Statistics
| Branch: | Revision:

root / block / qcow.c @ db08adf5

History | View | Annotate | Download (29.4 kB)

1
/*
2
 * Block driver for the QCOW format
3
 *
4
 * Copyright (c) 2004-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "qemu-common.h"
25
#include "block_int.h"
26
#include "module.h"
27
#include <zlib.h>
28
#include "aes.h"
29

    
30
/**************************************************************/
31
/* QEMU COW block driver with compression and encryption support */
32

    
33
#define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb)
34
#define QCOW_VERSION 1
35

    
36
#define QCOW_CRYPT_NONE 0
37
#define QCOW_CRYPT_AES  1
38

    
39
#define QCOW_OFLAG_COMPRESSED (1LL << 63)
40

    
41
typedef struct QCowHeader {
42
    uint32_t magic;
43
    uint32_t version;
44
    uint64_t backing_file_offset;
45
    uint32_t backing_file_size;
46
    uint32_t mtime;
47
    uint64_t size; /* in bytes */
48
    uint8_t cluster_bits;
49
    uint8_t l2_bits;
50
    uint32_t crypt_method;
51
    uint64_t l1_table_offset;
52
} QCowHeader;
53

    
54
#define L2_CACHE_SIZE 16
55

    
56
typedef struct BDRVQcowState {
57
    BlockDriverState *hd;
58
    int cluster_bits;
59
    int cluster_size;
60
    int cluster_sectors;
61
    int l2_bits;
62
    int l2_size;
63
    int l1_size;
64
    uint64_t cluster_offset_mask;
65
    uint64_t l1_table_offset;
66
    uint64_t *l1_table;
67
    uint64_t *l2_cache;
68
    uint64_t l2_cache_offsets[L2_CACHE_SIZE];
69
    uint32_t l2_cache_counts[L2_CACHE_SIZE];
70
    uint8_t *cluster_cache;
71
    uint8_t *cluster_data;
72
    uint64_t cluster_cache_offset;
73
    uint32_t crypt_method; /* current crypt method, 0 if no key yet */
74
    uint32_t crypt_method_header;
75
    AES_KEY aes_encrypt_key;
76
    AES_KEY aes_decrypt_key;
77
} BDRVQcowState;
78

    
79
static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset);
80

    
81
static int qcow_probe(const uint8_t *buf, int buf_size, const char *filename)
82
{
83
    const QCowHeader *cow_header = (const void *)buf;
84

    
85
    if (buf_size >= sizeof(QCowHeader) &&
86
        be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
87
        be32_to_cpu(cow_header->version) == QCOW_VERSION)
88
        return 100;
89
    else
90
        return 0;
91
}
92

    
93
static int qcow_open(BlockDriverState *bs, const char *filename, int flags)
94
{
95
    BDRVQcowState *s = bs->opaque;
96
    int len, i, shift, ret;
97
    QCowHeader header;
98

    
99
    ret = bdrv_file_open(&s->hd, filename, flags);
100
    if (ret < 0)
101
        return ret;
102
    if (bdrv_pread(s->hd, 0, &header, sizeof(header)) != sizeof(header))
103
        goto fail;
104
    be32_to_cpus(&header.magic);
105
    be32_to_cpus(&header.version);
106
    be64_to_cpus(&header.backing_file_offset);
107
    be32_to_cpus(&header.backing_file_size);
108
    be32_to_cpus(&header.mtime);
109
    be64_to_cpus(&header.size);
110
    be32_to_cpus(&header.crypt_method);
111
    be64_to_cpus(&header.l1_table_offset);
112

    
113
    if (header.magic != QCOW_MAGIC || header.version != QCOW_VERSION)
114
        goto fail;
115
    if (header.size <= 1 || header.cluster_bits < 9)
116
        goto fail;
117
    if (header.crypt_method > QCOW_CRYPT_AES)
118
        goto fail;
119
    s->crypt_method_header = header.crypt_method;
120
    if (s->crypt_method_header)
121
        bs->encrypted = 1;
122
    s->cluster_bits = header.cluster_bits;
123
    s->cluster_size = 1 << s->cluster_bits;
124
    s->cluster_sectors = 1 << (s->cluster_bits - 9);
125
    s->l2_bits = header.l2_bits;
126
    s->l2_size = 1 << s->l2_bits;
127
    bs->total_sectors = header.size / 512;
128
    s->cluster_offset_mask = (1LL << (63 - s->cluster_bits)) - 1;
129

