Statistics
| Branch: | Revision:

root / cpu-exec.c @ d8ecc0b9

History | View | Annotate | Download (48.3 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        tb_invalidated_flag = 1;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    /* we add the TB in the virtual pc hash table */
148
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149
    spin_unlock(&tb_lock);
150
    return tb;
151
}
152

    
153
static inline TranslationBlock *tb_find_fast(void)
154
{
155
    TranslationBlock *tb;
156
    target_ulong cs_base, pc;
157
    unsigned int flags;
158

    
159
    /* we record a subset of the CPU state. It will
160
       always be the same before a given translated block
161
       is executed. */
162
#if defined(TARGET_I386)
163
    flags = env->hflags;
164
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165
    cs_base = env->segs[R_CS].base;
166
    pc = cs_base + env->eip;
167
#elif defined(TARGET_ARM)
168
    flags = env->thumb | (env->vfp.vec_len << 1)
169
            | (env->vfp.vec_stride << 4);
170
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171
        flags |= (1 << 6);
172
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173
        flags |= (1 << 7);
174
    cs_base = 0;
175
    pc = env->regs[15];
176
#elif defined(TARGET_SPARC)
177
#ifdef TARGET_SPARC64
178
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
181
#else
182
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
183
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184
        | env->psrs;
185
#endif
186
    cs_base = env->npc;
187
    pc = env->pc;
188
#elif defined(TARGET_PPC)
189
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
191
    cs_base = 0;
192
    pc = env->nip;
193
#elif defined(TARGET_MIPS)
194
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
195
    cs_base = 0;
196
    pc = env->PC;
197
#elif defined(TARGET_M68K)
198
    flags = env->fpcr & M68K_FPCR_PREC;
199
    cs_base = 0;
200
    pc = env->pc;
201
#elif defined(TARGET_SH4)
202
    flags = env->sr & (SR_MD | SR_RB);
203
    cs_base = 0;         /* XXXXX */
204
    pc = env->pc;
205
#else
206
#error unsupported CPU
207
#endif
208
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
209
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
210
                         tb->flags != flags, 0)) {
211
        tb = tb_find_slow(pc, cs_base, flags);
212
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
213
           doing it in tb_find_slow */
214
        if (tb_invalidated_flag) {
215
            /* as some TB could have been invalidated because
216
               of memory exceptions while generating the code, we
217
               must recompute the hash index here */
218
            T0 = 0;
219
        }
220
    }
221
    return tb;
222
}
223

    
224

    
225
/* main execution loop */
226

    
227
int cpu_exec(CPUState *env1)
228
{
229
#define DECLARE_HOST_REGS 1
230
#include "hostregs_helper.h"
231
#if defined(TARGET_SPARC)
232
#if defined(reg_REGWPTR)
233
    uint32_t *saved_regwptr;
234
#endif
235
#endif
236
#if defined(__sparc__) && !defined(HOST_SOLARIS)
237
    int saved_i7;
238
    target_ulong tmp_T0;
239
#endif
240
    int ret, interrupt_request;
241
    void (*gen_func)(void);
242
    TranslationBlock *tb;
243
    uint8_t *tc_ptr;
244

    
245
#if defined(TARGET_I386)
246
    /* handle exit of HALTED state */
247
    if (env1->hflags & HF_HALTED_MASK) {
248
        /* disable halt condition */
249
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
250
            (env1->eflags & IF_MASK)) {
251
            env1->hflags &= ~HF_HALTED_MASK;
252
        } else {
253
            return EXCP_HALTED;
254
        }
255
    }
256
#elif defined(TARGET_PPC)
257
    if (env1->halted) {
258
        if (env1->msr[MSR_EE] && 
259
            (env1->interrupt_request & 
260
             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
261
            env1->halted = 0;
262
        } else {
263
            return EXCP_HALTED;
264
        }
265
    }
266
#elif defined(TARGET_SPARC)
267
    if (env1->halted) {
268
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
269
            (env1->psret != 0)) {
270
            env1->halted = 0;
271
        } else {
272
            return EXCP_HALTED;
273
        }
274
    }
275
#elif defined(TARGET_ARM)
276
    if (env1->halted) {
277
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
278
           set.  */
279
        if (env1->interrupt_request
280
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
281
            env1->halted = 0;
282
        } else {
283
            return EXCP_HALTED;
284
        }
285
    }
286
#elif defined(TARGET_MIPS)
287
    if (env1->halted) {
288
        if (env1->interrupt_request &
289
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
290
            env1->halted = 0;
291
        } else {
292
            return EXCP_HALTED;
293
        }
294
    }
295
#endif
296

    
297
    cpu_single_env = env1; 
298

    
299
    /* first we save global registers */
300
#define SAVE_HOST_REGS 1
301
#include "hostregs_helper.h"
302
    env = env1;
303
#if defined(__sparc__) && !defined(HOST_SOLARIS)
304
    /* we also save i7 because longjmp may not restore it */
305
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
306
#endif
307

    
308
#if defined(TARGET_I386)
309
    env_to_regs();
310
    /* put eflags in CPU temporary format */
311
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
312
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
313
    CC_OP = CC_OP_EFLAGS;
314
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
315
#elif defined(TARGET_ARM)
316
#elif defined(TARGET_SPARC)
317
#if defined(reg_REGWPTR)
318
    saved_regwptr = REGWPTR;
319
#endif
320
#elif defined(TARGET_PPC)
321
#elif defined(TARGET_M68K)
322
    env->cc_op = CC_OP_FLAGS;
323
    env->cc_dest = env->sr & 0xf;
324
    env->cc_x = (env->sr >> 4) & 1;
325
#elif defined(TARGET_MIPS)
326
#elif defined(TARGET_SH4)
327
    /* XXXXX */
328
#else
329
#error unsupported target CPU
330
#endif
331
    env->exception_index = -1;
332

