary file created in @file{/tmp}. You can however force the
882
write back to the raw disk images by using the @code{commit} monitor
883
command (or @key{C-a s} in the serial console).
884

    
885
@node qemu_img_invocation
886
@subsection @code{qemu-img} Invocation
887

    
888
@include qemu-img.texi
889

    
890
@node disk_images_fat_images
891
@subsection Virtual FAT disk images
892

    
893
QEMU can automatically create a virtual FAT disk image from a
894
directory tree. In order to use it, just type:
895

    
896
@example 
897
qemu linux.img -hdb fat:/my_directory
898
@end example
899

    
900
Then you access access to all the files in the @file{/my_directory}
901
directory without having to copy them in a disk image or to export
902
them via SAMBA or NFS. The default access is @emph{read-only}.
903

    
904
Floppies can be emulated with the @code{:floppy:} option:
905

    
906
@example 
907
qemu linux.img -fda fat:floppy:/my_directory
908
@end example
909

    
910
A read/write support is available for testing (beta stage) with the
911
@code{:rw:} option:
912

    
913
@example 
914
qemu linux.img -fda fat:floppy:rw:/my_directory
915
@end example
916

    
917
What you should @emph{never} do:
918
@itemize
919
@item use non-ASCII filenames ;
920
@item use "-snapshot" together with ":rw:" ;
921
@item expect it to work when loadvm'ing ;
922
@item write to the FAT directory on the host system while accessing it with the guest system.
923
@end itemize
924

    
925
@node pcsys_network
926
@section Network emulation
927

    
928
QEMU can simulate several networks cards (NE2000 boards on the PC
929
target) and can connect them to an arbitrary number of Virtual Local
930
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
931
VLAN. VLAN can be connected between separate instances of QEMU to
932
simulate large networks. For simpler usage, a non priviledged user mode
933
network stack can replace the TAP device to have a basic network
934
connection.
935

    
936
@subsection VLANs
937

    
938
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
939
connection between several network devices. These devices can be for
940
example QEMU virtual Ethernet cards or virtual Host ethernet devices
941
(TAP devices).
942

    
943
@subsection Using TAP network interfaces
944

    
945
This is the standard way to connect QEMU to a real network. QEMU adds
946
a virtual network device on your host (called @code{tapN}), and you
947
can then configure it as if it was a real ethernet card.
948

    
949
As an example, you can download the @file{linux-test-xxx.tar.gz}
950
archive and copy the script @file{qemu-ifup} in @file{/etc} and
951
configure properly @code{sudo} so that the command @code{ifconfig}
952
contained in @file{qemu-ifup} can be executed as root. You must verify
953
that your host kernel supports the TAP network interfaces: the
954
device @file{/dev/net/tun} must be present.
955

    
956
See @ref{direct_linux_boot} to have an example of network use with a
957
Linux distribution and @ref{sec_invocation} to have examples of
958
command lines using the TAP network interfaces.
959

    
960
@subsection Using the user mode network stack
961

    
962
By using the option @option{-net user} (default configuration if no
963
@option{-net} option is specified), QEMU uses a completely user mode
964
network stack (you don't need root priviledge to use the virtual
965
network). The virtual network configuration is the following:
966

    
967
@example
968

    
969
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
970
                           |          (10.0.2.2)
971
                           |
972
                           ---->  DNS server (10.0.2.3)
973
                           |     
974
                           ---->  SMB server (10.0.2.4)
975
@end example
976

    
977
The QEMU VM behaves as if it was behind a firewall which blocks all
978
incoming connections. You can use a DHCP client to automatically
979
configure the network in the QEMU VM. The DHCP server assign addresses
980
to the hosts starting from 10.0.2.15.
981

    
982
In order to check that the user mode network is working, you can ping
983
the address 10.0.2.2 and verify that you got an address in the range
984
10.0.2.x from the QEMU virtual DHCP server.
985

    
986
Note that @code{ping} is not supported reliably to the internet as it
987
would require root priviledges. It means you can only ping the local
988
router (10.0.2.2).
989

    
990
When using the built-in TFTP server, the router is also the TFTP
991
server.
992

    
993
When using the @option{-redir} option, TCP or UDP connections can be
994
redirected from the host to the guest. It allows for example to
995
redirect X11, telnet or SSH connections.
996