    
130
    /* read the level 1 table */
131
    shift = s->cluster_bits + s->l2_bits;
132
    s->l1_size = (header.size + (1LL << shift) - 1) >> shift;
133

    
134
    s->l1_table_offset = header.l1_table_offset;
135
    s->l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
136
    if (!s->l1_table)
137
        goto fail;
138
    if (bdrv_pread(s->hd, s->l1_table_offset, s->l1_table, s->l1_size * sizeof(uint64_t)) !=
139
        s->l1_size * sizeof(uint64_t))
140
        goto fail;
141
    for(i = 0;i < s->l1_size; i++) {
142
        be64_to_cpus(&s->l1_table[i]);
143
    }
144
    /* alloc L2 cache */
145
    s->l2_cache = qemu_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
146
    if (!s->l2_cache)
147
        goto fail;
148
    s->cluster_cache = qemu_malloc(s->cluster_size);
149
    if (!s->cluster_cache)
150
        goto fail;
151
    s->cluster_data = qemu_malloc(s->cluster_size);
152
    if (!s->cluster_data)
153
        goto fail;
154
    s->cluster_cache_offset = -1;
155

    
156
    /* read the backing file name */
157
    if (header.backing_file_offset != 0) {
158
        len = header.backing_file_size;
159
        if (len > 1023)
160
            len = 1023;
161
        if (bdrv_pread(s->hd, header.backing_file_offset, bs->backing_file, len) != len)
162
            goto fail;
163
        bs->backing_file[len] = '\0';
164
    }
165
    return 0;
166

    
167
 fail:
168
    qemu_free(s->l1_table);
169
    qemu_free(s->l2_cache);
170
    qemu_free(s->cluster_cache);
171
    qemu_free(s->cluster_data);
172
    bdrv_delete(s->hd);
173
    return -1;
174
}
175

    
176
static int qcow_set_key(BlockDriverState *bs, const char *key)
177
{
178
    BDRVQcowState *s = bs->opaque;
179
    uint8_t keybuf[16];
180
    int len, i;
181

    
182
    memset(keybuf, 0, 16);
183
    len = strlen(key);
184
    if (len > 16)
185
        len = 16;
186
    /* XXX: we could compress the chars to 7 bits to increase
187
       entropy */
188
    for(i = 0;i < len;i++) {
189
        keybuf[i] = key[i];
190
    }
191
    s->crypt_method = s->crypt_method_header;
192

    
193
    if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0)
194
        return -1;
195
    if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0)
196
        return -1;
197
#if 0
198
    /* test */
199
    {
200
        uint8_t in[16];
201
        uint8_t out[16];
202
        uint8_t tmp[16];
203
        for(i=0;i<16;i++)
204
            in[i] = i;
205
        AES_encrypt(in, tmp, &s->aes_encrypt_key);
206
        AES_decrypt(tmp, out, &s->aes_decrypt_key);
207
        for(i = 0; i < 16; i++)
208
            printf(" %02x", tmp[i]);
209
        printf("\n");
210
        for(i = 0; i < 16; i++)
211
            printf(" %02x", out[i]);
212
        printf("\n");
213
    }
214
#endif
215
    return 0;
216
}
217

    
218
/* The crypt function is compatible with the linux cryptoloop
219
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
220
   supported */
221
static void encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
222
                            uint8_t *out_buf, const uint8_t *in_buf,
223
                            int nb_sectors, int enc,
224
                            const AES_KEY *key)
225
{
226
    union {
227
        uint64_t ll[2];
228
        uint8_t b[16];
229
    } ivec;
230
    int i;
231

    
232
    for(i = 0; i < nb_sectors; i++) {
233
        ivec.ll[0] = cpu_to_le64(sector_num);
234
        ivec.ll[1] = 0;
235
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
236
                        ivec.b, enc);
237
        sector_num++;
238
        in_buf += 512;
239
        out_buf += 512;
240
    }
241
}
242