    
333
    /* prepare setjmp context for exception handling */
334
    for(;;) {
335
        if (setjmp(env->jmp_env) == 0) {
336
            env->current_tb = NULL;
337
            /* if an exception is pending, we execute it here */
338
            if (env->exception_index >= 0) {
339
                if (env->exception_index >= EXCP_INTERRUPT) {
340
                    /* exit request from the cpu execution loop */
341
                    ret = env->exception_index;
342
                    break;
343
                } else if (env->user_mode_only) {
344
                    /* if user mode only, we simulate a fake exception
345
                       which will be handled outside the cpu execution
346
                       loop */
347
#if defined(TARGET_I386)
348
                    do_interrupt_user(env->exception_index, 
349
                                      env->exception_is_int, 
350
                                      env->error_code, 
351
                                      env->exception_next_eip);
352
#endif
353
                    ret = env->exception_index;
354
                    break;
355
                } else {
356
#if defined(TARGET_I386)
357
                    /* simulate a real cpu exception. On i386, it can
358
                       trigger new exceptions, but we do not handle
359
                       double or triple faults yet. */
360
                    do_interrupt(env->exception_index, 
361
                                 env->exception_is_int, 
362
                                 env->error_code, 
363
                                 env->exception_next_eip, 0);
364
#elif defined(TARGET_PPC)
365
                    do_interrupt(env);
366
#elif defined(TARGET_MIPS)
367
                    do_interrupt(env);
368
#elif defined(TARGET_SPARC)
369
                    do_interrupt(env->exception_index);
370
#elif defined(TARGET_ARM)
371
                    do_interrupt(env);
372
#elif defined(TARGET_SH4)
373
                    do_interrupt(env);
374
#endif
375
                }
376
                env->exception_index = -1;
377
            } 
378
#ifdef USE_KQEMU
379
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
380
                int ret;
381
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
382
                ret = kqemu_cpu_exec(env);
383
                /* put eflags in CPU temporary format */
384
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
385
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
386
                CC_OP = CC_OP_EFLAGS;
387
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
388
                if (ret == 1) {
389
                    /* exception */
390
                    longjmp(env->jmp_env, 1);
391
                } else if (ret == 2) {
392
                    /* softmmu execution needed */
393
                } else {
394
                    if (env->interrupt_request != 0) {
395
                        /* hardware interrupt will be executed just after */
396
                    } else {
397
                        /* otherwise, we restart */
398
                        longjmp(env->jmp_env, 1);
399
                    }
400
                }
401
            }
402
#endif
403

    
404
            T0 = 0; /* force lookup of first TB */
405
            for(;;) {
406
#if defined(__sparc__) && !defined(HOST_SOLARIS)
407
                /* g1 can be modified by some libc? functions */ 
408
                tmp_T0 = T0;
409
#endif            
410
                interrupt_request = env->interrupt_request;
411
                if (__builtin_expect(interrupt_request, 0)) {
412
#if defined(TARGET_I386)
413
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
414
                        !(env->hflags & HF_SMM_MASK)) {
415
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
416
                        do_smm_enter();
417
#if defined(__sparc__) && !defined(HOST_SOLARIS)
418
                        tmp_T0 = 0;
419
#else
420
                        T0 = 0;
421
#endif
422
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
423
                        (env->eflags & IF_MASK) && 
424
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
425
                        int intno;
426
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
427
                        intno = cpu_get_pic_interrupt(env);
428
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
429
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
430
                        }
431
                        do_interrupt(intno, 0, 0, 0, 1);
432
                        /* ensure that no TB jump will be modified as
433
                           the program flow was changed */
434
#if defined(__sparc__) && !defined(HOST_SOLARIS)
435
                        tmp_T0 = 0;
436
#else
437
                        T0 = 0;
438
#endif
439
                    }
440
#elif defined(TARGET_PPC)
441
#if 0
442
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
443
                        cpu_ppc_reset(env);
444
                    }
445
#endif
446
                    if (msr_ee != 0) {
447
                        if ((interrupt_request & CPU_INTERRUPT_HARD)) {
448
                            /* Raise it */
449
                            env->exception_index = EXCP_EXTERNAL;
450
                            env->error_code = 0;
451
                            do_interrupt(env);
452
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
453
#if defined(__sparc__) && !defined(HOST_SOLARIS)
454
                            tmp_T0 = 0;
455
#else
456
                            T0 = 0;
457
#endif
458
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
459
                            /* Raise it */
460
                            env->exception_index = EXCP_DECR;
461
                            env->error_code = 0;
462
                            do_interrupt(env);
463
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
464
#if defined(__sparc__) && !defined(HOST_SOLARIS)
465
                            tmp_T0 = 0;
466
#else
467
                            T0 = 0;
468
#endif
469
                        }
470
                    }
471
#elif defined(TARGET_MIPS)
472
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
473
                        (env->CP0_Status & (1 << CP0St_IE)) &&
474
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
475
                        !(env->hflags & MIPS_HFLAG_EXL) &&
476
                        !(env->hflags & MIPS_HFLAG_ERL) &&
477
                        !(env->hflags & MIPS_HFLAG_DM)) {
478
                        /* Raise it */
479
                        env->exception_index = EXCP_EXT_INTERRUPT;
480
                        env->error_code = 0;
481
                        do_interrupt(env);
482
#if defined(__sparc__) && !defined(HOST_SOLARIS)
483
                        tmp_T0 = 0;
484
#else
485
                        T0 = 0;
486
#endif
487
                    }
488
#elif defined(TARGET_SPARC)
489
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
490
                        (env->psret != 0)) {
491
                        int pil = env->interrupt_index & 15;
492
                        int type = env->interrupt_index & 0xf0;
493