    
997
@subsection Connecting VLANs between QEMU instances
998

    
999
Using the @option{-net socket} option, it is possible to make VLANs
1000
that span several QEMU instances. See @ref{sec_invocation} to have a
1001
basic example.
1002

    
1003
@node direct_linux_boot
1004
@section Direct Linux Boot
1005

    
1006
This section explains how to launch a Linux kernel inside QEMU without
1007
having to make a full bootable image. It is very useful for fast Linux
1008
kernel testing. The QEMU network configuration is also explained.
1009

    
1010
@enumerate
1011
@item
1012
Download the archive @file{linux-test-xxx.tar.gz} containing a Linux
1013
kernel and a disk image. 
1014

    
1015
@item Optional: If you want network support (for example to launch X11 examples), you
1016
must copy the script @file{qemu-ifup} in @file{/etc} and configure
1017
properly @code{sudo} so that the command @code{ifconfig} contained in
1018
@file{qemu-ifup} can be executed as root. You must verify that your host
1019
kernel supports the TUN/TAP network interfaces: the device
1020
@file{/dev/net/tun} must be present.
1021

    
1022
When network is enabled, there is a virtual network connection between
1023
the host kernel and the emulated kernel. The emulated kernel is seen
1024
from the host kernel at IP address 172.20.0.2 and the host kernel is
1025
seen from the emulated kernel at IP address 172.20.0.1.
1026

    
1027
@item Launch @code{qemu.sh}. You should have the following output:
1028

    
1029
@smallexample
1030
> ./qemu.sh 
1031
Connected to host network interface: tun0
1032
Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1033
BIOS-provided physical RAM map:
1034
 BIOS-e801: 0000000000000000 - 000000000009f000 (usable)
1035
 BIOS-e801: 0000000000100000 - 0000000002000000 (usable)
1036
32MB LOWMEM available.
1037
On node 0 totalpages: 8192
1038
zone(0): 4096 pages.
1039
zone(1): 4096 pages.
1040
zone(2): 0 pages.
1041
Kernel command line: root=/dev/hda sb=0x220,5,1,5 ide2=noprobe ide3=noprobe ide4=noprobe @/ide5=noprobe console=ttyS0
1042
ide_setup: ide2=noprobe
1043
ide_setup: ide3=noprobe
1044
ide_setup: ide4=noprobe
1045
ide_setup: ide5=noprobe
1046
Initializing CPU#0
1047
Detected 2399.621 MHz processor.
1048
Console: colour EGA 80x25
1049
Calibrating delay loop... 4744.80 BogoMIPS
1050
Memory: 28872k/32768k available (1210k kernel code, 3508k reserved, 266k data, 64k init, @/0k highmem)
1051
Dentry cache hash table entries: 4096 (order: 3, 32768 bytes)
1052
Inode cache hash table entries: 2048 (order: 2, 16384 bytes)
1053
Mount cache hash table entries: 512 (order: 0, 4096 bytes)
1054
Buffer-cache hash table entries: 1024 (order: 0, 4096 bytes)
1055
Page-cache hash table entries: 8192 (order: 3, 32768 bytes)
1056
CPU: Intel Pentium Pro stepping 03
1057
Checking 'hlt' instruction... OK.
1058
POSIX conformance testing by UNIFIX
1059
Linux NET4.0 for Linux 2.4
1060
Based upon Swansea University Computer Society NET3.039
1061
Initializing RT netlink socket
1062
apm: BIOS not found.
1063
Starting kswapd
1064
Journalled Block Device driver loaded
1065
Detected PS/2 Mouse Port.
1066
pty: 256 Unix98 ptys configured
1067
Serial driver version 5.05c (2001-07-08) with no serial options enabled
1068
ttyS00 at 0x03f8 (irq = 4) is a 16450
1069
ne.c:v1.10 9/23/94 Donald Becker (becker@@scyld.com)
1070
Last modified Nov 1, 2000 by Paul Gortmaker
1071
NE*000 ethercard probe at 0x300: 52 54 00 12 34 56
1072
eth0: NE2000 found at 0x300, using IRQ 9.
1073
RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
1074
Uniform Multi-Platform E-IDE driver Revision: 7.00beta4-2.4
1075
ide: Assuming 50MHz system bus speed for PIO modes; override with idebus=xx
1076
hda: QEMU HARDDISK, ATA DISK drive
1077
ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
1078
hda: attached ide-disk driver.
1079
hda: 20480 sectors (10 MB) w/256KiB Cache, CHS=20/16/63
1080
Partition check:
1081
 hda:
1082
Soundblaster audio driver Copyright (C) by Hannu Savolainen 1993-1996
1083
NET4: Linux TCP/IP 1.0 for NET4.0
1084
IP Protocols: ICMP, UDP, TCP, IGMP
1085
IP: routing cache hash table of 512 buckets, 4Kbytes
1086
TCP: Hash tables configured (established 2048 bind 4096)
1087
NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
1088
EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended
1089
VFS: Mounted root (ext2 filesystem).
1090
Freeing unused kernel memory: 64k freed
1091
 