    
243
/* 'allocate' is:
244
 *
245
 * 0 to not allocate.
246
 *
247
 * 1 to allocate a normal cluster (for sector indexes 'n_start' to
248
 * 'n_end')
249
 *
250
 * 2 to allocate a compressed cluster of size
251
 * 'compressed_size'. 'compressed_size' must be > 0 and <
252
 * cluster_size
253
 *
254
 * return 0 if not allocated.
255
 */
256
static uint64_t get_cluster_offset(BlockDriverState *bs,
257
                                   uint64_t offset, int allocate,
258
                                   int compressed_size,
259
                                   int n_start, int n_end)
260
{
261
    BDRVQcowState *s = bs->opaque;
262
    int min_index, i, j, l1_index, l2_index;
263
    uint64_t l2_offset, *l2_table, cluster_offset, tmp;
264
    uint32_t min_count;
265
    int new_l2_table;
266

    
267
    l1_index = offset >> (s->l2_bits + s->cluster_bits);
268
    l2_offset = s->l1_table[l1_index];
269
    new_l2_table = 0;
270
    if (!l2_offset) {
271
        if (!allocate)
272
            return 0;
273
        /* allocate a new l2 entry */
274
        l2_offset = bdrv_getlength(s->hd);
275
        /* round to cluster size */
276
        l2_offset = (l2_offset + s->cluster_size - 1) & ~(s->cluster_size - 1);
277
        /* update the L1 entry */
278
        s->l1_table[l1_index] = l2_offset;
279
        tmp = cpu_to_be64(l2_offset);
280
        if (bdrv_pwrite(s->hd, s->l1_table_offset + l1_index * sizeof(tmp),
281
                        &tmp, sizeof(tmp)) != sizeof(tmp))
282
            return 0;
283
        new_l2_table = 1;
284
    }
285
    for(i = 0; i < L2_CACHE_SIZE; i++) {
286
        if (l2_offset == s->l2_cache_offsets[i]) {
287
            /* increment the hit count */
288
            if (++s->l2_cache_counts[i] == 0xffffffff) {
289
                for(j = 0; j < L2_CACHE_SIZE; j++) {
290
                    s->l2_cache_counts[j] >>= 1;
291
                }
292
            }
293
            l2_table = s->l2_cache + (i << s->l2_bits);
294
            goto found;
295
        }
296
    }
297
    /* not found: load a new entry in the least used one */
298
    min_index = 0;
299
    min_count = 0xffffffff;
300
    for(i = 0; i < L2_CACHE_SIZE; i++) {
301
        if (s->l2_cache_counts[i] < min_count) {
302
            min_count = s->l2_cache_counts[i];
303
            min_index = i;
304
        }
305
    }
306
    l2_table = s->l2_cache + (min_index << s->l2_bits);
307
    if (new_l2_table) {
308
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
309
        if (bdrv_pwrite(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
310
            s->l2_size * sizeof(uint64_t))
311
            return 0;
312
    } else {
313
        if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
314
            s->l2_size * sizeof(uint64_t))
315
            return 0;
316
    }
317
    s->l2_cache_offsets[min_index] = l2_offset;
318
    s->l2_cache_counts[min_index] = 1;
319
 found:
320
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
321
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
322
    if (!cluster_offset ||
323
        ((cluster_offset & QCOW_OFLAG_COMPRESSED) && allocate == 1)) {
324
        if (!allocate)
325
            return 0;
326
        /* allocate a new cluster */
327
        if ((cluster_offset & QCOW_OFLAG_COMPRESSED) &&
328
            (n_end - n_start) < s->cluster_sectors) {
329
            /* if the cluster is already compressed, we must
330
               decompress it in the case it is not completely
331
               overwritten */
332
            if (decompress_cluster(s, cluster_offset) < 0)
333
                return 0;
334
            cluster_offset = bdrv_getlength(s->hd);
335
            cluster_offset = (cluster_offset + s->cluster_size - 1) &
336
                ~(s->cluster_size - 1);
337
            /* write the cluster content */
338
            if (bdrv_pwrite(s->hd, cluster_offset, s->cluster_cache, s->cluster_size) !=
339
                s->cluster_size)
340
                return -1;
341
        } else {
342
            cluster_offset = bdrv_getlength(s->hd);
343
            if (allocate == 1) {
344
                /* round to cluster size */
345
                cluster_offset = (cluster_offset + s->cluster_size - 1) &
346
                    ~(s->cluster_size - 1);
347
                bdrv_truncate(s->hd, cluster_offset + s->cluster_size);
348
                /* if encrypted, we must initialize the cluster
349
                   content which won't be written */
350
                if (s->crypt_method &&
351
                    (n_end - n_start) < s->cluster_sectors) {
352
                    uint64_t start_sect;
353
                    start_sect = (offset & ~(s->cluster_size - 1)) >> 9;
354
                    memset(s->cluster_data + 512, 0x00, 512);
355
                    for(i = 0; i < s->cluster_sectors; i++) {
356
                        if (i < n_start || i >= n_end) {
357
                            encrypt_sectors(s, start_sect + i,
358
                                            s->cluster_data,
359
                                            s->cluster_data + 512, 1, 1,
360
                                            &s->aes_encrypt_key);
361
                            if (bdrv_pwrite(s->hd, cluster_offset + i * 512,
362
                                            s->cluster_data, 512) != 512)
363
                                return -1;
364
                        }
365
                    }
366
                }
367
            } else if (allocate == 2) {
368
                cluster_offset |= QCOW_OFLAG_COMPRESSED |
369
                    (uint64_t)compressed_size << (63 - s->cluster_bits);
370
            }
371
        }
372
        /* update L2 table */
373
        tmp = cpu_to_be64(cluster_offset);
374
        l2_table[l2_index] = tmp;
375
        if (bdrv_pwrite(s->hd,
376
                        l2_offset + l2_index * sizeof(tmp), &tmp, sizeof(tmp)) != sizeof(tmp))
377
            return 0;
378
    }
379
    return cluster_offset;
380
}
381

