Statistics
| Branch: | Revision:

root / hw / net / rtl8139.c @ db895a1e

History | View | Annotate | Download (101.4 kB)

1
/**
2
 * QEMU RTL8139 emulation
3
 *
4
 * Copyright (c) 2006 Igor Kovalenko
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23

24
 * Modifications:
25
 *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26
 *
27
 *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28
 *                                  HW revision ID changes for FreeBSD driver
29
 *
30
 *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31
 *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32
 *                                  Rearranged debugging print statements
33
 *                                  Implemented PCI timer interrupt (disabled by default)
34
 *                                  Implemented Tally Counters, increased VM load/save version
35
 *                                  Implemented IP/TCP/UDP checksum task offloading
36
 *
37
 *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38
 *                                  Fixed MTU=1500 for produced ethernet frames
39
 *
40
 *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41
 *                                  segmentation offloading
42
 *                                  Removed slirp.h dependency
43
 *                                  Added rx/tx buffer reset when enabling rx/tx operation
44
 *
45
 *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46
 *                                  when strictly needed (required for for
47
 *                                  Darwin)
48
 *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49
 */
50

    
51
/* For crc32 */
52
#include <zlib.h>
53

    
54
#include "hw/hw.h"
55
#include "hw/pci/pci.h"
56
#include "sysemu/dma.h"
57
#include "qemu/timer.h"
58
#include "net/net.h"
59
#include "hw/loader.h"
60
#include "sysemu/sysemu.h"
61
#include "qemu/iov.h"
62

    
63
/* debug RTL8139 card */
64
//#define DEBUG_RTL8139 1
65

    
66
#define PCI_FREQUENCY 33000000L
67

    
68
#define SET_MASKED(input, mask, curr) \
69
    ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
70

    
71
/* arg % size for size which is a power of 2 */
72
#define MOD2(input, size) \
73
    ( ( input ) & ( size - 1 )  )
74

    
75
#define ETHER_ADDR_LEN 6
76
#define ETHER_TYPE_LEN 2
77
#define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
78
#define ETH_P_IP    0x0800      /* Internet Protocol packet */
79
#define ETH_P_8021Q 0x8100      /* 802.1Q VLAN Extended Header  */
80
#define ETH_MTU     1500
81

    
82
#define VLAN_TCI_LEN 2
83
#define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
84

    
85
#if defined (DEBUG_RTL8139)
86
#  define DPRINTF(fmt, ...) \
87
    do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
88
#else
89
static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
90
{
91
    return 0;
92
}
93
#endif
94

    
95
/* Symbolic offsets to registers. */
96
enum RTL8139_registers {
97
    MAC0 = 0,        /* Ethernet hardware address. */
98
    MAR0 = 8,        /* Multicast filter. */
99
    TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
100
                     /* Dump Tally Conter control register(64bit). C+ mode only */
101
    TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
102
    RxBuf = 0x30,
103
    ChipCmd = 0x37,
104
    RxBufPtr = 0x38,
105
    RxBufAddr = 0x3A,
106
    IntrMask = 0x3C,
107
    IntrStatus = 0x3E,
108
    TxConfig = 0x40,
109
    RxConfig = 0x44,
110
    Timer = 0x48,        /* A general-purpose counter. */
111
    RxMissed = 0x4C,    /* 24 bits valid, write clears. */
112
    Cfg9346 = 0x50,
113
    Config0 = 0x51,
114
    Config1 = 0x52,
115
    FlashReg = 0x54,
116
    MediaStatus = 0x58,
117
    Config3 = 0x59,
118
    Config4 = 0x5A,        /* absent on RTL-8139A */
119
    HltClk = 0x5B,
120
    MultiIntr = 0x5C,
121
    PCIRevisionID = 0x5E,
122
    TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
123
    BasicModeCtrl = 0x62,
124
    BasicModeStatus = 0x64,
125
    NWayAdvert = 0x66,
126
    NWayLPAR = 0x68,
127
    NWayExpansion = 0x6A,
128
    /* Undocumented registers, but required for proper operation. */
129
    FIFOTMS = 0x70,        /* FIFO Control and test. */
130
    CSCR = 0x74,        /* Chip Status and Configuration Register. */
131
    PARA78 = 0x78,
132
    PARA7c = 0x7c,        /* Magic transceiver parameter register. */
133
    Config5 = 0xD8,        /* absent on RTL-8139A */
134
    /* C+ mode */
135
    TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
136
    RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
137
    CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
138
    IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
139
    RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
140
    RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
141
    TxThresh    = 0xEC, /* Early Tx threshold */
142
};
143

    
144
enum ClearBitMasks {
145
    MultiIntrClear = 0xF000,
146
    ChipCmdClear = 0xE2,
147
    Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
148
};
149

    
150
enum ChipCmdBits {
151
    CmdReset = 0x10,
152
    CmdRxEnb = 0x08,
153
    CmdTxEnb = 0x04,
154
    RxBufEmpty = 0x01,
155
};
156

    
157
/* C+ mode */
158
enum CplusCmdBits {
159
    CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
160
    CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
161
    CPlusRxEnb    = 0x0002,
162
    CPlusTxEnb    = 0x0001,
163
};
164

    
165
/* Interrupt register bits, using my own meaningful names. */
166
enum IntrStatusBits {
167
    PCIErr = 0x8000,
168
    PCSTimeout = 0x4000,
169
    RxFIFOOver = 0x40,
170
    RxUnderrun = 0x20, /* Packet Underrun / Link Change */
171
    RxOverflow = 0x10,
172
    TxErr = 0x08,
173
    TxOK = 0x04,
174
    RxErr = 0x02,
175
    RxOK = 0x01,
176

    
177
    RxAckBits = RxFIFOOver | RxOverflow | RxOK,
178
};
179

    
180
enum TxStatusBits {
181
    TxHostOwns = 0x2000,
182
    TxUnderrun = 0x4000,
183
    TxStatOK = 0x8000,
184
    TxOutOfWindow = 0x20000000,
185
    TxAborted = 0x40000000,
186
    TxCarrierLost = 0x80000000,
187
};
188
enum RxStatusBits {
189
    RxMulticast = 0x8000,
190
    RxPhysical = 0x4000,
191
    RxBroadcast = 0x2000,
192
    RxBadSymbol = 0x0020,
193
    RxRunt = 0x0010,
194
    RxTooLong = 0x0008,
195
    RxCRCErr = 0x0004,
196
    RxBadAlign = 0x0002,
197
    RxStatusOK = 0x0001,
198
};
199

    
200
/* Bits in RxConfig. */
201
enum rx_mode_bits {
202
    AcceptErr = 0x20,
203
    AcceptRunt = 0x10,
204
    AcceptBroadcast = 0x08,
205
    AcceptMulticast = 0x04,
206
    AcceptMyPhys = 0x02,
207
    AcceptAllPhys = 0x01,
208
};
209

    
210
/* Bits in TxConfig. */
211
enum tx_config_bits {
212

    
213
        /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
214
        TxIFGShift = 24,
215
        TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
216
        TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
217
        TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
218
        TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
219

    
220
    TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
221
    TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
222
    TxClearAbt = (1 << 0),    /* Clear abort (WO) */
223
    TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
224
    TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
225

    
226
    TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
227
};
228

    
229

    
230
/* Transmit Status of All Descriptors (TSAD) Register */
231
enum TSAD_bits {
232
 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
233
 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
234
 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
235
 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
236
 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
237
 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
238
 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
239
 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
240
 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
241
 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
242
 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
243
 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
244
 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
245
 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
246
 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
247
 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
248
};
249