1092
Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1093
 
1094
QEMU Linux test distribution (based on Redhat 9)
1095
 
1096
Type 'exit' to halt the system
1097
 
1098
sh-2.05b# 
1099
@end smallexample
1100

    
1101
@item
1102
Then you can play with the kernel inside the virtual serial console. You
1103
can launch @code{ls} for example. Type @key{Ctrl-a h} to have an help
1104
about the keys you can type inside the virtual serial console. In
1105
particular, use @key{Ctrl-a x} to exit QEMU and use @key{Ctrl-a b} as
1106
the Magic SysRq key.
1107

    
1108
@item 
1109
If the network is enabled, launch the script @file{/etc/linuxrc} in the
1110
emulator (don't forget the leading dot):
1111
@example
1112
. /etc/linuxrc
1113
@end example
1114

    
1115
Then enable X11 connections on your PC from the emulated Linux: 
1116
@example
1117
xhost +172.20.0.2
1118
@end example
1119

    
1120
You can now launch @file{xterm} or @file{xlogo} and verify that you have
1121
a real Virtual Linux system !
1122

    
1123
@end enumerate
1124

    
1125
NOTES:
1126
@enumerate
1127
@item 
1128
A 2.5.74 kernel is also included in the archive. Just
1129
replace the bzImage in qemu.sh to try it.
1130

    
1131
@item 
1132
In order to exit cleanly from qemu, you can do a @emph{shutdown} inside
1133
qemu. qemu will automatically exit when the Linux shutdown is done.
1134

    
1135
@item 
1136
You can boot slightly faster by disabling the probe of non present IDE
1137
interfaces. To do so, add the following options on the kernel command
1138
line:
1139
@example
1140
ide1=noprobe ide2=noprobe ide3=noprobe ide4=noprobe ide5=noprobe
1141
@end example
1142

    
1143
@item 
1144
The example disk image is a modified version of the one made by Kevin
1145
Lawton for the plex86 Project (@url{www.plex86.org}).
1146

    
1147
@end enumerate
1148

    
1149
@node pcsys_usb
1150
@section USB emulation
1151

    
1152
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1153
virtual USB devices or real host USB devices (experimental, works only
1154
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1155
as neccessary to connect multiple USB devices.
1156

    
1157
@menu
1158
* usb_devices::
1159
* host_usb_devices::
1160
@end menu
1161
@node usb_devices
1162
@subsection Connecting USB devices
1163

    
1164
USB devices can be connected with the @option{-usbdevice} commandline option
1165
or the @code{usb_add} monitor command.  Available devices are:
1166

    
1167
@table @var
1168
@item @code{mouse}
1169
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1170
@item @code{tablet}
1171
Pointer device that uses abolsute coordinates (like a touchscreen).
1172
This means qemu is able to report the mouse position without having
1173
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1174
@item @code{disk:file}
1175
Mass storage device based on @var{file} (@pxref{disk_images})
1176
@item @code{host:bus.addr}
1177
Pass through the host device identified by @var{bus.addr}
1178
(Linux only)
1179
@item @code{host:vendor_id:product_id}
1180
Pass through the host device identified by @var{vendor_id:product_id}
1181
(Linux only)
1182
@end table
1183