    
382
static int qcow_is_allocated(BlockDriverState *bs, int64_t sector_num,
383
                             int nb_sectors, int *pnum)
384
{
385
    BDRVQcowState *s = bs->opaque;
386
    int index_in_cluster, n;
387
    uint64_t cluster_offset;
388

    
389
    cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
390
    index_in_cluster = sector_num & (s->cluster_sectors - 1);
391
    n = s->cluster_sectors - index_in_cluster;
392
    if (n > nb_sectors)
393
        n = nb_sectors;
394
    *pnum = n;
395
    return (cluster_offset != 0);
396
}
397

    
398
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
399
                             const uint8_t *buf, int buf_size)
400
{
401
    z_stream strm1, *strm = &strm1;
402
    int ret, out_len;
403

    
404
    memset(strm, 0, sizeof(*strm));
405

    
406
    strm->next_in = (uint8_t *)buf;
407
    strm->avail_in = buf_size;
408
    strm->next_out = out_buf;
409
    strm->avail_out = out_buf_size;
410

    
411
    ret = inflateInit2(strm, -12);
412
    if (ret != Z_OK)
413
        return -1;
414
    ret = inflate(strm, Z_FINISH);
415
    out_len = strm->next_out - out_buf;
416
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
417
        out_len != out_buf_size) {
418
        inflateEnd(strm);
419
        return -1;
420
    }
421
    inflateEnd(strm);
422
    return 0;
423
}
424

    
425
static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
426
{
427
    int ret, csize;
428
    uint64_t coffset;
429

    
430
    coffset = cluster_offset & s->cluster_offset_mask;
431
    if (s->cluster_cache_offset != coffset) {
432
        csize = cluster_offset >> (63 - s->cluster_bits);
433
        csize &= (s->cluster_size - 1);
434
        ret = bdrv_pread(s->hd, coffset, s->cluster_data, csize);
435
        if (ret != csize)
436
            return -1;
437
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
438
                              s->cluster_data, csize) < 0) {
439
            return -1;
440
        }
441
        s->cluster_cache_offset = coffset;
442
    }
443
    return 0;
444
}
445

    
446
#if 0
447

448
static int qcow_read(BlockDriverState *bs, int64_t sector_num,
449
                     uint8_t *buf, int nb_sectors)
450
{
451
    BDRVQcowState *s = bs->opaque;
452
    int ret, index_in_cluster, n;
453
    uint64_t cluster_offset;
454

455
    while (nb_sectors > 0) {
456
        cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
457
        index_in_cluster = sector_num & (s->cluster_sectors - 1);
458
        n = s->cluster_sectors - index_in_cluster;
459
        if (n > nb_sectors)
460
            n = nb_sectors;
461
        if (!cluster_offset) {
462
            if (bs->backing_hd) {
463
                /* read from the base image */
464
                ret = bdrv_read(bs->backing_hd, sector_num, buf, n);
465
                if (ret < 0)
466
                    return -1;
467
            } else {
468
                memset(buf, 0, 512 * n);
469
            }
470
        } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
471
            if (decompress_cluster(s, cluster_offset) < 0)
472
                return -1;
473
            memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
474
        } else {
475
            ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
476
            if (ret != n * 512)
477
                return -1;
478
            if (s->crypt_method) {
479
                encrypt_sectors(s, sector_num, buf, buf, n, 0,
480
                                &s->aes_decrypt_key);
481
            }
482
        }
483
        nb_sectors -= n;
484
        sector_num += n;
485
        buf += n * 512;
486
    }
487
    return 0;
488
}
489
#endif
490