    
250

    
251
/* Bits in Config1 */
252
enum Config1Bits {
253
    Cfg1_PM_Enable = 0x01,
254
    Cfg1_VPD_Enable = 0x02,
255
    Cfg1_PIO = 0x04,
256
    Cfg1_MMIO = 0x08,
257
    LWAKE = 0x10,        /* not on 8139, 8139A */
258
    Cfg1_Driver_Load = 0x20,
259
    Cfg1_LED0 = 0x40,
260
    Cfg1_LED1 = 0x80,
261
    SLEEP = (1 << 1),    /* only on 8139, 8139A */
262
    PWRDN = (1 << 0),    /* only on 8139, 8139A */
263
};
264

    
265
/* Bits in Config3 */
266
enum Config3Bits {
267
    Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
268
    Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
269
    Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
270
    Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
271
    Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
272
    Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
273
    Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
274
    Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
275
};
276

    
277
/* Bits in Config4 */
278
enum Config4Bits {
279
    LWPTN = (1 << 2),    /* not on 8139, 8139A */
280
};
281

    
282
/* Bits in Config5 */
283
enum Config5Bits {
284
    Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
285
    Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
286
    Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
287
    Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
288
    Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
289
    Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
290
    Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
291
};
292

    
293
enum RxConfigBits {
294
    /* rx fifo threshold */
295
    RxCfgFIFOShift = 13,
296
    RxCfgFIFONone = (7 << RxCfgFIFOShift),
297

    
298
    /* Max DMA burst */
299
    RxCfgDMAShift = 8,
300
    RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
301

    
302
    /* rx ring buffer length */
303
    RxCfgRcv8K = 0,
304
    RxCfgRcv16K = (1 << 11),
305
    RxCfgRcv32K = (1 << 12),
306
    RxCfgRcv64K = (1 << 11) | (1 << 12),
307

    
308
    /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
309
    RxNoWrap = (1 << 7),
310
};
311

    
312
/* Twister tuning parameters from RealTek.
313
   Completely undocumented, but required to tune bad links on some boards. */
314
/*
315
enum CSCRBits {
316
    CSCR_LinkOKBit = 0x0400,
317
    CSCR_LinkChangeBit = 0x0800,
318
    CSCR_LinkStatusBits = 0x0f000,
319
    CSCR_LinkDownOffCmd = 0x003c0,
320
    CSCR_LinkDownCmd = 0x0f3c0,
321
*/
322
enum CSCRBits {
323
    CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
324
    CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
325
    CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
326
    CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
327
    CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
328
    CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
329
    CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
330
    CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
331
    CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
332
};
333

    
334
enum Cfg9346Bits {
335
    Cfg9346_Normal = 0x00,
336
    Cfg9346_Autoload = 0x40,
337
    Cfg9346_Programming = 0x80,
338
    Cfg9346_ConfigWrite = 0xC0,
339
};
340

    
341
typedef enum {
342
    CH_8139 = 0,
343
    CH_8139_K,
344
    CH_8139A,
345
    CH_8139A_G,
346
    CH_8139B,
347
    CH_8130,
348
    CH_8139C,
349
    CH_8100,
350
    CH_8100B_8139D,
351
    CH_8101,
352
} chip_t;
353

    
354
enum chip_flags {
355
    HasHltClk = (1 << 0),
356
    HasLWake = (1 << 1),
357
};
358

    
359
#define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
360
    (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
361
#define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
362

    
363
#define RTL8139_PCI_REVID_8139      0x10
364
#define RTL8139_PCI_REVID_8139CPLUS 0x20
365

    
366
#define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
367

    
368
/* Size is 64 * 16bit words */
369
#define EEPROM_9346_ADDR_BITS 6
370
#define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
371
#define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
372

    
373
enum Chip9346Operation
374
{
375
    Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
376
    Chip9346_op_read = 0x80,          /* 10 AAAAAA */
377
    Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
378
    Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
379
    Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
380
    Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
381
    Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
382
};
383

    
384
enum Chip9346Mode
385
{
386
    Chip9346_none = 0,
387
    Chip9346_enter_command_mode,
388
    Chip9346_read_command,
389
    Chip9346_data_read,      /* from output register */
390
    Chip9346_data_write,     /* to input register, then to contents at specified address */
391
    Chip9346_data_write_all, /* to input register, then filling contents */
392
};
393

    
394
typedef struct EEprom9346
395
{
396
    uint16_t contents[EEPROM_9346_SIZE];
397
    int      mode;
398
    uint32_t tick;
399
    uint8_t  address;
400
    uint16_t input;
401
    uint16_t output;
402

    
403
    uint8_t eecs;
404
    uint8_t eesk;
405
    uint8_t eedi;
406
    uint8_t eedo;
407
} EEprom9346;
408

    
409
typedef struct RTL8139TallyCounters
410
{
411
    /* Tally counters */
412
    uint64_t   TxOk;
413
    uint64_t   RxOk;
414
    uint64_t   TxERR;
415
    uint32_t   RxERR;
416
    uint16_t   MissPkt;
417
    uint16_t   FAE;
418
    uint32_t   Tx1Col;
419
    uint32_t   TxMCol;
420
    uint64_t   RxOkPhy;
421
    uint64_t   RxOkBrd;
422
    uint32_t   RxOkMul;
423
    uint16_t   TxAbt;
424
    uint16_t   TxUndrn;
425
} RTL8139TallyCounters;
426

    
427
/* Clears all tally counters */
428
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
429

    
430
typedef struct RTL8139State {
431
    PCIDevice dev;
432
    uint8_t phys[8]; /* mac address */
433
    uint8_t mult[8]; /* multicast mask array */
434

    
435
    uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
436
    uint32_t TxAddr[4];   /* TxAddr0 */
437
    uint32_t RxBuf;       /* Receive buffer */
438
    uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
439
    uint32_t RxBufPtr;
440
    uint32_t RxBufAddr;
441

    
442
    uint16_t IntrStatus;
443
    uint16_t IntrMask;
444

    
445
    uint32_t TxConfig;
446
    uint32_t RxConfig;
447
    uint32_t RxMissed;
448

    
449
    uint16_t CSCR;
450

    
451
    uint8_t  Cfg9346;
452
    uint8_t  Config0;
453
    uint8_t  Config1;
454
    uint8_t  Config3;
455
    uint8_t  Config4;
456
    uint8_t  Config5;
457

    
458
    uint8_t  clock_enabled;
459
    uint8_t  bChipCmdState;
460

    
461
    uint16_t MultiIntr;
462

    
463
    uint16_t BasicModeCtrl;
464
    uint16_t BasicModeStatus;
465
    uint16_t NWayAdvert;
466
    uint16_t NWayLPAR;
467
    uint16_t NWayExpansion;
468

    
469
    uint16_t CpCmd;
470
    uint8_t  TxThresh;
471

    
472
    NICState *nic;
473
    NICConf conf;
474

    
475
    /* C ring mode */
476
    uint32_t   currTxDesc;
477

    
478
    /* C+ mode */
479
    uint32_t   cplus_enabled;
480

    
481
    uint32_t   currCPlusRxDesc;
482
    uint32_t   currCPlusTxDesc;
483

    
484
    uint32_t   RxRingAddrLO;
485
    uint32_t   RxRingAddrHI;
486

    
487
    EEprom9346 eeprom;
488

    
489
    uint32_t   TCTR;
490
    uint32_t   TimerInt;
491
    int64_t    TCTR_base;
492

    
493
    /* Tally counters */
494
    RTL8139TallyCounters tally_counters;
495

    
496
    /* Non-persistent data */
497
    uint8_t   *cplus_txbuffer;
498
    int        cplus_txbuffer_len;
499
    int        cplus_txbuffer_offset;
500