    
1184
@node host_usb_devices
1185
@subsection Using host USB devices on a Linux host
1186

    
1187
WARNING: this is an experimental feature. QEMU will slow down when
1188
using it. USB devices requiring real time streaming (i.e. USB Video
1189
Cameras) are not supported yet.
1190

    
1191
@enumerate
1192
@item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1193
is actually using the USB device. A simple way to do that is simply to
1194
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1195
to @file{mydriver.o.disabled}.
1196

    
1197
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1198
@example
1199
ls /proc/bus/usb
1200
001  devices  drivers
1201
@end example
1202

    
1203
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1204
@example
1205
chown -R myuid /proc/bus/usb
1206
@end example
1207

    
1208
@item Launch QEMU and do in the monitor:
1209
@example 
1210
info usbhost
1211
  Device 1.2, speed 480 Mb/s
1212
    Class 00: USB device 1234:5678, USB DISK
1213
@end example
1214
You should see the list of the devices you can use (Never try to use
1215
hubs, it won't work).
1216

    
1217
@item Add the device in QEMU by using:
1218
@example 
1219
usb_add host:1234:5678
1220
@end example
1221

    
1222
Normally the guest OS should report that a new USB device is
1223
plugged. You can use the option @option{-usbdevice} to do the same.
1224

    
1225
@item Now you can try to use the host USB device in QEMU.
1226

    
1227
@end enumerate
1228

    
1229
When relaunching QEMU, you may have to unplug and plug again the USB
1230
device to make it work again (this is a bug).
1231

    
1232
@node gdb_usage
1233
@section GDB usage
1234

    
1235
QEMU has a primitive support to work with gdb, so that you can do
1236
'Ctrl-C' while the virtual machine is running and inspect its state.
1237

    
1238
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1239
gdb connection:
1240
@example
1241
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1242
       -append "root=/dev/hda"
1243
Connected to host network interface: tun0
1244
Waiting gdb connection on port 1234
1245
@end example
1246

    
1247
Then launch gdb on the 'vmlinux' executable:
1248
@example
1249
> gdb vmlinux
1250
@end example
1251

    
1252
In gdb, connect to QEMU:
1253
@example
1254
(gdb) target remote localhost:1234
1255
@end example
1256

    
1257
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1258
@example
1259
(gdb) c
1260
@end example
1261

    
1262
Here are some useful tips in order to use gdb on system code:
1263

    
1264
@enumerate
1265
@item
1266
Use @code{info reg} to display all the CPU registers.
1267
@item
1268
Use @code{x/10i $eip} to display the code at the PC position.
1269
@item
1270
Use @code{set architecture i8086} to dump 16 bit code. Then use
1271
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1272
@end enumerate
1273

    
1274
@node pcsys_os_specific
1275
@section Target OS specific information
1276

    
1277
@subsection Linux
1278

    
1279
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1280
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1281
color depth in the guest and the host OS.
1282

    
1283
When using a 2.6 guest Linux kernel, you should add the option
1284
@code{clock=pit} on the kernel command line because the 2.6 Linux
1285
kernels make very strict real time clock checks by default that QEMU
1286
cannot simulate exactly.
1287

    
1288
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1289
not activated because QEMU is slower with this patch. The QEMU
1290
Accelerator Module is also much slower in this case. Earlier Fedora
1291
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1292
patch by default. Newer kernels don't have it.
1293

    
1294
@subsection Windows
1295

    
1296
If you have a slow host, using Windows 95 is better as it gives the
1297
best speed. Windows 2000 is also a good choice.
1298

    
1299
@subsubsection SVGA graphic modes support
1300

    
1301
QEMU emulates a Cirrus Logic GD5446 Video
1302
card. All Windows versions starting from Windows 95 should recognize
1303
and use this graphic card. For optimal performances, use 16 bit color
1304
depth in the guest and the host OS.
1305

    
1306
If you are using Windows XP as guest OS and if you want to use high
1307
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1308
1280x1024x16), then you should use the VESA VBE virtual graphic card
1309
(option @option{-std-vga}).
1310