    
491
typedef struct QCowAIOCB {
492
    BlockDriverAIOCB common;
493
    int64_t sector_num;
494
    QEMUIOVector *qiov;
495
    uint8_t *buf;
496
    void *orig_buf;
497
    int nb_sectors;
498
    int n;
499
    uint64_t cluster_offset;
500
    uint8_t *cluster_data;
501
    struct iovec hd_iov;
502
    QEMUIOVector hd_qiov;
503
    BlockDriverAIOCB *hd_aiocb;
504
} QCowAIOCB;
505

    
506
static void qcow_aio_cancel(BlockDriverAIOCB *blockacb)
507
{
508
    QCowAIOCB *acb = (QCowAIOCB *)blockacb;
509
    if (acb->hd_aiocb)
510
        bdrv_aio_cancel(acb->hd_aiocb);
511
    qemu_aio_release(acb);
512
}
513

    
514
static AIOPool qcow_aio_pool = {
515
    .aiocb_size         = sizeof(QCowAIOCB),
516
    .cancel             = qcow_aio_cancel,
517
};
518

    
519
static QCowAIOCB *qcow_aio_setup(BlockDriverState *bs,
520
        int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
521
        BlockDriverCompletionFunc *cb, void *opaque, int is_write)
522
{
523
    QCowAIOCB *acb;
524

    
525
    acb = qemu_aio_get(&qcow_aio_pool, bs, cb, opaque);
526
    if (!acb)
527
        return NULL;
528
    acb->hd_aiocb = NULL;
529
    acb->sector_num = sector_num;
530
    acb->qiov = qiov;
531
    if (qiov->niov > 1) {
532
        acb->buf = acb->orig_buf = qemu_blockalign(bs, qiov->size);
533
        if (is_write)
534
            qemu_iovec_to_buffer(qiov, acb->buf);
535
    } else {
536
        acb->buf = (uint8_t *)qiov->iov->iov_base;
537
    }
538
    acb->nb_sectors = nb_sectors;
539
    acb->n = 0;
540
    acb->cluster_offset = 0;
541
    return acb;
542
}
543

    
544
static void qcow_aio_read_cb(void *opaque, int ret)
545
{
546
    QCowAIOCB *acb = opaque;
547
    BlockDriverState *bs = acb->common.bs;
548
    BDRVQcowState *s = bs->opaque;
549
    int index_in_cluster;
550

    
551
    acb->hd_aiocb = NULL;
552
    if (ret < 0)
553
        goto done;
554

    
555
 redo:
556
    /* post process the read buffer */
557
    if (!acb->cluster_offset) {
558
        /* nothing to do */
559
    } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
560
        /* nothing to do */
561
    } else {
562
        if (s->crypt_method) {
563
            encrypt_sectors(s, acb->sector_num, acb->buf, acb->buf,
564
                            acb->n, 0,
565
                            &s->aes_decrypt_key);
566
        }
567
    }
568

    
569
    acb->nb_sectors -= acb->n;
570
    acb->sector_num += acb->n;
571
    acb->buf += acb->n * 512;
572

    
573
    if (acb->nb_sectors == 0) {
574
        /* request completed */
575
        ret = 0;
576
        goto done;
577
    }
578

    
579
    /* prepare next AIO request */
580
    acb->cluster_offset = get_cluster_offset(bs, acb->sector_num << 9,
581
                                             0, 0, 0, 0);
582
    index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
583
    acb->n = s->cluster_sectors - index_in_cluster;
584
    if (acb->n > acb->nb_sectors)
585
        acb->n = acb->nb_sectors;
586