    
501
    /* PCI interrupt timer */
502
    QEMUTimer *timer;
503
    int64_t TimerExpire;
504

    
505
    MemoryRegion bar_io;
506
    MemoryRegion bar_mem;
507

    
508
    /* Support migration to/from old versions */
509
    int rtl8139_mmio_io_addr_dummy;
510
} RTL8139State;
511

    
512
/* Writes tally counters to memory via DMA */
513
static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
514

    
515
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
516

    
517
static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
518
{
519
    DPRINTF("eeprom command 0x%02x\n", command);
520

    
521
    switch (command & Chip9346_op_mask)
522
    {
523
        case Chip9346_op_read:
524
        {
525
            eeprom->address = command & EEPROM_9346_ADDR_MASK;
526
            eeprom->output = eeprom->contents[eeprom->address];
527
            eeprom->eedo = 0;
528
            eeprom->tick = 0;
529
            eeprom->mode = Chip9346_data_read;
530
            DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
531
                eeprom->address, eeprom->output);
532
        }
533
        break;
534

    
535
        case Chip9346_op_write:
536
        {
537
            eeprom->address = command & EEPROM_9346_ADDR_MASK;
538
            eeprom->input = 0;
539
            eeprom->tick = 0;
540
            eeprom->mode = Chip9346_none; /* Chip9346_data_write */
541
            DPRINTF("eeprom begin write to address 0x%02x\n",
542
                eeprom->address);
543
        }
544
        break;
545
        default:
546
            eeprom->mode = Chip9346_none;
547
            switch (command & Chip9346_op_ext_mask)
548
            {
549
                case Chip9346_op_write_enable:
550
                    DPRINTF("eeprom write enabled\n");
551
                    break;
552
                case Chip9346_op_write_all:
553
                    DPRINTF("eeprom begin write all\n");
554
                    break;
555
                case Chip9346_op_write_disable:
556
                    DPRINTF("eeprom write disabled\n");
557
                    break;
558
            }
559
            break;
560
    }
561
}
562

    
563
static void prom9346_shift_clock(EEprom9346 *eeprom)
564
{
565
    int bit = eeprom->eedi?1:0;
566

    
567
    ++ eeprom->tick;
568

    
569
    DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
570
        eeprom->eedo);
571

    
572
    switch (eeprom->mode)
573
    {
574
        case Chip9346_enter_command_mode:
575
            if (bit)
576
            {
577
                eeprom->mode = Chip9346_read_command;
578
                eeprom->tick = 0;
579
                eeprom->input = 0;
580
                DPRINTF("eeprom: +++ synchronized, begin command read\n");
581
            }
582
            break;
583

    
584
        case Chip9346_read_command:
585
            eeprom->input = (eeprom->input << 1) | (bit & 1);
586
            if (eeprom->tick == 8)
587
            {
588
                prom9346_decode_command(eeprom, eeprom->input & 0xff);
589
            }
590
            break;
591

    
592
        case Chip9346_data_read:
593
            eeprom->eedo = (eeprom->output & 0x8000)?1:0;
594
            eeprom->output <<= 1;
595
            if (eeprom->tick == 16)
596
            {
597
#if 1
598
        // the FreeBSD drivers (rl and re) don't explicitly toggle
599
        // CS between reads (or does setting Cfg9346 to 0 count too?),
600
        // so we need to enter wait-for-command state here
601
                eeprom->mode = Chip9346_enter_command_mode;
602
                eeprom->input = 0;
603
                eeprom->tick = 0;
604

    
605
                DPRINTF("eeprom: +++ end of read, awaiting next command\n");
606
#else
607
        // original behaviour
608
                ++eeprom->address;
609
                eeprom->address &= EEPROM_9346_ADDR_MASK;
610
                eeprom->output = eeprom->contents[eeprom->address];
611
                eeprom->tick = 0;
612

    
613
                DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
614
                    eeprom->address, eeprom->output);
615
#endif
616
            }
617
            break;
618

    
619
        case Chip9346_data_write:
620
            eeprom->input = (eeprom->input << 1) | (bit & 1);
621
            if (eeprom->tick == 16)
622
            {
623
                DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
624
                    eeprom->address, eeprom->input);
625

    
626
                eeprom->contents[eeprom->address] = eeprom->input;
627
                eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
628
                eeprom->tick = 0;
629
                eeprom->input = 0;
630
            }
631
            break;
632

    
633
        case Chip9346_data_write_all:
634
            eeprom->input = (eeprom->input << 1) | (bit & 1);
635
            if (eeprom->tick == 16)
636
            {
637
                int i;
638
                for (i = 0; i < EEPROM_9346_SIZE; i++)
639
                {
640
                    eeprom->contents[i] = eeprom->input;
641
                }
642
                DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
643

    
644
                eeprom->mode = Chip9346_enter_command_mode;
645
                eeprom->tick = 0;
646
                eeprom->input = 0;
647
            }
648
            break;
649

    
650
        default:
651
            break;
652
    }
653
}
654

    
655
static int prom9346_get_wire(RTL8139State *s)
656
{
657
    EEprom9346 *eeprom = &s->eeprom;
658
    if (!eeprom->eecs)
659
        return 0;
660

    
661
    return eeprom->eedo;
662
}
663

    
664
/* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
665
static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
666
{
667
    EEprom9346 *eeprom = &s->eeprom;
668
    uint8_t old_eecs = eeprom->eecs;
669
    uint8_t old_eesk = eeprom->eesk;
670

    
671
    eeprom->eecs = eecs;
672
    eeprom->eesk = eesk;
673
    eeprom->eedi = eedi;
674

    
675
    DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
676
        eeprom->eesk, eeprom->eedi, eeprom->eedo);
677

    
678
    if (!old_eecs && eecs)
679
    {
680
        /* Synchronize start */
681
        eeprom->tick = 0;
682
        eeprom->input = 0;
683
        eeprom->output = 0;
684
        eeprom->mode = Chip9346_enter_command_mode;
685

    
686
        DPRINTF("=== eeprom: begin access, enter command mode\n");
687
    }
688

    
689
    if (!eecs)
690
    {
691
        DPRINTF("=== eeprom: end access\n");
692
        return;
693
    }
694

    
695
    if (!old_eesk && eesk)
696
    {
697
        /* SK front rules */
698
        prom9346_shift_clock(eeprom);
699
    }
700
}
701

    
702
static void rtl8139_update_irq(RTL8139State *s)
703
{
704
    int isr;
705
    isr = (s->IntrStatus & s->IntrMask) & 0xffff;
706

    
707
    DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
708
        s->IntrMask);
709

    
710
    qemu_set_irq(s->dev.irq[0], (isr != 0));
711
}
712

    
713
static int rtl8139_RxWrap(RTL8139State *s)
714
{
715
    /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
716
    return (s->RxConfig & (1 << 7));
717
}
718

    
719
static int rtl8139_receiver_enabled(RTL8139State *s)
720
{
721
    return s->bChipCmdState & CmdRxEnb;
722
}
723

    
724
static int rtl8139_transmitter_enabled(RTL8139State *s)
725
{
726
    return s->bChipCmdState & CmdTxEnb;
727
}
728

    
729
static int rtl8139_cp_receiver_enabled(RTL8139State *s)
730
{
731
    return s->CpCmd & CPlusRxEnb;
732
}
733

    
734
static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
735
{
736
    return s->CpCmd & CPlusTxEnb;
737
}
738

    
739
static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
740
{
741
    if (s->RxBufAddr + size > s->RxBufferSize)
742
    {
743
        int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
744