    
1311
@subsubsection CPU usage reduction
1312

    
1313
Windows 9x does not correctly use the CPU HLT
1314
instruction. The result is that it takes host CPU cycles even when
1315
idle. You can install the utility from
1316
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1317
problem. Note that no such tool is needed for NT, 2000 or XP.
1318

    
1319
@subsubsection Windows 2000 disk full problem
1320

    
1321
Windows 2000 has a bug which gives a disk full problem during its
1322
installation. When installing it, use the @option{-win2k-hack} QEMU
1323
option to enable a specific workaround. After Windows 2000 is
1324
installed, you no longer need this option (this option slows down the
1325
IDE transfers).
1326

    
1327
@subsubsection Windows 2000 shutdown
1328

    
1329
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1330
can. It comes from the fact that Windows 2000 does not automatically
1331
use the APM driver provided by the BIOS.
1332

    
1333
In order to correct that, do the following (thanks to Struan
1334
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1335
Add/Troubleshoot a device => Add a new device & Next => No, select the
1336
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1337
(again) a few times. Now the driver is installed and Windows 2000 now
1338
correctly instructs QEMU to shutdown at the appropriate moment. 
1339

    
1340
@subsubsection Share a directory between Unix and Windows
1341

    
1342
See @ref{sec_invocation} about the help of the option @option{-smb}.
1343

    
1344
@subsubsection Windows XP security problems
1345

    
1346
Some releases of Windows XP install correctly but give a security
1347
error when booting:
1348
@example
1349
A problem is preventing Windows from accurately checking the
1350
license for this computer. Error code: 0x800703e6.
1351
@end example
1352
The only known workaround is to boot in Safe mode
1353
without networking support. 
1354

    
1355
Future QEMU releases are likely to correct this bug.
1356

    
1357
@subsection MS-DOS and FreeDOS
1358

    
1359
@subsubsection CPU usage reduction
1360

    
1361
DOS does not correctly use the CPU HLT instruction. The result is that
1362
it takes host CPU cycles even when idle. You can install the utility
1363
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1364
problem.
1365

    
1366
@node QEMU System emulator for non PC targets
1367
@chapter QEMU System emulator for non PC targets
1368

    
1369
QEMU is a generic emulator and it emulates many non PC
1370
machines. Most of the options are similar to the PC emulator. The
1371
differences are mentionned in the following sections.
1372

    
1373
@menu
1374
* QEMU PowerPC System emulator::
1375
* Sparc32 System emulator invocation::
1376
* Sparc64 System emulator invocation::
1377
* MIPS System emulator invocation::
1378
* ARM System emulator invocation::
1379
@end menu
1380

    
1381
@node QEMU PowerPC System emulator
1382
@section QEMU PowerPC System emulator
1383

    
1384
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1385
or PowerMac PowerPC system.
1386

    
1387
QEMU emulates the following PowerMac peripherals:
1388

    
1389
@itemize @minus
1390
@item 
1391
UniNorth PCI Bridge 
1392
@item
1393
PCI VGA compatible card with VESA Bochs Extensions
1394
@item 
1395
2 PMAC IDE interfaces with hard disk and CD-ROM support
1396
@item 
1397
NE2000 PCI adapters
1398
@item
1399
Non Volatile RAM
1400
@item
1401
VIA-CUDA with ADB keyboard and mouse.
1402
@end itemize
1403

    
1404
QEMU emulates the following PREP peripherals:
1405

    
1406
@itemize @minus
1407
@item 
1408
PCI Bridge
1409
@item
1410
PCI VGA compatible card with VESA Bochs Extensions
1411
@item 
1412
2 IDE interfaces with hard disk and CD-ROM support
1413
@item
1414
Floppy disk
1415
@item 
1416
NE2000 network adapters
1417
@item
1418
Serial port
1419
@item
1420
PREP Non Volatile RAM
1421
@item
1422
PC compatible keyboard and mouse.
1423
@end itemize
1424

    
1425
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1426
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1427

    
1428
@c man begin OPTIONS
1429

    
1430
The following options are specific to the PowerPC emulation:
1431

    
1432
@table @option
1433

    
1434
@item -g WxH[xDEPTH]  
1435

    
1436
Set the initial VGA graphic mode. The default is 800x600x15.
1437

    
1438
@end table
1439

    
1440
@c man end 
1441

    
1442

    
1443
More information is available at
1444
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1445

    
1446
@node Sparc32 System emulator invocation
1447
@section Sparc32 System emulator invocation
1448