    
494
                        if (((type == TT_EXTINT) &&
495
                             (pil == 15 || pil > env->psrpil)) ||
496
                            type != TT_EXTINT) {
497
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
498
                            do_interrupt(env->interrupt_index);
499
                            env->interrupt_index = 0;
500
#if defined(__sparc__) && !defined(HOST_SOLARIS)
501
                            tmp_T0 = 0;
502
#else
503
                            T0 = 0;
504
#endif
505
                        }
506
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
507
                        //do_interrupt(0, 0, 0, 0, 0);
508
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
509
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
510
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
511
                        env->halted = 1;
512
                        env->exception_index = EXCP_HLT;
513
                        cpu_loop_exit();
514
                    }
515
#elif defined(TARGET_ARM)
516
                    if (interrupt_request & CPU_INTERRUPT_FIQ
517
                        && !(env->uncached_cpsr & CPSR_F)) {
518
                        env->exception_index = EXCP_FIQ;
519
                        do_interrupt(env);
520
                    }
521
                    if (interrupt_request & CPU_INTERRUPT_HARD
522
                        && !(env->uncached_cpsr & CPSR_I)) {
523
                        env->exception_index = EXCP_IRQ;
524
                        do_interrupt(env);
525
                    }
526
#elif defined(TARGET_SH4)
527
                    /* XXXXX */
528
#endif
529
                   /* Don't use the cached interupt_request value,
530
                      do_interrupt may have updated the EXITTB flag. */
531
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
532
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
533
                        /* ensure that no TB jump will be modified as
534
                           the program flow was changed */
535
#if defined(__sparc__) && !defined(HOST_SOLARIS)
536
                        tmp_T0 = 0;
537
#else
538
                        T0 = 0;
539
#endif
540
                    }
541
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
542
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
543
                        env->exception_index = EXCP_INTERRUPT;
544
                        cpu_loop_exit();
545
                    }
546
                }
547
#ifdef DEBUG_EXEC
548
                if ((loglevel & CPU_LOG_TB_CPU)) {
549
#if defined(TARGET_I386)
550
                    /* restore flags in standard format */
551
#ifdef reg_EAX
552
                    env->regs[R_EAX] = EAX;
553
#endif
554
#ifdef reg_EBX
555
                    env->regs[R_EBX] = EBX;
556
#endif
557
#ifdef reg_ECX
558
                    env->regs[R_ECX] = ECX;
559
#endif
560
#ifdef reg_EDX
561
                    env->regs[R_EDX] = EDX;
562
#endif
563
#ifdef reg_ESI
564
                    env->regs[R_ESI] = ESI;
565
#endif
566
#ifdef reg_EDI
567
                    env->regs[R_EDI] = EDI;
568
#endif
569
#ifdef reg_EBP
570
                    env->regs[R_EBP] = EBP;
571
#endif
572
#ifdef reg_ESP
573
                    env->regs[R_ESP] = ESP;
574
#endif
575
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
576
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
577
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
578
#elif defined(TARGET_ARM)
579
                    cpu_dump_state(env, logfile, fprintf, 0);
580
#elif defined(TARGET_SPARC)
581
                    REGWPTR = env->regbase + (env->cwp * 16);
582
                    env->regwptr = REGWPTR;
583
                    cpu_dump_state(env, logfile, fprintf, 0);
584
#elif defined(TARGET_PPC)
585
                    cpu_dump_state(env, logfile, fprintf, 0);
586
#elif defined(TARGET_M68K)
587
                    cpu_m68k_flush_flags(env, env->cc_op);
588
                    env->cc_op = CC_OP_FLAGS;
589
                    env->sr = (env->sr & 0xffe0)
590
                              | env->cc_dest | (env->cc_x << 4);
591
                    cpu_dump_state(env, logfile, fprintf, 0);
592
#elif defined(TARGET_MIPS)
593
                    cpu_dump_state(env, logfile, fprintf, 0);
594
#elif defined(TARGET_SH4)
595
                    cpu_dump_state(env, logfile, fprintf, 0);
596
#else
597
#error unsupported target CPU 
598
#endif
599
                }
600
#endif
601
                tb = tb_find_fast();
602
#ifdef DEBUG_EXEC
603
                if ((loglevel & CPU_LOG_EXEC)) {
604
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
605
                            (long)tb->tc_ptr, tb->pc,
606
                            lookup_symbol(tb->pc));
607
                }
608
#endif
609
#if defined(__sparc__) && !defined(HOST_SOLARIS)
610
                T0 = tmp_T0;
611
#endif            
612
                /* see if we can patch the calling TB. When the TB
613
                   spans two pages, we cannot safely do a direct
614
                   jump. */
615
                {
616
                    if (T0 != 0 &&
617
#if USE_KQEMU
618
                        (env->kqemu_enabled != 2) &&
619
#endif
620
                        tb->page_addr[1] == -1
621
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
622
                    && (tb->cflags & CF_CODE_COPY) == 
623
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
624
#endif
625
                    ) {
626
                    spin_lock(&tb_lock);
627
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
628
#if defined(USE_CODE_COPY)
629
                    /* propagates the FP use info */
630
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
631
                        (tb->cflags & CF_FP_USED);
632
#endif
633
                    spin_unlock(&tb_lock);
634
                }
635
                }
636
                tc_ptr = tb->tc_ptr;
637
                env->current_tb = tb;
638
                /* execute the generated code */
639
                gen_func = (void *)tc_ptr;
640
#if defined(__sparc__)
641
                __asm__ __volatile__("call        %0\n\t"
642
                                     "mov        %%o7,%%i0"
643
                                     : /* no outputs */
644
                                     : "r" (gen_func) 
645
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
646
                                       "l0", "l1", "l2", "l3", "l4", "l5",
647
                                       "l6", "l7");
648
#elif defined(__arm__)
649
                asm volatile ("mov pc, %0\n\t"
650
                              ".global exec_loop\n\t"
651
                              "exec_loop:\n\t"
652
                              : /* no outputs */
653
                              : "r" (gen_func)
654
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
655
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
656
{
657
    if (!(tb->cflags & CF_CODE_COPY)) {
658
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
659
            save_native_fp_state(env);
660
        }
661
        gen_func();
662
    } else {
663
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
664
            restore_native_fp_state(env);
665
        }
666
        /* we work with native eflags */
667
        CC_SRC = cc_table[CC_OP].compute_all();
668
        CC_OP = CC_OP_EFLAGS;
669
        asm(".globl exec_loop\n"
670
            "\n"
671
            "debug1:\n"
672
            "    pushl %%ebp\n"
673
            "    fs movl %10, %9\n"
674
            "    fs movl %11, %%eax\n"
675
            "    andl $0x400, %%eax\n"
676
            "    fs orl %8, %%eax\n"
677
            "    pushl %%eax\n"
678
            "    popf\n"
679
            "    fs movl %%esp, %12\n"
680
            "    fs movl %0, %%eax\n"
681
            "    fs movl %1, %%ecx\n"
682
            "    fs movl %2, %%edx\n"
683
            "    fs movl %3, %%ebx\n"
684
            "    fs movl %4, %%esp\n"
685
            "    fs movl %5, %%ebp\n"
686
            "    fs movl %6, %%esi\n"
687
            "    fs movl %7, %%edi\n"
688
            "    fs jmp *%9\n"
689
            "exec_loop:\n"
690
            "    fs movl %%esp, %4\n"
691
            "    fs movl %12, %%esp\n"
692
            "    fs movl %%eax, %0\n"
693
            "    fs movl %%ecx, %1\n"
694
            "    fs movl %%edx, %2\n"
695
            "    fs movl %%ebx, %3\n"
696
            "    fs movl %%ebp, %5\n"
697
            "    fs movl %%esi, %6\n"
698
            "    fs movl %%edi, %7\n"
699
            "    pushf\n"
700
            "    popl %%eax\n"
701
            "    movl %%eax, %%ecx\n"
702
            "    andl $0x400, %%ecx\n"
703
            "    shrl $9, %%ecx\n"
704
            "    andl $0x8d5, %%eax\n"
705
            "    fs movl %%eax, %8\n"
706
            "    movl $1, %%eax\n"
707
            "    subl %%ecx, %%eax\n"
708
            "    fs movl %%eax, %11\n"
709
            "    fs movl %9, %%ebx\n" /* get T0 value */
710
            "    popl %%ebp\n"
711
            :
712
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
713
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
714
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
715
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
716
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
717
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
718
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
719
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
720
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
721
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
722
            "a" (gen_func),
723
            "m" (*(uint8_t *)offsetof(CPUState, df)),
724
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
725
            : "%ecx", "%edx"
726
            );
727
    }
728
}
729
#elif defined(__ia64)
730
                struct fptr {
731
                        void *ip;
732
                        void *gp;
733
                } fp;
734