    
745
        /* write packet data */
746
        if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
747
        {
748
            DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
749

    
750
            if (size > wrapped)
751
            {
752
                pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
753
                              buf, size-wrapped);
754
            }
755

    
756
            /* reset buffer pointer */
757
            s->RxBufAddr = 0;
758

    
759
            pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
760
                          buf + (size-wrapped), wrapped);
761

    
762
            s->RxBufAddr = wrapped;
763

    
764
            return;
765
        }
766
    }
767

    
768
    /* non-wrapping path or overwrapping enabled */
769
    pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr, buf, size);
770

    
771
    s->RxBufAddr += size;
772
}
773

    
774
#define MIN_BUF_SIZE 60
775
static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
776
{
777
    return low | ((uint64_t)high << 32);
778
}
779

    
780
/* Workaround for buggy guest driver such as linux who allocates rx
781
 * rings after the receiver were enabled. */
782
static bool rtl8139_cp_rx_valid(RTL8139State *s)
783
{
784
    return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
785
}
786

    
787
static int rtl8139_can_receive(NetClientState *nc)
788
{
789
    RTL8139State *s = qemu_get_nic_opaque(nc);
790
    int avail;
791

    
792
    /* Receive (drop) packets if card is disabled.  */
793
    if (!s->clock_enabled)
794
      return 1;
795
    if (!rtl8139_receiver_enabled(s))
796
      return 1;
797

    
798
    if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
799
        /* ??? Flow control not implemented in c+ mode.
800
           This is a hack to work around slirp deficiencies anyway.  */
801
        return 1;
802
    } else {
803
        avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
804
                     s->RxBufferSize);
805
        return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
806
    }
807
}
808

    
809
static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
810
{
811
    RTL8139State *s = qemu_get_nic_opaque(nc);
812
    /* size is the length of the buffer passed to the driver */
813
    int size = size_;
814
    const uint8_t *dot1q_buf = NULL;
815

    
816
    uint32_t packet_header = 0;
817

    
818
    uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
819
    static const uint8_t broadcast_macaddr[6] =
820
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
821

    
822
    DPRINTF(">>> received len=%d\n", size);
823

    
824
    /* test if board clock is stopped */
825
    if (!s->clock_enabled)
826
    {
827
        DPRINTF("stopped ==========================\n");
828
        return -1;
829
    }
830

    
831
    /* first check if receiver is enabled */
832

    
833
    if (!rtl8139_receiver_enabled(s))
834
    {
835
        DPRINTF("receiver disabled ================\n");
836
        return -1;
837
    }
838

    
839
    /* XXX: check this */
840
    if (s->RxConfig & AcceptAllPhys) {
841
        /* promiscuous: receive all */
842
        DPRINTF(">>> packet received in promiscuous mode\n");
843

    
844
    } else {
845
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
846
            /* broadcast address */
847
            if (!(s->RxConfig & AcceptBroadcast))
848
            {
849
                DPRINTF(">>> broadcast packet rejected\n");
850

    
851
                /* update tally counter */
852
                ++s->tally_counters.RxERR;
853

    
854
                return size;
855
            }
856

    
857
            packet_header |= RxBroadcast;
858

    
859
            DPRINTF(">>> broadcast packet received\n");
860

    
861
            /* update tally counter */
862
            ++s->tally_counters.RxOkBrd;
863

    
864
        } else if (buf[0] & 0x01) {
865
            /* multicast */
866
            if (!(s->RxConfig & AcceptMulticast))
867
            {
868
                DPRINTF(">>> multicast packet rejected\n");
869

    
870
                /* update tally counter */
871
                ++s->tally_counters.RxERR;
872

    
873
                return size;
874
            }
875

    
876
            int mcast_idx = compute_mcast_idx(buf);
877

    
878
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
879
            {
880
                DPRINTF(">>> multicast address mismatch\n");
881

    
882
                /* update tally counter */
883
                ++s->tally_counters.RxERR;
884

    
885
                return size;
886
            }
887

    
888
            packet_header |= RxMulticast;
889

    
890
            DPRINTF(">>> multicast packet received\n");
891

    
892
            /* update tally counter */
893
            ++s->tally_counters.RxOkMul;
894

    
895
        } else if (s->phys[0] == buf[0] &&
896
                   s->phys[1] == buf[1] &&
897
                   s->phys[2] == buf[2] &&
898
                   s->phys[3] == buf[3] &&
899
                   s->phys[4] == buf[4] &&
900
                   s->phys[5] == buf[5]) {
901
            /* match */
902
            if (!(s->RxConfig & AcceptMyPhys))
903
            {
904
                DPRINTF(">>> rejecting physical address matching packet\n");
905

    
906
                /* update tally counter */
907
                ++s->tally_counters.RxERR;
908

    
909
                return size;
910
            }
911

    
912
            packet_header |= RxPhysical;
913

    
914
            DPRINTF(">>> physical address matching packet received\n");
915

    
916
            /* update tally counter */
917
            ++s->tally_counters.RxOkPhy;
918

    
919
        } else {
920

    
921
            DPRINTF(">>> unknown packet\n");
922

    
923
            /* update tally counter */
924
            ++s->tally_counters.RxERR;
925

    
926
            return size;
927
        }
928
    }
929

    
930
    /* if too small buffer, then expand it
931
     * Include some tailroom in case a vlan tag is later removed. */
932
    if (size < MIN_BUF_SIZE + VLAN_HLEN) {
933
        memcpy(buf1, buf, size);
934
        memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
935
        buf = buf1;
936
        if (size < MIN_BUF_SIZE) {
937
            size = MIN_BUF_SIZE;
938
        }
939
    }
940

    
941
    if (rtl8139_cp_receiver_enabled(s))
942
    {
943
        if (!rtl8139_cp_rx_valid(s)) {
944
            return size;
945
        }
946

    
947
        DPRINTF("in C+ Rx mode ================\n");
948

    
949
        /* begin C+ receiver mode */
950

    
951
/* w0 ownership flag */
952
#define CP_RX_OWN (1<<31)
953
/* w0 end of ring flag */
954
#define CP_RX_EOR (1<<30)
955
/* w0 bits 0...12 : buffer size */
956
#define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
957
/* w1 tag available flag */
958
#define CP_RX_TAVA (1<<16)
959
/* w1 bits 0...15 : VLAN tag */
960
#define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
961
/* w2 low  32bit of Rx buffer ptr */
962
/* w3 high 32bit of Rx buffer ptr */
963

    
964
        int descriptor = s->currCPlusRxDesc;
965
        dma_addr_t cplus_rx_ring_desc;
966

    
967
        cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
968
        cplus_rx_ring_desc += 16 * descriptor;
969

    
970
        DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
971
            "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
972
            s->RxRingAddrLO, cplus_rx_ring_desc);
973

    
974
        uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
975

    
976
        pci_dma_read(&s->dev, cplus_rx_ring_desc, &val, 4);
977
        rxdw0 = le32_to_cpu(val);
978
        pci_dma_read(&s->dev, cplus_rx_ring_desc+4, &val, 4);
979
        rxdw1 = le32_to_cpu(val);
980
        pci_dma_read(&s->dev, cplus_rx_ring_desc+8, &val, 4);
981
        rxbufLO = le32_to_cpu(val);
982
        pci_dma_read(&s->dev, cplus_rx_ring_desc+12, &val, 4);
983
        rxbufHI = le32_to_cpu(val);
984

    
985
        DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
986
            descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
987

    
988
        if (!(rxdw0 & CP_RX_OWN))
989
        {
990
            DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
991
                descriptor);
992