    
1449
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1450
(sun4m architecture). The emulation is somewhat complete.
1451

    
1452
QEMU emulates the following sun4m peripherals:
1453

    
1454
@itemize @minus
1455
@item
1456
IOMMU
1457
@item
1458
TCX Frame buffer
1459
@item 
1460
Lance (Am7990) Ethernet
1461
@item
1462
Non Volatile RAM M48T08
1463
@item
1464
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1465
and power/reset logic
1466
@item
1467
ESP SCSI controller with hard disk and CD-ROM support
1468
@item
1469
Floppy drive
1470
@end itemize
1471

    
1472
The number of peripherals is fixed in the architecture.
1473

    
1474
Since version 0.8.2, QEMU uses OpenBIOS
1475
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1476
firmware implementation. The goal is to implement a 100% IEEE
1477
1275-1994 (referred to as Open Firmware) compliant firmware.
1478

    
1479
A sample Linux 2.6 series kernel and ram disk image are available on
1480
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1481
Solaris kernels don't work.
1482

    
1483
@c man begin OPTIONS
1484

    
1485
The following options are specific to the Sparc emulation:
1486

    
1487
@table @option
1488

    
1489
@item -g WxH
1490

    
1491
Set the initial TCX graphic mode. The default is 1024x768.
1492

    
1493
@end table
1494

    
1495
@c man end 
1496

    
1497
@node Sparc64 System emulator invocation
1498
@section Sparc64 System emulator invocation
1499

    
1500
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1501
The emulator is not usable for anything yet.
1502

    
1503
QEMU emulates the following sun4u peripherals:
1504

    
1505
@itemize @minus
1506
@item
1507
UltraSparc IIi APB PCI Bridge 
1508
@item
1509
PCI VGA compatible card with VESA Bochs Extensions
1510
@item
1511
Non Volatile RAM M48T59
1512
@item
1513
PC-compatible serial ports
1514
@end itemize
1515

    
1516
@node MIPS System emulator invocation
1517
@section MIPS System emulator invocation
1518

    
1519
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1520
The emulator is able to boot a Linux kernel and to run a Linux Debian
1521
installation from NFS. The following devices are emulated:
1522

    
1523
@itemize @minus
1524
@item 
1525
MIPS R4K CPU
1526
@item
1527
PC style serial port
1528
@item
1529
NE2000 network card
1530
@end itemize
1531

    
1532
More information is available in the QEMU mailing-list archive.
1533

    
1534
@node ARM System emulator invocation
1535
@section ARM System emulator invocation
1536

    
1537
Use the executable @file{qemu-system-arm} to simulate a ARM
1538
machine. The ARM Integrator/CP board is emulated with the following
1539
devices:
1540

    
1541
@itemize @minus
1542
@item
1543
ARM926E or ARM1026E CPU
1544
@item
1545
Two PL011 UARTs
1546
@item 
1547
SMC 91c111 Ethernet adapter
1548
@item
1549
PL110 LCD controller
1550
@item
1551
PL050 KMI with PS/2 keyboard and mouse.
1552
@end itemize
1553

    
1554
The ARM Versatile baseboard is emulated with the following devices:
1555

    
1556
@itemize @minus
1557
@item
1558
ARM926E CPU
1559
@item
1560
PL190 Vectored Interrupt Controller
1561
@item
1562
Four PL011 UARTs
1563
@item 
1564
SMC 91c111 Ethernet adapter
1565
@item
1566
PL110 LCD controller
1567
@item
1568
PL050 KMI with PS/2 keyboard and mouse.
1569
@item
1570
PCI host bridge.  Note the emulated PCI bridge only provides access to
1571
PCI memory space.  It does not provide access to PCI IO space.
1572
This means some devices (eg. ne2k_pci NIC) are not useable, and others
1573
(eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1574
mapped control registers.
1575
@item
1576
PCI OHCI USB controller.
1577
@item
1578
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1579
@end itemize
1580