    
735
                fp.ip = tc_ptr;
736
                fp.gp = code_gen_buffer + 2 * (1 << 20);
737
                (*(void (*)(void)) &fp)();
738
#else
739
                gen_func();
740
#endif
741
                env->current_tb = NULL;
742
                /* reset soft MMU for next block (it can currently
743
                   only be set by a memory fault) */
744
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
745
                if (env->hflags & HF_SOFTMMU_MASK) {
746
                    env->hflags &= ~HF_SOFTMMU_MASK;
747
                    /* do not allow linking to another block */
748
                    T0 = 0;
749
                }
750
#endif
751
#if defined(USE_KQEMU)
752
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
753
                if (kqemu_is_ok(env) &&
754
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
755
                    cpu_loop_exit();
756
                }
757
#endif
758
            }
759
        } else {
760
            env_to_regs();
761
        }
762
    } /* for(;;) */
763

    
764

    
765
#if defined(TARGET_I386)
766
#if defined(USE_CODE_COPY)
767
    if (env->native_fp_regs) {
768
        save_native_fp_state(env);
769
    }
770
#endif
771
    /* restore flags in standard format */
772
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
773
#elif defined(TARGET_ARM)
774
    /* XXX: Save/restore host fpu exception state?.  */
775
#elif defined(TARGET_SPARC)
776
#if defined(reg_REGWPTR)
777
    REGWPTR = saved_regwptr;
778
#endif
779
#elif defined(TARGET_PPC)
780
#elif defined(TARGET_M68K)
781
    cpu_m68k_flush_flags(env, env->cc_op);
782
    env->cc_op = CC_OP_FLAGS;
783
    env->sr = (env->sr & 0xffe0)
784
              | env->cc_dest | (env->cc_x << 4);
785
#elif defined(TARGET_MIPS)
786
#elif defined(TARGET_SH4)
787
    /* XXXXX */
788
#else
789
#error unsupported target CPU
790
#endif
791