    
993
            s->IntrStatus |= RxOverflow;
994
            ++s->RxMissed;
995

    
996
            /* update tally counter */
997
            ++s->tally_counters.RxERR;
998
            ++s->tally_counters.MissPkt;
999

    
1000
            rtl8139_update_irq(s);
1001
            return size_;
1002
        }
1003

    
1004
        uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1005

    
1006
        /* write VLAN info to descriptor variables. */
1007
        if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1008
                &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1009
            dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1010
            size -= VLAN_HLEN;
1011
            /* if too small buffer, use the tailroom added duing expansion */
1012
            if (size < MIN_BUF_SIZE) {
1013
                size = MIN_BUF_SIZE;
1014
            }
1015

    
1016
            rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1017
            /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1018
            rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1019
                &dot1q_buf[ETHER_TYPE_LEN]);
1020

    
1021
            DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1022
                be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1023
        } else {
1024
            /* reset VLAN tag flag */
1025
            rxdw1 &= ~CP_RX_TAVA;
1026
        }
1027

    
1028
        /* TODO: scatter the packet over available receive ring descriptors space */
1029

    
1030
        if (size+4 > rx_space)
1031
        {
1032
            DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1033
                descriptor, rx_space, size);
1034

    
1035
            s->IntrStatus |= RxOverflow;
1036
            ++s->RxMissed;
1037

    
1038
            /* update tally counter */
1039
            ++s->tally_counters.RxERR;
1040
            ++s->tally_counters.MissPkt;
1041

    
1042
            rtl8139_update_irq(s);
1043
            return size_;
1044
        }
1045

    
1046
        dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1047

    
1048
        /* receive/copy to target memory */
1049
        if (dot1q_buf) {
1050
            pci_dma_write(&s->dev, rx_addr, buf, 2 * ETHER_ADDR_LEN);
1051
            pci_dma_write(&s->dev, rx_addr + 2 * ETHER_ADDR_LEN,
1052
                          buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1053
                          size - 2 * ETHER_ADDR_LEN);
1054
        } else {
1055
            pci_dma_write(&s->dev, rx_addr, buf, size);
1056
        }
1057

    
1058
        if (s->CpCmd & CPlusRxChkSum)
1059
        {
1060
            /* do some packet checksumming */
1061
        }
1062

    
1063
        /* write checksum */
1064
        val = cpu_to_le32(crc32(0, buf, size_));
1065
        pci_dma_write(&s->dev, rx_addr+size, (uint8_t *)&val, 4);
1066

    
1067
/* first segment of received packet flag */
1068
#define CP_RX_STATUS_FS (1<<29)
1069
/* last segment of received packet flag */
1070
#define CP_RX_STATUS_LS (1<<28)
1071
/* multicast packet flag */
1072
#define CP_RX_STATUS_MAR (1<<26)
1073
/* physical-matching packet flag */
1074
#define CP_RX_STATUS_PAM (1<<25)
1075
/* broadcast packet flag */
1076
#define CP_RX_STATUS_BAR (1<<24)
1077
/* runt packet flag */
1078
#define CP_RX_STATUS_RUNT (1<<19)
1079
/* crc error flag */
1080
#define CP_RX_STATUS_CRC (1<<18)
1081
/* IP checksum error flag */
1082
#define CP_RX_STATUS_IPF (1<<15)
1083
/* UDP checksum error flag */
1084
#define CP_RX_STATUS_UDPF (1<<14)
1085
/* TCP checksum error flag */
1086
#define CP_RX_STATUS_TCPF (1<<13)
1087

    
1088
        /* transfer ownership to target */
1089
        rxdw0 &= ~CP_RX_OWN;
1090

    
1091
        /* set first segment bit */
1092
        rxdw0 |= CP_RX_STATUS_FS;
1093

    
1094
        /* set last segment bit */
1095
        rxdw0 |= CP_RX_STATUS_LS;
1096

    
1097
        /* set received packet type flags */
1098
        if (packet_header & RxBroadcast)
1099
            rxdw0 |= CP_RX_STATUS_BAR;
1100
        if (packet_header & RxMulticast)
1101
            rxdw0 |= CP_RX_STATUS_MAR;
1102
        if (packet_header & RxPhysical)
1103
            rxdw0 |= CP_RX_STATUS_PAM;
1104

    
1105
        /* set received size */
1106
        rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1107
        rxdw0 |= (size+4);
1108

    
1109
        /* update ring data */
1110
        val = cpu_to_le32(rxdw0);
1111
        pci_dma_write(&s->dev, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1112
        val = cpu_to_le32(rxdw1);
1113
        pci_dma_write(&s->dev, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1114

    
1115
        /* update tally counter */
1116
        ++s->tally_counters.RxOk;
1117

    
1118
        /* seek to next Rx descriptor */
1119
        if (rxdw0 & CP_RX_EOR)
1120
        {
1121
            s->currCPlusRxDesc = 0;
1122
        }
1123
        else
1124
        {
1125
            ++s->currCPlusRxDesc;
1126
        }
1127

    
1128
        DPRINTF("done C+ Rx mode ----------------\n");
1129

    
1130
    }
1131
    else
1132
    {
1133
        DPRINTF("in ring Rx mode ================\n");
1134

    
1135
        /* begin ring receiver mode */
1136
        int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1137

    
1138
        /* if receiver buffer is empty then avail == 0 */
1139

    
1140
        if (avail != 0 && size + 8 >= avail)
1141
        {
1142
            DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1143
                "read 0x%04x === available 0x%04x need 0x%04x\n",
1144
                s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1145

    
1146
            s->IntrStatus |= RxOverflow;
1147
            ++s->RxMissed;
1148
            rtl8139_update_irq(s);
1149
            return size_;
1150
        }
1151

    
1152
        packet_header |= RxStatusOK;
1153

    
1154
        packet_header |= (((size+4) << 16) & 0xffff0000);
1155

    
1156
        /* write header */
1157
        uint32_t val = cpu_to_le32(packet_header);
1158

    
1159
        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1160

    
1161
        rtl8139_write_buffer(s, buf, size);
1162

    
1163
        /* write checksum */
1164
        val = cpu_to_le32(crc32(0, buf, size));
1165
        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1166

    
1167
        /* correct buffer write pointer */
1168
        s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1169

    
1170
        /* now we can signal we have received something */
1171

    
1172
        DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1173
            s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1174
    }
1175

    
1176
    s->IntrStatus |= RxOK;
1177

    
1178
    if (do_interrupt)
1179
    {
1180
        rtl8139_update_irq(s);
1181
    }
1182

    
1183
    return size_;
1184
}
1185

    
1186
static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1187
{
1188
    return rtl8139_do_receive(nc, buf, size, 1);
1189
}
1190

    
1191
static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1192
{
1193
    s->RxBufferSize = bufferSize;
1194
    s->RxBufPtr  = 0;
1195
    s->RxBufAddr = 0;
1196
}
1197

    
1198
static void rtl8139_reset(DeviceState *d)
1199
{
1200
    RTL8139State *s = container_of(d, RTL8139State, dev.qdev);
1201
    int i;
1202

    
1203
    /* restore MAC address */
1204
    memcpy(s->phys, s->conf.macaddr.a, 6);
1205

    
1206
    /* reset interrupt mask */
1207
    s->IntrStatus = 0;
1208
    s->IntrMask = 0;
1209

    
1210
    rtl8139_update_irq(s);
1211

    
1212
    /* mark all status registers as owned by host */
1213
    for (i = 0; i < 4; ++i)
1214
    {
1215
        s->TxStatus[i] = TxHostOwns;
1216
    }
1217