    
587
    if (!acb->cluster_offset) {
588
        if (bs->backing_hd) {
589
            /* read from the base image */
590
            acb->hd_iov.iov_base = (void *)acb->buf;
591
            acb->hd_iov.iov_len = acb->n * 512;
592
            qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
593
            acb->hd_aiocb = bdrv_aio_readv(bs->backing_hd, acb->sector_num,
594
                &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb);
595
            if (acb->hd_aiocb == NULL)
596
                goto done;
597
        } else {
598
            /* Note: in this case, no need to wait */
599
            memset(acb->buf, 0, 512 * acb->n);
600
            goto redo;
601
        }
602
    } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
603
        /* add AIO support for compressed blocks ? */
604
        if (decompress_cluster(s, acb->cluster_offset) < 0)
605
            goto done;
606
        memcpy(acb->buf,
607
               s->cluster_cache + index_in_cluster * 512, 512 * acb->n);
608
        goto redo;
609
    } else {
610
        if ((acb->cluster_offset & 511) != 0) {
611
            ret = -EIO;
612
            goto done;
613
        }
614
        acb->hd_iov.iov_base = (void *)acb->buf;
615
        acb->hd_iov.iov_len = acb->n * 512;
616
        qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
617
        acb->hd_aiocb = bdrv_aio_readv(s->hd,
618
                            (acb->cluster_offset >> 9) + index_in_cluster,
619
                            &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb);
620
        if (acb->hd_aiocb == NULL)
621
            goto done;
622
    }
623

    
624
    return;
625

    
626
done:
627
    if (acb->qiov->niov > 1) {
628
        qemu_iovec_from_buffer(acb->qiov, acb->orig_buf, acb->qiov->size);
629
        qemu_vfree(acb->orig_buf);
630
    }
631
    acb->common.cb(acb->common.opaque, ret);
632
    qemu_aio_release(acb);
633
}
634

    
635
static BlockDriverAIOCB *qcow_aio_readv(BlockDriverState *bs,
636
        int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
637
        BlockDriverCompletionFunc *cb, void *opaque)
638
{
639
    QCowAIOCB *acb;
640

    
641
    acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
642
    if (!acb)
643
        return NULL;
644

    
645
    qcow_aio_read_cb(acb, 0);
646
    return &acb->common;
647
}
648

    
649
static void qcow_aio_write_cb(void *opaque, int ret)
650
{
651
    QCowAIOCB *acb = opaque;
652
    BlockDriverState *bs = acb->common.bs;
653
    BDRVQcowState *s = bs->opaque;
654
    int index_in_cluster;
655
    uint64_t cluster_offset;
656
    const uint8_t *src_buf;
657

    
658
    acb->hd_aiocb = NULL;
659

    
660
    if (ret < 0)
661
        goto done;
662

    
663
    acb->nb_sectors -= acb->n;
664
    acb->sector_num += acb->n;
665
    acb->buf += acb->n * 512;
666

    
667
    if (acb->nb_sectors == 0) {
668
        /* request completed */
669
        ret = 0;
670
        goto done;
671
    }
672

    
673
    index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
674
    acb->n = s->cluster_sectors - index_in_cluster;
675
    if (acb->n > acb->nb_sectors)
676
        acb->n = acb->nb_sectors;
677
    cluster_offset = get_cluster_offset(bs, acb->sector_num << 9, 1, 0,
678
                                        index_in_cluster,
679
                                        index_in_cluster + acb->n);
680
    if (!cluster_offset || (cluster_offset & 511) != 0) {
681
        ret = -EIO;
682
        goto done;
683
    }
684
    if (s->crypt_method) {
685
        if (!acb->cluster_data) {
686
            acb->cluster_data = qemu_mallocz(s->cluster_size);
687
            if (!acb->cluster_data) {
688
                ret = -ENOMEM;
689
                goto done;
690
            }
691
        }
692
        encrypt_sectors(s, acb->sector_num, acb->cluster_data, acb->buf,
693
                        acb->n, 1, &s->aes_encrypt_key);
694
        src_buf = acb->cluster_data;
695
    } else {
696
        src_buf = acb->buf;
697
    }
698

    
699
    acb->hd_iov.iov_base = (void *)src_buf;
700
    acb->hd_iov.iov_len = acb->n * 512;
701
    qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
702
    acb->hd_aiocb = bdrv_aio_writev(s->hd,
703
                                    (cluster_offset >> 9) + index_in_cluster,
704
                                    &acb->hd_qiov, acb->n,
705
                                    qcow_aio_write_cb, acb);
706
    if (acb->hd_aiocb == NULL)
707
        goto done;
708
    return;
709

    
710
done:
711
    if (acb->qiov->niov > 1)
712
        qemu_vfree(acb->orig_buf);
713
    acb->common.cb(acb->common.opaque, ret);
714
    qemu_aio_release(acb);
715
}
716