    
792
    /* restore global registers */
793
#if defined(__sparc__) && !defined(HOST_SOLARIS)
794
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
795
#endif
796
#include "hostregs_helper.h"
797

    
798
    /* fail safe : never use cpu_single_env outside cpu_exec() */
799
    cpu_single_env = NULL; 
800
    return ret;
801
}
802

    
803
/* must only be called from the generated code as an exception can be
804
   generated */
805
void tb_invalidate_page_range(target_ulong start, target_ulong end)
806
{
807
    /* XXX: cannot enable it yet because it yields to MMU exception
808
       where NIP != read address on PowerPC */
809
#if 0
810
    target_ulong phys_addr;
811
    phys_addr = get_phys_addr_code(env, start);
812
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
813
#endif
814
}
815

    
816
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
817

    
818
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
819
{
820
    CPUX86State *saved_env;
821

    
822
    saved_env = env;
823
    env = s;
824
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
825
        selector &= 0xffff;
826
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
827
                               (selector << 4), 0xffff, 0);
828
    } else {
829
        load_seg(seg_reg, selector);
830
    }
831
    env = saved_env;
832
}
833

    
834
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
835
{
836
    CPUX86State *saved_env;
837

    
838
    saved_env = env;
839
    env = s;
840
    
841
    helper_fsave((target_ulong)ptr, data32);
842

    
843
    env = saved_env;
844
}
845

    
846
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
847
{
848
    CPUX86State *saved_env;
849

    
850
    saved_env = env;
851
    env = s;
852
    
853
    helper_frstor((target_ulong)ptr, data32);
854

    
855
    env = saved_env;
856
}
857

    
858
#endif /* TARGET_I386 */
859

    
860
#if !defined(CONFIG_SOFTMMU)
861

    
862
#if defined(TARGET_I386)
863

    
864
/* 'pc' is the host PC at which the exception was raised. 'address' is
865
   the effective address of the memory exception. 'is_write' is 1 if a
866
   write caused the exception and otherwise 0'. 'old_set' is the
867
   signal set which should be restored */
868
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
869
                                    int is_write, sigset_t *old_set, 
870
                                    void *puc)
871
{
872
    TranslationBlock *tb;
873
    int ret;
874

    
875
    if (cpu_single_env)
876
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
877
#if defined(DEBUG_SIGNAL)
878
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
879
                pc, address, is_write, *(unsigned long *)old_set);
880
#endif
881
    /* XXX: locking issue */
882
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
883
        return 1;
884
    }
885

    
886
    /* see if it is an MMU fault */
887
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
888
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
889
    if (ret < 0)
890
        return 0; /* not an MMU fault */
891
    if (ret == 0)
892
        return 1; /* the MMU fault was handled without causing real CPU fault */
893
    /* now we have a real cpu fault */
894
    tb = tb_find_pc(pc);
895
    if (tb) {
896
        /* the PC is inside the translated code. It means that we have
897
           a virtual CPU fault */
898
        cpu_restore_state(tb, env, pc, puc);
899
    }
900
    if (ret == 1) {
901
#if 0
902
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
903
               env->eip, env->cr[2], env->error_code);
904
#endif
905
        /* we restore the process signal mask as the sigreturn should
906
           do it (XXX: use sigsetjmp) */
907
        sigprocmask(SIG_SETMASK, old_set, NULL);
908
        raise_exception_err(env->exception_index, env->error_code);
909
    } else {
910
        /* activate soft MMU for this block */
911
        env->hflags |= HF_SOFTMMU_MASK;
912
        cpu_resume_from_signal(env, puc);
913
    }
914
    /* never comes here */
915
    return 1;
916
}
917

    
918
#elif defined(TARGET_ARM)
919
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
920
                                    int is_write, sigset_t *old_set,
921
                                    void *puc)
922
{
923
    TranslationBlock *tb;
924
    int ret;
925

    
926
    if (cpu_single_env)
927
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
928
#if defined(DEBUG_SIGNAL)
929
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
930
           pc, address, is_write, *(unsigned long *)old_set);
931
#endif
932
    /* XXX: locking issue */
933
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
934
        return 1;
935
    }
936
    /* see if it is an MMU fault */
937
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
938
    if (ret < 0)
939
        return 0; /* not an MMU fault */
940
    if (ret == 0)
941
        return 1; /* the MMU fault was handled without causing real CPU fault */
942
    /* now we have a real cpu fault */
943
    tb = tb_find_pc(pc);
944
    if (tb) {
945
        /* the PC is inside the translated code. It means that we have
946
           a virtual CPU fault */
947
        cpu_restore_state(tb, env, pc, puc);
948
    }
949
    /* we restore the process signal mask as the sigreturn should
950
       do it (XXX: use sigsetjmp) */
951
    sigprocmask(SIG_SETMASK, old_set, NULL);
952
    cpu_loop_exit();
953
}
954
#elif defined(TARGET_SPARC)
955
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
956
                                    int is_write, sigset_t *old_set,
957
                                    void *puc)
958
{
959
    TranslationBlock *tb;
960
    int ret;
961