    
1581
A Linux 2.6 test image is available on the QEMU web site. More
1582
information is available in the QEMU mailing-list archive.
1583

    
1584
@node QEMU Linux User space emulator 
1585
@chapter QEMU Linux User space emulator 
1586

    
1587
@menu
1588
* Quick Start::
1589
* Wine launch::
1590
* Command line options::
1591
* Other binaries::
1592
@end menu
1593

    
1594
@node Quick Start
1595
@section Quick Start
1596

    
1597
In order to launch a Linux process, QEMU needs the process executable
1598
itself and all the target (x86) dynamic libraries used by it. 
1599

    
1600
@itemize
1601

    
1602
@item On x86, you can just try to launch any process by using the native
1603
libraries:
1604

    
1605
@example 
1606
qemu-i386 -L / /bin/ls
1607
@end example
1608

    
1609
@code{-L /} tells that the x86 dynamic linker must be searched with a
1610
@file{/} prefix.
1611

    
1612
@item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1613

    
1614
@example 
1615
qemu-i386 -L / qemu-i386 -L / /bin/ls
1616
@end example
1617

    
1618
@item On non x86 CPUs, you need first to download at least an x86 glibc
1619
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1620
@code{LD_LIBRARY_PATH} is not set:
1621

    
1622
@example
1623
unset LD_LIBRARY_PATH 
1624
@end example
1625

    
1626
Then you can launch the precompiled @file{ls} x86 executable:
1627

    
1628
@example
1629
qemu-i386 tests/i386/ls
1630
@end example
1631
You can look at @file{qemu-binfmt-conf.sh} so that
1632
QEMU is automatically launched by the Linux kernel when you try to
1633
launch x86 executables. It requires the @code{binfmt_misc} module in the
1634
Linux kernel.
1635

    
1636
@item The x86 version of QEMU is also included. You can try weird things such as:
1637
@example
1638
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1639
          /usr/local/qemu-i386/bin/ls-i386
1640
@end example
1641

    
1642
@end itemize
1643

    
1644
@node Wine launch
1645
@section Wine launch
1646

    
1647
@itemize
1648

    
1649
@item Ensure that you have a working QEMU with the x86 glibc
1650
distribution (see previous section). In order to verify it, you must be
1651
able to do:
1652

    
1653
@example
1654
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1655
@end example
1656

    
1657
@item Download the binary x86 Wine install
1658
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1659

    
1660
@item Configure Wine on your account. Look at the provided script
1661
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1662
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1663

    
1664
@item Then you can try the example @file{putty.exe}:
1665

    
1666
@example
1667
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1668
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1669
@end example
1670

    
1671
@end itemize
1672

    
1673
@node Command line options
1674
@section Command line options
1675

    
1676
@example
1677
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1678
@end example
1679

    
1680
@table @option
1681
@item -h
1682
Print the help
1683
@item -L path   
1684
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1685
@item -s size
1686
Set the x86 stack size in bytes (default=524288)
1687
@end table
1688

    
1689
Debug options:
1690

    
1691
@table @option
1692
@item -d
1693
Activate log (logfile=/tmp/qemu.log)
1694
@item -p pagesize
1695
Act as if the host page size was 'pagesize' bytes
1696
@end table
1697

    
1698
@node Other binaries
1699
@section Other binaries
1700

    
1701
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1702
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1703
configurations), and arm-uclinux bFLT format binaries.
1704

    
1705
The binary format is detected automatically.
1706

    
1707
@node compilation
1708
@chapter Compilation from the sources
1709

    
1710
@menu
1711
* Linux/Unix::
1712
* Windows::
1713
* Cross compilation for Windows with Linux::
1714
* Mac OS X::
1715
@end menu
1716

    
1717
@node Linux/Unix
1718
@section Linux/Unix
1719

    
1720
@subsection Compilation
1721

    
1722
First you must decompress the sources:
1723
@example
1724
cd /tmp
1725
tar zxvf qemu-x.y.z.tar.gz
1726
cd qemu-x.y.z
1727
@end example
1728

    
1729
Then you configure QEMU and build it (usually no options are needed):
1730
@example
1731
./configure
1732
make
1733
@end example
1734