    
1218
    s->currTxDesc = 0;
1219
    s->currCPlusRxDesc = 0;
1220
    s->currCPlusTxDesc = 0;
1221

    
1222
    s->RxRingAddrLO = 0;
1223
    s->RxRingAddrHI = 0;
1224

    
1225
    s->RxBuf = 0;
1226

    
1227
    rtl8139_reset_rxring(s, 8192);
1228

    
1229
    /* ACK the reset */
1230
    s->TxConfig = 0;
1231

    
1232
#if 0
1233
//    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1234
    s->clock_enabled = 0;
1235
#else
1236
    s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1237
    s->clock_enabled = 1;
1238
#endif
1239

    
1240
    s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1241

    
1242
    /* set initial state data */
1243
    s->Config0 = 0x0; /* No boot ROM */
1244
    s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1245
    s->Config3 = 0x1; /* fast back-to-back compatible */
1246
    s->Config5 = 0x0;
1247

    
1248
    s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1249

    
1250
    s->CpCmd   = 0x0; /* reset C+ mode */
1251
    s->cplus_enabled = 0;
1252

    
1253

    
1254
//    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1255
//    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1256
    s->BasicModeCtrl = 0x1000; // autonegotiation
1257

    
1258
    s->BasicModeStatus  = 0x7809;
1259
    //s->BasicModeStatus |= 0x0040; /* UTP medium */
1260
    s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1261
    /* preserve link state */
1262
    s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1263

    
1264
    s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1265
    s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1266
    s->NWayExpansion = 0x0001; /* autonegotiation supported */
1267

    
1268
    /* also reset timer and disable timer interrupt */
1269
    s->TCTR = 0;
1270
    s->TimerInt = 0;
1271
    s->TCTR_base = 0;
1272

    
1273
    /* reset tally counters */
1274
    RTL8139TallyCounters_clear(&s->tally_counters);
1275
}
1276

    
1277
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1278
{
1279
    counters->TxOk = 0;
1280
    counters->RxOk = 0;
1281
    counters->TxERR = 0;
1282
    counters->RxERR = 0;
1283
    counters->MissPkt = 0;
1284
    counters->FAE = 0;
1285
    counters->Tx1Col = 0;
1286
    counters->TxMCol = 0;
1287
    counters->RxOkPhy = 0;
1288
    counters->RxOkBrd = 0;
1289
    counters->RxOkMul = 0;
1290
    counters->TxAbt = 0;
1291
    counters->TxUndrn = 0;
1292
}
1293

    
1294
static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1295
{
1296
    RTL8139TallyCounters *tally_counters = &s->tally_counters;
1297
    uint16_t val16;
1298
    uint32_t val32;
1299
    uint64_t val64;
1300

    
1301
    val64 = cpu_to_le64(tally_counters->TxOk);
1302
    pci_dma_write(&s->dev, tc_addr + 0,     (uint8_t *)&val64, 8);
1303

    
1304
    val64 = cpu_to_le64(tally_counters->RxOk);
1305
    pci_dma_write(&s->dev, tc_addr + 8,     (uint8_t *)&val64, 8);
1306

    
1307
    val64 = cpu_to_le64(tally_counters->TxERR);
1308
    pci_dma_write(&s->dev, tc_addr + 16,    (uint8_t *)&val64, 8);
1309

    
1310
    val32 = cpu_to_le32(tally_counters->RxERR);
1311
    pci_dma_write(&s->dev, tc_addr + 24,    (uint8_t *)&val32, 4);
1312

    
1313
    val16 = cpu_to_le16(tally_counters->MissPkt);
1314
    pci_dma_write(&s->dev, tc_addr + 28,    (uint8_t *)&val16, 2);
1315

    
1316
    val16 = cpu_to_le16(tally_counters->FAE);
1317
    pci_dma_write(&s->dev, tc_addr + 30,    (uint8_t *)&val16, 2);
1318

    
1319
    val32 = cpu_to_le32(tally_counters->Tx1Col);
1320
    pci_dma_write(&s->dev, tc_addr + 32,    (uint8_t *)&val32, 4);
1321

    
1322
    val32 = cpu_to_le32(tally_counters->TxMCol);
1323
    pci_dma_write(&s->dev, tc_addr + 36,    (uint8_t *)&val32, 4);
1324

    
1325
    val64 = cpu_to_le64(tally_counters->RxOkPhy);
1326
    pci_dma_write(&s->dev, tc_addr + 40,    (uint8_t *)&val64, 8);
1327

    
1328
    val64 = cpu_to_le64(tally_counters->RxOkBrd);
1329
    pci_dma_write(&s->dev, tc_addr + 48,    (uint8_t *)&val64, 8);
1330

    
1331
    val32 = cpu_to_le32(tally_counters->RxOkMul);
1332
    pci_dma_write(&s->dev, tc_addr + 56,    (uint8_t *)&val32, 4);
1333

    
1334
    val16 = cpu_to_le16(tally_counters->TxAbt);
1335
    pci_dma_write(&s->dev, tc_addr + 60,    (uint8_t *)&val16, 2);
1336

    
1337
    val16 = cpu_to_le16(tally_counters->TxUndrn);
1338
    pci_dma_write(&s->dev, tc_addr + 62,    (uint8_t *)&val16, 2);
1339
}
1340

    
1341
/* Loads values of tally counters from VM state file */
1342

    
1343
static const VMStateDescription vmstate_tally_counters = {
1344
    .name = "tally_counters",
1345
    .version_id = 1,
1346
    .minimum_version_id = 1,
1347
    .minimum_version_id_old = 1,
1348
    .fields      = (VMStateField []) {
1349
        VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1350
        VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1351
        VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1352
        VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1353
        VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1354
        VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1355
        VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1356
        VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1357
        VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1358
        VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1359
        VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1360
        VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1361
        VMSTATE_END_OF_LIST()
1362
    }
1363
};
1364

    
1365
static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1366
{
1367
    val &= 0xff;
1368

    
1369
    DPRINTF("ChipCmd write val=0x%08x\n", val);
1370

    
1371
    if (val & CmdReset)
1372
    {
1373
        DPRINTF("ChipCmd reset\n");
1374
        rtl8139_reset(&s->dev.qdev);
1375
    }
1376
    if (val & CmdRxEnb)
1377
    {
1378
        DPRINTF("ChipCmd enable receiver\n");
1379

    
1380
        s->currCPlusRxDesc = 0;
1381
    }
1382
    if (val & CmdTxEnb)
1383
    {
1384
        DPRINTF("ChipCmd enable transmitter\n");
1385

    
1386
        s->currCPlusTxDesc = 0;
1387
    }
1388

    
1389
    /* mask unwritable bits */
1390
    val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1391

    
1392
    /* Deassert reset pin before next read */
1393
    val &= ~CmdReset;
1394

    
1395
    s->bChipCmdState = val;
1396
}
1397

    
1398
static int rtl8139_RxBufferEmpty(RTL8139State *s)
1399
{
1400
    int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1401

    
1402
    if (unread != 0)
1403
    {
1404
        DPRINTF("receiver buffer data available 0x%04x\n", unread);
1405
        return 0;
1406
    }
1407

    
1408
    DPRINTF("receiver buffer is empty\n");
1409

    
1410
    return 1;
1411
}
1412

    
1413
static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1414
{
1415
    uint32_t ret = s->bChipCmdState;
1416

    
1417
    if (rtl8139_RxBufferEmpty(s))
1418
        ret |= RxBufEmpty;
1419

    
1420
    DPRINTF("ChipCmd read val=0x%04x\n", ret);
1421

    
1422
    return ret;
1423
}
1424

    
1425
static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1426
{
1427
    val &= 0xffff;
1428