    
962
    if (cpu_single_env)
963
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
964
#if defined(DEBUG_SIGNAL)
965
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
966
           pc, address, is_write, *(unsigned long *)old_set);
967
#endif
968
    /* XXX: locking issue */
969
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
970
        return 1;
971
    }
972
    /* see if it is an MMU fault */
973
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
974
    if (ret < 0)
975
        return 0; /* not an MMU fault */
976
    if (ret == 0)
977
        return 1; /* the MMU fault was handled without causing real CPU fault */
978
    /* now we have a real cpu fault */
979
    tb = tb_find_pc(pc);
980
    if (tb) {
981
        /* the PC is inside the translated code. It means that we have
982
           a virtual CPU fault */
983
        cpu_restore_state(tb, env, pc, puc);
984
    }
985
    /* we restore the process signal mask as the sigreturn should
986
       do it (XXX: use sigsetjmp) */
987
    sigprocmask(SIG_SETMASK, old_set, NULL);
988
    cpu_loop_exit();
989
}
990
#elif defined (TARGET_PPC)
991
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
992
                                    int is_write, sigset_t *old_set,
993
                                    void *puc)
994
{
995
    TranslationBlock *tb;
996
    int ret;
997
    
998
    if (cpu_single_env)
999
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1000
#if defined(DEBUG_SIGNAL)
1001
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1002
           pc, address, is_write, *(unsigned long *)old_set);
1003
#endif
1004
    /* XXX: locking issue */
1005
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1006
        return 1;
1007
    }
1008

    
1009
    /* see if it is an MMU fault */
1010
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1011
    if (ret < 0)
1012
        return 0; /* not an MMU fault */
1013
    if (ret == 0)
1014
        return 1; /* the MMU fault was handled without causing real CPU fault */
1015

    
1016
    /* now we have a real cpu fault */
1017
    tb = tb_find_pc(pc);
1018
    if (tb) {
1019
        /* the PC is inside the translated code. It means that we have
1020
           a virtual CPU fault */
1021
        cpu_restore_state(tb, env, pc, puc);
1022
    }
1023
    if (ret == 1) {
1024
#if 0
1025
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1026
               env->nip, env->error_code, tb);
1027
#endif
1028
    /* we restore the process signal mask as the sigreturn should
1029
       do it (XXX: use sigsetjmp) */
1030
        sigprocmask(SIG_SETMASK, old_set, NULL);
1031
        do_raise_exception_err(env->exception_index, env->error_code);
1032
    } else {
1033
        /* activate soft MMU for this block */
1034
        cpu_resume_from_signal(env, puc);
1035
    }
1036
    /* never comes here */
1037
    return 1;
1038
}
1039

    
1040
#elif defined(TARGET_M68K)
1041
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1042
                                    int is_write, sigset_t *old_set,
1043
                                    void *puc)
1044
{
1045
    TranslationBlock *tb;
1046
    int ret;
1047

    
1048
    if (cpu_single_env)
1049
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1050
#if defined(DEBUG_SIGNAL)
1051
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1052
           pc, address, is_write, *(unsigned long *)old_set);
1053
#endif
1054
    /* XXX: locking issue */
1055
    if (is_write && page_unprotect(address, pc, puc)) {
1056
        return 1;
1057
    }
1058
    /* see if it is an MMU fault */
1059
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1060
    if (ret < 0)
1061
        return 0; /* not an MMU fault */
1062
    if (ret == 0)
1063
        return 1; /* the MMU fault was handled without causing real CPU fault */
1064
    /* now we have a real cpu fault */
1065
    tb = tb_find_pc(pc);
1066
    if (tb) {
1067
        /* the PC is inside the translated code. It means that we have
1068
           a virtual CPU fault */
1069
        cpu_restore_state(tb, env, pc, puc);
1070
    }
1071
    /* we restore the process signal mask as the sigreturn should
1072
       do it (XXX: use sigsetjmp) */
1073
    sigprocmask(SIG_SETMASK, old_set, NULL);
1074
    cpu_loop_exit();
1075
    /* never comes here */
1076
    return 1;
1077
}
1078

    
1079
#elif defined (TARGET_MIPS)
1080
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1081
                                    int is_write, sigset_t *old_set,
1082
                                    void *puc)
1083
{
1084
    TranslationBlock *tb;
1085
    int ret;
1086
    
1087
    if (cpu_single_env)
1088
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1089
#if defined(DEBUG_SIGNAL)
1090
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1091
           pc, address, is_write, *(unsigned long *)old_set);
1092
#endif
1093
    /* XXX: locking issue */
1094
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1095
        return 1;
1096
    }
1097

    
1098
    /* see if it is an MMU fault */
1099
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1100
    if (ret < 0)
1101
        return 0; /* not an MMU fault */
1102
    if (ret == 0)
1103
        return 1; /* the MMU fault was handled without causing real CPU fault */
1104

    
1105
    /* now we have a real cpu fault */
1106
    tb = tb_find_pc(pc);
1107
    if (tb) {
1108
        /* the PC is inside the translated code. It means that we have
1109
           a virtual CPU fault */
1110
        cpu_restore_state(tb, env, pc, puc);
1111
    }
1112
    if (ret == 1) {
1113
#if 0
1114
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1115
               env->nip, env->error_code, tb);
1116
#endif
1117
    /* we restore the process signal mask as the sigreturn should
1118
       do it (XXX: use sigsetjmp) */
1119
        sigprocmask(SIG_SETMASK, old_set, NULL);
1120
        do_raise_exception_err(env->exception_index, env->error_code);
1121
    } else {
1122
        /* activate soft MMU for this block */
1123
        cpu_resume_from_signal(env, puc);
1124
    }
1125
    /* never comes here */
1126
    return 1;
1127
}
1128