    
1735
Then type as root user:
1736
@example
1737
make install
1738
@end example
1739
to install QEMU in @file{/usr/local}.
1740

    
1741
@subsection Tested tool versions
1742

    
1743
In order to compile QEMU succesfully, it is very important that you
1744
have the right tools. The most important one is gcc. I cannot guaranty
1745
that QEMU works if you do not use a tested gcc version. Look at
1746
'configure' and 'Makefile' if you want to make a different gcc
1747
version work.
1748

    
1749
@example
1750
host      gcc      binutils      glibc    linux       distribution
1751
----------------------------------------------------------------------
1752
x86       3.2      2.13.2        2.1.3    2.4.18
1753
          2.96     2.11.93.0.2   2.2.5    2.4.18      Red Hat 7.3
1754
          3.2.2    2.13.90.0.18  2.3.2    2.4.20      Red Hat 9
1755

    
1756
PowerPC   3.3 [4]  2.13.90.0.18  2.3.1    2.4.20briq
1757
          3.2
1758

    
1759
Alpha     3.3 [1]  2.14.90.0.4   2.2.5    2.2.20 [2]  Debian 3.0
1760

    
1761
Sparc32   2.95.4   2.12.90.0.1   2.2.5    2.4.18      Debian 3.0
1762

    
1763
ARM       2.95.4   2.12.90.0.1   2.2.5    2.4.9 [3]   Debian 3.0
1764

    
1765
[1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1766
    for gcc version >= 3.3.
1767
[2] Linux >= 2.4.20 is necessary for precise exception support
1768
    (untested).
1769
[3] 2.4.9-ac10-rmk2-np1-cerf2
1770

    
1771
[4] gcc 2.95.x generates invalid code when using too many register
1772
variables. You must use gcc 3.x on PowerPC.
1773
@end example
1774

    
1775
@node Windows
1776
@section Windows
1777

    
1778
@itemize
1779
@item Install the current versions of MSYS and MinGW from
1780
@url{http://www.mingw.org/}. You can find detailed installation
1781
instructions in the download section and the FAQ.
1782

    
1783
@item Download 
1784
the MinGW development library of SDL 1.2.x
1785
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1786
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
1787
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1788
directory. Edit the @file{sdl-config} script so that it gives the
1789
correct SDL directory when invoked.
1790

    
1791
@item Extract the current version of QEMU.
1792
 
1793
@item Start the MSYS shell (file @file{msys.bat}).
1794

    
1795
@item Change to the QEMU directory. Launch @file{./configure} and 
1796
@file{make}.  If you have problems using SDL, verify that
1797
@file{sdl-config} can be launched from the MSYS command line.
1798

    
1799
@item You can install QEMU in @file{Program Files/Qemu} by typing 
1800
@file{make install}. Don't forget to copy @file{SDL.dll} in
1801
@file{Program Files/Qemu}.
1802

    
1803
@end itemize
1804

    
1805
@node Cross compilation for Windows with Linux
1806
@section Cross compilation for Windows with Linux
1807

    
1808
@itemize
1809
@item
1810
Install the MinGW cross compilation tools available at
1811
@url{http://www.mingw.org/}.
1812

    
1813
@item 
1814
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1815
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1816
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1817
the QEMU configuration script.
1818

    
1819
@item 
1820
Configure QEMU for Windows cross compilation:
1821
@example
1822
./configure --enable-mingw32
1823
@end example
1824
If necessary, you can change the cross-prefix according to the prefix
1825
choosen for the MinGW tools with --cross-prefix. You can also use
1826
--prefix to set the Win32 install path.
1827

    
1828
@item You can install QEMU in the installation directory by typing 
1829
@file{make install}. Don't forget to copy @file{SDL.dll} in the
1830
installation directory. 
1831

    
1832
@end itemize
1833

    
1834
Note: Currently, Wine does not seem able to launch
1835
QEMU for Win32.
1836

    
1837
@node Mac OS X
1838
@section Mac OS X
1839

    
1840
The Mac OS X patches are not fully merged in QEMU, so you should look
1841
at the QEMU mailing list archive to have all the necessary
1842
information.
1843

    
1844
@node Index
1845
@chapter Index
1846
@printindex cp
1847

    
1848
@bye