    
1429
    DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1430

    
1431
    s->cplus_enabled = 1;
1432

    
1433
    /* mask unwritable bits */
1434
    val = SET_MASKED(val, 0xff84, s->CpCmd);
1435

    
1436
    s->CpCmd = val;
1437
}
1438

    
1439
static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1440
{
1441
    uint32_t ret = s->CpCmd;
1442

    
1443
    DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1444

    
1445
    return ret;
1446
}
1447

    
1448
static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1449
{
1450
    DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1451
}
1452

    
1453
static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1454
{
1455
    uint32_t ret = 0;
1456

    
1457
    DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1458

    
1459
    return ret;
1460
}
1461

    
1462
static int rtl8139_config_writable(RTL8139State *s)
1463
{
1464
    if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1465
    {
1466
        return 1;
1467
    }
1468

    
1469
    DPRINTF("Configuration registers are write-protected\n");
1470

    
1471
    return 0;
1472
}
1473

    
1474
static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1475
{
1476
    val &= 0xffff;
1477

    
1478
    DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1479

    
1480
    /* mask unwritable bits */
1481
    uint32_t mask = 0x4cff;
1482

    
1483
    if (1 || !rtl8139_config_writable(s))
1484
    {
1485
        /* Speed setting and autonegotiation enable bits are read-only */
1486
        mask |= 0x3000;
1487
        /* Duplex mode setting is read-only */
1488
        mask |= 0x0100;
1489
    }
1490

    
1491
    val = SET_MASKED(val, mask, s->BasicModeCtrl);
1492

    
1493
    s->BasicModeCtrl = val;
1494
}
1495

    
1496
static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1497
{
1498
    uint32_t ret = s->BasicModeCtrl;
1499

    
1500
    DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1501

    
1502
    return ret;
1503
}
1504

    
1505
static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1506
{
1507
    val &= 0xffff;
1508

    
1509
    DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1510

    
1511
    /* mask unwritable bits */
1512
    val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1513

    
1514
    s->BasicModeStatus = val;
1515
}
1516

    
1517
static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1518
{
1519
    uint32_t ret = s->BasicModeStatus;
1520

    
1521
    DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1522

    
1523
    return ret;
1524
}
1525

    
1526
static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1527
{
1528
    val &= 0xff;
1529

    
1530
    DPRINTF("Cfg9346 write val=0x%02x\n", val);
1531

    
1532
    /* mask unwritable bits */
1533
    val = SET_MASKED(val, 0x31, s->Cfg9346);
1534

    
1535
    uint32_t opmode = val & 0xc0;
1536
    uint32_t eeprom_val = val & 0xf;
1537

    
1538
    if (opmode == 0x80) {
1539
        /* eeprom access */
1540
        int eecs = (eeprom_val & 0x08)?1:0;
1541
        int eesk = (eeprom_val & 0x04)?1:0;
1542
        int eedi = (eeprom_val & 0x02)?1:0;
1543
        prom9346_set_wire(s, eecs, eesk, eedi);
1544
    } else if (opmode == 0x40) {
1545
        /* Reset.  */
1546
        val = 0;
1547
        rtl8139_reset(&s->dev.qdev);
1548
    }
1549

    
1550
    s->Cfg9346 = val;
1551
}
1552

    
1553
static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1554
{
1555
    uint32_t ret = s->Cfg9346;
1556

    
1557
    uint32_t opmode = ret & 0xc0;
1558

    
1559
    if (opmode == 0x80)
1560
    {
1561
        /* eeprom access */
1562
        int eedo = prom9346_get_wire(s);
1563
        if (eedo)
1564
        {
1565
            ret |=  0x01;
1566
        }
1567
        else
1568
        {
1569
            ret &= ~0x01;
1570
        }
1571
    }
1572

    
1573
    DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1574

    
1575
    return ret;
1576
}
1577

    
1578
static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1579
{
1580
    val &= 0xff;
1581

    
1582
    DPRINTF("Config0 write val=0x%02x\n", val);
1583

    
1584
    if (!rtl8139_config_writable(s)) {
1585
        return;
1586
    }
1587

    
1588
    /* mask unwritable bits */
1589
    val = SET_MASKED(val, 0xf8, s->Config0);
1590

    
1591
    s->Config0 = val;
1592
}
1593

    
1594
static uint32_t rtl8139_Config0_read(RTL8139State *s)
1595
{
1596
    uint32_t ret = s->Config0;
1597

    
1598
    DPRINTF("Config0 read val=0x%02x\n", ret);
1599

    
1600
    return ret;
1601
}
1602

    
1603
static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1604
{
1605
    val &= 0xff;
1606

    
1607
    DPRINTF("Config1 write val=0x%02x\n", val);
1608

    
1609
    if (!rtl8139_config_writable(s)) {
1610
        return;
1611
    }
1612

    
1613
    /* mask unwritable bits */
1614
    val = SET_MASKED(val, 0xC, s->Config1);
1615

    
1616
    s->Config1 = val;
1617
}
1618

    
1619
static uint32_t rtl8139_Config1_read(RTL8139State *s)
1620
{
1621
    uint32_t ret = s->Config1;
1622

    
1623
    DPRINTF("Config1 read val=0x%02x\n", ret);
1624

    
1625
    return ret;
1626
}
1627

    
1628
static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1629
{
1630
    val &= 0xff;
1631

    
1632
    DPRINTF("Config3 write val=0x%02x\n", val);
1633

    
1634
    if (!rtl8139_config_writable(s)) {
1635
        return;
1636
    }
1637

    
1638
    /* mask unwritable bits */
1639
    val = SET_MASKED(val, 0x8F, s->Config3);
1640

    
1641
    s->Config3 = val;
1642
}
1643

    
1644
static uint32_t rtl8139_Config3_read(RTL8139State *s)
1645
{
1646
    uint32_t ret = s->Config3;
1647

    
1648
    DPRINTF("Config3 read val=0x%02x\n", ret);
1649

    
1650
    return ret;
1651
}
1652

    
1653
static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1654
{
1655
    val &= 0xff;
1656

    
1657
    DPRINTF("Config4 write val=0x%02x\n", val);
1658

    
1659
    if (!rtl8139_config_writable(s)) {
1660
        return;
1661
    }
1662

    
1663
    /* mask unwritable bits */
1664
    val = SET_MASKED(val, 0x0a, s->Config4);
1665

    
1666
    s->Config4 = val;
1667
}
1668

    
1669
static uint32_t rtl8139_Config4_read(RTL8139State *s)
1670
{
1671
    uint32_t ret = s->Config4;
1672

    
1673
    DPRINTF("Config4 read val=0x%02x\n", ret);
1674

    
1675
    return ret;
1676
}
1677

    
1678
static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1679
{
1680
    val &= 0xff;
1681

    
1682
    DPRINTF("Config5 write val=0x%02x\n", val);
1683

    
1684
    /* mask unwritable bits */
1685
    val = SET_MASKED(val, 0x80, s->Config5);
1686

    
1687
    s->Config5 = val;
1688
}
1689

    
1690
static uint32_t rtl8139_Config5_read(RTL8139State *s)
1691
{
1692
    uint32_t ret = s->Config5;
1693

    
1694
    DPRINTF("Config5 read val=0x%02x\n", ret);
1695

    
1696
    return ret;
1697
}
1698

    
1699
static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1700
{
1701
    if (!rtl8139_transmitter_enabled(s))
1702
    {
1703
        DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1704
        return;
1705
    }
1706

    
1707
    DPRINTF("TxConfig write val=0x%08x\n", val);
1708

    
1709
    val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1710

    
1711
    s->TxConfig = val;
1712
}
1713

    
1714
static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1715
{
1716
    DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1717