    
1129
#elif defined (TARGET_SH4)
1130
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1131
                                    int is_write, sigset_t *old_set,
1132
                                    void *puc)
1133
{
1134
    TranslationBlock *tb;
1135
    int ret;
1136
    
1137
    if (cpu_single_env)
1138
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1139
#if defined(DEBUG_SIGNAL)
1140
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1141
           pc, address, is_write, *(unsigned long *)old_set);
1142
#endif
1143
    /* XXX: locking issue */
1144
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1145
        return 1;
1146
    }
1147

    
1148
    /* see if it is an MMU fault */
1149
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1150
    if (ret < 0)
1151
        return 0; /* not an MMU fault */
1152
    if (ret == 0)
1153
        return 1; /* the MMU fault was handled without causing real CPU fault */
1154

    
1155
    /* now we have a real cpu fault */
1156
    tb = tb_find_pc(pc);
1157
    if (tb) {
1158
        /* the PC is inside the translated code. It means that we have
1159
           a virtual CPU fault */
1160
        cpu_restore_state(tb, env, pc, puc);
1161
    }
1162
#if 0
1163
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1164
               env->nip, env->error_code, tb);
1165
#endif
1166
    /* we restore the process signal mask as the sigreturn should
1167
       do it (XXX: use sigsetjmp) */
1168
    sigprocmask(SIG_SETMASK, old_set, NULL);
1169
    cpu_loop_exit();
1170
    /* never comes here */
1171
    return 1;
1172
}
1173
#else
1174
#error unsupported target CPU
1175
#endif
1176

    
1177
#if defined(__i386__)
1178

    
1179
#if defined(__APPLE__)
1180
# include <sys/ucontext.h>
1181

    
1182
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1183
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1184
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1185
#else
1186
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1187
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1188
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1189
#endif
1190

    
1191
#if defined(USE_CODE_COPY)
1192
static void cpu_send_trap(unsigned long pc, int trap, 
1193
                          struct ucontext *uc)
1194
{
1195
    TranslationBlock *tb;
1196

    
1197
    if (cpu_single_env)
1198
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1199
    /* now we have a real cpu fault */
1200
    tb = tb_find_pc(pc);
1201
    if (tb) {
1202
        /* the PC is inside the translated code. It means that we have
1203
           a virtual CPU fault */
1204
        cpu_restore_state(tb, env, pc, uc);
1205
    }
1206
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1207
    raise_exception_err(trap, env->error_code);
1208
}
1209
#endif
1210

    
1211
int cpu_signal_handler(int host_signum, void *pinfo, 
1212
                       void *puc)
1213
{
1214
    siginfo_t *info = pinfo;
1215
    struct ucontext *uc = puc;
1216
    unsigned long pc;
1217
    int trapno;
1218

    
1219
#ifndef REG_EIP
1220
/* for glibc 2.1 */
1221
#define REG_EIP    EIP
1222
#define REG_ERR    ERR
1223
#define REG_TRAPNO TRAPNO
1224
#endif
1225
    pc = EIP_sig(uc);
1226
    trapno = TRAP_sig(uc);
1227
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1228
    if (trapno == 0x00 || trapno == 0x05) {
1229
        /* send division by zero or bound exception */
1230
        cpu_send_trap(pc, trapno, uc);
1231
        return 1;
1232
    } else
1233
#endif
1234
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1235
                                 trapno == 0xe ? 
1236
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1237
                                 &uc->uc_sigmask, puc);
1238
}
1239

    
1240
#elif defined(__x86_64__)
1241

    
1242
int cpu_signal_handler(int host_signum, void *pinfo,
1243
                       void *puc)
1244
{
1245
    siginfo_t *info = pinfo;
1246
    struct ucontext *uc = puc;
1247
    unsigned long pc;
1248

    
1249
    pc = uc->uc_mcontext.gregs[REG_RIP];
1250
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1251
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1252
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1253
                             &uc->uc_sigmask, puc);
1254
}
1255

    
1256
#elif defined(__powerpc__)
1257

    
1258
/***********************************************************************
1259
 * signal context platform-specific definitions
1260
 * From Wine
1261
 */
1262
#ifdef linux
1263
/* All Registers access - only for local access */
1264
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1265
/* Gpr Registers access  */
1266
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1267
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1268
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1269
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1270
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1271
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1272
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1273
/* Float Registers access  */
1274
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1275
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1276
/* Exception Registers access */
1277
# define DAR_sig(context)                        REG_sig(dar, context)
1278
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1279
# define TRAP_sig(context)                        REG_sig(trap, context)
1280
#endif /* linux */
1281

    
1282
#ifdef __APPLE__
1283
# include <sys/ucontext.h>
1284
typedef struct ucontext SIGCONTEXT;
1285
/* All Registers access - only for local access */
1286
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1287
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1288
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1289
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1290
/* Gpr Registers access */
1291
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1292
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1293
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1294
# define CTR_sig(context)                        REG_sig(ctr, context)
1295
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1296
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1297
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1298
/* Float Registers access */
1299
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1300
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1301
/* Exception Registers access */
1302
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1303
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1304
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1305
#endif /* __APPLE__ */
1306

    
1307
int cpu_signal_handler(int host_signum, void *pinfo, 
1308
                       void *puc)
1309
{
1310
    siginfo_t *info = pinfo;
1311
    struct ucontext *uc = puc;
1312
    unsigned long pc;
1313
    int is_write;
1314