    
717
static BlockDriverAIOCB *qcow_aio_writev(BlockDriverState *bs,
718
        int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
719
        BlockDriverCompletionFunc *cb, void *opaque)
720
{
721
    BDRVQcowState *s = bs->opaque;
722
    QCowAIOCB *acb;
723

    
724
    s->cluster_cache_offset = -1; /* disable compressed cache */
725

    
726
    acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
727
    if (!acb)
728
        return NULL;
729

    
730

    
731
    qcow_aio_write_cb(acb, 0);
732
    return &acb->common;
733
}
734

    
735
static void qcow_close(BlockDriverState *bs)
736
{
737
    BDRVQcowState *s = bs->opaque;
738
    qemu_free(s->l1_table);
739
    qemu_free(s->l2_cache);
740
    qemu_free(s->cluster_cache);
741
    qemu_free(s->cluster_data);
742
    bdrv_delete(s->hd);
743
}
744

    
745
static int qcow_create(const char *filename, QEMUOptionParameter *options)
746
{
747
    int fd, header_size, backing_filename_len, l1_size, i, shift;
748
    QCowHeader header;
749
    uint64_t tmp;
750
    int64_t total_size = 0;
751
    const char *backing_file = NULL;
752
    int flags = 0;
753

    
754
    /* Read out options */
755
    while (options && options->name) {
756
        if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
757
            total_size = options->value.n / 512;
758
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
759
            backing_file = options->value.s;
760
        } else if (!strcmp(options->name, BLOCK_OPT_ENCRYPT)) {
761
            flags |= options->value.n ? BLOCK_FLAG_ENCRYPT : 0;
762
        }
763
        options++;
764
    }
765

    
766
    fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644);
767
    if (fd < 0)
768
        return -1;
769
    memset(&header, 0, sizeof(header));
770
    header.magic = cpu_to_be32(QCOW_MAGIC);
771
    header.version = cpu_to_be32(QCOW_VERSION);
772
    header.size = cpu_to_be64(total_size * 512);
773
    header_size = sizeof(header);
774
    backing_filename_len = 0;
775
    if (backing_file) {
776
        if (strcmp(backing_file, "fat:")) {
777
            header.backing_file_offset = cpu_to_be64(header_size);
778
            backing_filename_len = strlen(backing_file);
779
            header.backing_file_size = cpu_to_be32(backing_filename_len);
780
            header_size += backing_filename_len;
781
        } else {
782
            /* special backing file for vvfat */
783
            backing_file = NULL;
784
        }
785
        header.cluster_bits = 9; /* 512 byte cluster to avoid copying
786
                                    unmodifyed sectors */
787
        header.l2_bits = 12; /* 32 KB L2 tables */
788
    } else {
789
        header.cluster_bits = 12; /* 4 KB clusters */
790
        header.l2_bits = 9; /* 4 KB L2 tables */
791
    }
792
    header_size = (header_size + 7) & ~7;
793
    shift = header.cluster_bits + header.l2_bits;
794
    l1_size = ((total_size * 512) + (1LL << shift) - 1) >> shift;
795

    
796
    header.l1_table_offset = cpu_to_be64(header_size);
797
    if (flags & BLOCK_FLAG_ENCRYPT) {
798
        header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES);
799
    } else {
800
        header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
801
    }
802

    
803
    /* write all the data */
804
    write(fd, &header, sizeof(header));
805
    if (backing_file) {
806
        write(fd, backing_file, backing_filename_len);
807
    }
808
    lseek(fd, header_size, SEEK_SET);
809
    tmp = 0;
810
    for(i = 0;i < l1_size; i++) {
811
        write(fd, &tmp, sizeof(tmp));
812
    }
813
    close(fd);
814
    return 0;
815
}
816

    
817
static int qcow_make_empty(BlockDriverState *bs)
818
{
819
    BDRVQcowState *s = bs->opaque;
820
    uint32_t l1_length = s->l1_size * sizeof(uint64_t);
821
    int ret;
822

    
823
    memset(s->l1_table, 0, l1_length);
824
    if (bdrv_pwrite(s->hd, s->l1_table_offset, s->l1_table, l1_length) < 0)
825
        return -1;
826
    ret = bdrv_truncate(s->hd, s->l1_table_offset + l1_length);
827
    if (ret < 0)
828
        return ret;
829

    
830
    memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
831
    memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
832
    memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
833