    
1315
    pc = IAR_sig(uc);
1316
    is_write = 0;
1317
#if 0
1318
    /* ppc 4xx case */
1319
    if (DSISR_sig(uc) & 0x00800000)
1320
        is_write = 1;
1321
#else
1322
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1323
        is_write = 1;
1324
#endif
1325
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1326
                             is_write, &uc->uc_sigmask, puc);
1327
}
1328

    
1329
#elif defined(__alpha__)
1330

    
1331
int cpu_signal_handler(int host_signum, void *pinfo, 
1332
                           void *puc)
1333
{
1334
    siginfo_t *info = pinfo;
1335
    struct ucontext *uc = puc;
1336
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1337
    uint32_t insn = *pc;
1338
    int is_write = 0;
1339

    
1340
    /* XXX: need kernel patch to get write flag faster */
1341
    switch (insn >> 26) {
1342
    case 0x0d: // stw
1343
    case 0x0e: // stb
1344
    case 0x0f: // stq_u
1345
    case 0x24: // stf
1346
    case 0x25: // stg
1347
    case 0x26: // sts
1348
    case 0x27: // stt
1349
    case 0x2c: // stl
1350
    case 0x2d: // stq
1351
    case 0x2e: // stl_c
1352
    case 0x2f: // stq_c
1353
        is_write = 1;
1354
    }
1355

    
1356
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1357
                             is_write, &uc->uc_sigmask, puc);
1358
}
1359
#elif defined(__sparc__)
1360

    
1361
int cpu_signal_handler(int host_signum, void *pinfo, 
1362
                       void *puc)
1363
{
1364
    siginfo_t *info = pinfo;
1365
    uint32_t *regs = (uint32_t *)(info + 1);
1366
    void *sigmask = (regs + 20);
1367
    unsigned long pc;
1368
    int is_write;
1369
    uint32_t insn;
1370
    
1371
    /* XXX: is there a standard glibc define ? */
1372
    pc = regs[1];
1373
    /* XXX: need kernel patch to get write flag faster */
1374
    is_write = 0;
1375
    insn = *(uint32_t *)pc;
1376
    if ((insn >> 30) == 3) {
1377
      switch((insn >> 19) & 0x3f) {
1378
      case 0x05: // stb
1379
      case 0x06: // sth
1380
      case 0x04: // st
1381
      case 0x07: // std
1382
      case 0x24: // stf
1383
      case 0x27: // stdf
1384
      case 0x25: // stfsr
1385
        is_write = 1;
1386
        break;
1387
      }
1388
    }
1389
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1390
                             is_write, sigmask, NULL);
1391
}
1392

    
1393
#elif defined(__arm__)
1394

    
1395
int cpu_signal_handler(int host_signum, void *pinfo, 
1396
                       void *puc)
1397
{
1398
    siginfo_t *info = pinfo;
1399
    struct ucontext *uc = puc;
1400
    unsigned long pc;
1401
    int is_write;
1402
    
1403
    pc = uc->uc_mcontext.gregs[R15];
1404
    /* XXX: compute is_write */
1405
    is_write = 0;
1406
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1407
                             is_write,
1408
                             &uc->uc_sigmask, puc);
1409
}
1410

    
1411
#elif defined(__mc68000)
1412

    
1413
int cpu_signal_handler(int host_signum, void *pinfo, 
1414
                       void *puc)
1415
{
1416
    siginfo_t *info = pinfo;
1417
    struct ucontext *uc = puc;
1418
    unsigned long pc;
1419
    int is_write;
1420
    
1421
    pc = uc->uc_mcontext.gregs[16];
1422
    /* XXX: compute is_write */
1423
    is_write = 0;
1424
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1425
                             is_write,
1426
                             &uc->uc_sigmask, puc);
1427
}
1428

    
1429
#elif defined(__ia64)
1430

    
1431
#ifndef __ISR_VALID
1432
  /* This ought to be in <bits/siginfo.h>... */
1433
# define __ISR_VALID        1
1434
#endif
1435

    
1436
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1437
{
1438
    siginfo_t *info = pinfo;
1439
    struct ucontext *uc = puc;
1440
    unsigned long ip;
1441
    int is_write = 0;
1442

    
1443
    ip = uc->uc_mcontext.sc_ip;
1444
    switch (host_signum) {
1445
      case SIGILL:
1446
      case SIGFPE:
1447
      case SIGSEGV:
1448
      case SIGBUS:
1449
      case SIGTRAP:
1450
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1451
              /* ISR.W (write-access) is bit 33:  */
1452
              is_write = (info->si_isr >> 33) & 1;
1453
          break;
1454

    
1455
      default:
1456
          break;
1457
    }
1458
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1459
                             is_write,
1460
                             &uc->uc_sigmask, puc);
1461
}
1462

    
1463
#elif defined(__s390__)
1464

    
1465
int cpu_signal_handler(int host_signum, void *pinfo, 
1466
                       void *puc)
1467
{
1468
    siginfo_t *info = pinfo;
1469
    struct ucontext *uc = puc;
1470
    unsigned long pc;
1471
    int is_write;
1472
    
1473
    pc = uc->uc_mcontext.psw.addr;
1474
    /* XXX: compute is_write */
1475
    is_write = 0;
1476
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1477
                             is_write,
1478
                             &uc->uc_sigmask, puc);
1479
}
1480

    
1481
#else
1482

    
1483
#error host CPU specific signal handler needed
1484

    
1485
#endif
1486

    
1487
#endif /* !defined(CONFIG_SOFTMMU) */