    
834
    return 0;
835
}
836

    
837
/* XXX: put compressed sectors first, then all the cluster aligned
838
   tables to avoid losing bytes in alignment */
839
static int qcow_write_compressed(BlockDriverState *bs, int64_t sector_num,
840
                                 const uint8_t *buf, int nb_sectors)
841
{
842
    BDRVQcowState *s = bs->opaque;
843
    z_stream strm;
844
    int ret, out_len;
845
    uint8_t *out_buf;
846
    uint64_t cluster_offset;
847

    
848
    if (nb_sectors != s->cluster_sectors)
849
        return -EINVAL;
850

    
851
    out_buf = qemu_malloc(s->cluster_size + (s->cluster_size / 1000) + 128);
852
    if (!out_buf)
853
        return -1;
854

    
855
    /* best compression, small window, no zlib header */
856
    memset(&strm, 0, sizeof(strm));
857
    ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION,
858
                       Z_DEFLATED, -12,
859
                       9, Z_DEFAULT_STRATEGY);
860
    if (ret != 0) {
861
        qemu_free(out_buf);
862
        return -1;
863
    }
864

    
865
    strm.avail_in = s->cluster_size;
866
    strm.next_in = (uint8_t *)buf;
867
    strm.avail_out = s->cluster_size;
868
    strm.next_out = out_buf;
869

    
870
    ret = deflate(&strm, Z_FINISH);
871
    if (ret != Z_STREAM_END && ret != Z_OK) {
872
        qemu_free(out_buf);
873
        deflateEnd(&strm);
874
        return -1;
875
    }
876
    out_len = strm.next_out - out_buf;
877

    
878
    deflateEnd(&strm);
879

    
880
    if (ret != Z_STREAM_END || out_len >= s->cluster_size) {
881
        /* could not compress: write normal cluster */
882
        bdrv_write(bs, sector_num, buf, s->cluster_sectors);
883
    } else {
884
        cluster_offset = get_cluster_offset(bs, sector_num << 9, 2,
885
                                            out_len, 0, 0);
886
        cluster_offset &= s->cluster_offset_mask;
887
        if (bdrv_pwrite(s->hd, cluster_offset, out_buf, out_len) != out_len) {
888
            qemu_free(out_buf);
889
            return -1;
890
        }
891
    }
892

    
893
    qemu_free(out_buf);
894
    return 0;
895
}
896

    
897
static void qcow_flush(BlockDriverState *bs)
898
{
899
    BDRVQcowState *s = bs->opaque;
900
    bdrv_flush(s->hd);
901
}
902

    
903
static int qcow_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
904
{
905
    BDRVQcowState *s = bs->opaque;
906
    bdi->cluster_size = s->cluster_size;
907
    return 0;
908
}
909

    
910

    
911
static QEMUOptionParameter qcow_create_options[] = {
912
    {
913
        .name = BLOCK_OPT_SIZE,
914
        .type = OPT_SIZE,
915
        .help = "Virtual disk size"
916
    },
917
    {
918
        .name = BLOCK_OPT_BACKING_FILE,
919
        .type = OPT_STRING,
920
        .help = "File name of a base image"
921
    },
922
    {
923
        .name = BLOCK_OPT_ENCRYPT,
924
        .type = OPT_FLAG,
925
        .help = "Encrypt the image"
926
    },
927
    { NULL }
928
};
929

    
930
static BlockDriver bdrv_qcow = {
931
    .format_name        = "qcow",
932
    .instance_size        = sizeof(BDRVQcowState),
933
    .bdrv_probe                = qcow_probe,
934
    .bdrv_open                = qcow_open,
935
    .bdrv_close                = qcow_close,
936
    .bdrv_create        = qcow_create,
937
    .bdrv_flush                = qcow_flush,
938
    .bdrv_is_allocated        = qcow_is_allocated,
939
    .bdrv_set_key        = qcow_set_key,
940
    .bdrv_make_empty        = qcow_make_empty,
941
    .bdrv_aio_readv        = qcow_aio_readv,
942
    .bdrv_aio_writev        = qcow_aio_writev,
943
    .bdrv_write_compressed = qcow_write_compressed,
944
    .bdrv_get_info        = qcow_get_info,
945

    
946
    .create_options = qcow_create_options,
947
};
948

    
949
static void bdrv_qcow_init(void)
950
{
951
    bdrv_register(&bdrv_qcow);
952
}
953

    
954
block_init(bdrv_qcow_init);