    
1718
    uint32_t tc = s->TxConfig;
1719
    tc &= 0xFFFFFF00;
1720
    tc |= (val & 0x000000FF);
1721
    rtl8139_TxConfig_write(s, tc);
1722
}
1723

    
1724
static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1725
{
1726
    uint32_t ret = s->TxConfig;
1727

    
1728
    DPRINTF("TxConfig read val=0x%04x\n", ret);
1729

    
1730
    return ret;
1731
}
1732

    
1733
static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1734
{
1735
    DPRINTF("RxConfig write val=0x%08x\n", val);
1736

    
1737
    /* mask unwritable bits */
1738
    val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1739

    
1740
    s->RxConfig = val;
1741

    
1742
    /* reset buffer size and read/write pointers */
1743
    rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1744

    
1745
    DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1746
}
1747

    
1748
static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1749
{
1750
    uint32_t ret = s->RxConfig;
1751

    
1752
    DPRINTF("RxConfig read val=0x%08x\n", ret);
1753

    
1754
    return ret;
1755
}
1756

    
1757
static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1758
    int do_interrupt, const uint8_t *dot1q_buf)
1759
{
1760
    struct iovec *iov = NULL;
1761

    
1762
    if (!size)
1763
    {
1764
        DPRINTF("+++ empty ethernet frame\n");
1765
        return;
1766
    }
1767

    
1768
    if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1769
        iov = (struct iovec[3]) {
1770
            { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1771
            { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1772
            { .iov_base = buf + ETHER_ADDR_LEN * 2,
1773
                .iov_len = size - ETHER_ADDR_LEN * 2 },
1774
        };
1775
    }
1776

    
1777
    if (TxLoopBack == (s->TxConfig & TxLoopBack))
1778
    {
1779
        size_t buf2_size;
1780
        uint8_t *buf2;
1781

    
1782
        if (iov) {
1783
            buf2_size = iov_size(iov, 3);
1784
            buf2 = g_malloc(buf2_size);
1785
            iov_to_buf(iov, 3, 0, buf2, buf2_size);
1786
            buf = buf2;
1787
        }
1788

    
1789
        DPRINTF("+++ transmit loopback mode\n");
1790
        rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1791

    
1792
        if (iov) {
1793
            g_free(buf2);
1794
        }
1795
    }
1796
    else
1797
    {
1798
        if (iov) {
1799
            qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1800
        } else {
1801
            qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1802
        }
1803
    }
1804
}
1805

    
1806
static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1807
{
1808
    if (!rtl8139_transmitter_enabled(s))
1809
    {
1810
        DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1811
            "disabled\n", descriptor);
1812
        return 0;
1813
    }
1814

    
1815
    if (s->TxStatus[descriptor] & TxHostOwns)
1816
    {
1817
        DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1818
            "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1819
        return 0;
1820
    }
1821

    
1822
    DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1823

    
1824
    int txsize = s->TxStatus[descriptor] & 0x1fff;
1825
    uint8_t txbuffer[0x2000];
1826

    
1827
    DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1828
        txsize, s->TxAddr[descriptor]);
1829

    
1830
    pci_dma_read(&s->dev, s->TxAddr[descriptor], txbuffer, txsize);
1831

    
1832
    /* Mark descriptor as transferred */
1833
    s->TxStatus[descriptor] |= TxHostOwns;
1834
    s->TxStatus[descriptor] |= TxStatOK;
1835

    
1836
    rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1837

    
1838
    DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1839
        descriptor);
1840

    
1841
    /* update interrupt */
1842
    s->IntrStatus |= TxOK;
1843
    rtl8139_update_irq(s);
1844

    
1845
    return 1;
1846
}
1847

    
1848
/* structures and macros for task offloading */
1849
typedef struct ip_header
1850
{
1851
    uint8_t  ip_ver_len;    /* version and header length */
1852
    uint8_t  ip_tos;        /* type of service */
1853
    uint16_t ip_len;        /* total length */
1854
    uint16_t ip_id;         /* identification */
1855
    uint16_t ip_off;        /* fragment offset field */
1856
    uint8_t  ip_ttl;        /* time to live */
1857
    uint8_t  ip_p;          /* protocol */
1858
    uint16_t ip_sum;        /* checksum */
1859
    uint32_t ip_src,ip_dst; /* source and dest address */
1860
} ip_header;
1861

    
1862
#define IP_HEADER_VERSION_4 4
1863
#define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1864
#define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1865

    
1866
typedef struct tcp_header
1867
{
1868
    uint16_t th_sport;                /* source port */
1869
    uint16_t th_dport;                /* destination port */
1870
    uint32_t th_seq;                        /* sequence number */
1871
    uint32_t th_ack;                        /* acknowledgement number */
1872
    uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1873
    uint16_t th_win;                        /* window */
1874
    uint16_t th_sum;                        /* checksum */
1875
    uint16_t th_urp;                        /* urgent pointer */
1876
} tcp_header;
1877

    
1878
typedef struct udp_header
1879
{
1880
    uint16_t uh_sport; /* source port */
1881
    uint16_t uh_dport; /* destination port */
1882
    uint16_t uh_ulen;  /* udp length */
1883
    uint16_t uh_sum;   /* udp checksum */
1884
} udp_header;
1885

    
1886
typedef struct ip_pseudo_header
1887
{
1888
    uint32_t ip_src;
1889
    uint32_t ip_dst;
1890
    uint8_t  zeros;
1891
    uint8_t  ip_proto;
1892
    uint16_t ip_payload;
1893
} ip_pseudo_header;
1894

    
1895
#define IP_PROTO_TCP 6
1896
#define IP_PROTO_UDP 17
1897

    
1898
#define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1899
#define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1900
#define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1901

    
1902
#define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1903

    
1904
#define TCP_FLAG_FIN  0x01
1905
#define TCP_FLAG_PUSH 0x08
1906

    
1907
/* produces ones' complement sum of data */
1908
static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1909
{
1910
    uint32_t result = 0;
1911

    
1912
    for (; len > 1; data+=2, len-=2)
1913
    {
1914
        result += *(uint16_t*)data;
1915
    }
1916

    
1917
    /* add the remainder byte */
1918
    if (len)
1919
    {
1920
        uint8_t odd[2] = {*data, 0};
1921
        result += *(uint16_t*)odd;
1922
    }
1923

    
1924
    while (result>>16)
1925
        result = (result & 0xffff) + (result >> 16);
1926

    
1927
    return result;
1928
}
1929

    
1930
static uint16_t ip_checksum(void *data, size_t len)
1931
{
1932
    return ~ones_complement_sum((uint8_t*)data, len);
1933
}
1934

    
1935
static int rtl8139_cplus_transmit_one(RTL8139State *s)
1936
{
1937
    if (!rtl8139_transmitter_enabled(s))
1938
    {
1939
        DPRINTF("+++ C+ mode: transmitter disabled\n");
1940
        return 0;
1941
    }
1942

    
1943
    if (!rtl8139_cp_transmitter_enabled(s))
1944
    {
1945
        DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1946
        return 0 ;
1947
    }
1948

    
1949
    int descriptor = s->currCPlusTxDesc;
1950

    
1951
    dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1952

    
1953
    /* Normal priority ring */
1954
    cplus_tx_ring_desc += 16 * descriptor;
1955

    
1956
    DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1957
        "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1958
        s->TxAddr[0], cplus_tx_ring_desc);
1959

    
1960
    uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1961

    
1962
    pci_dma_read(&s->dev, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1963
    txdw0 = le32_to_cpu(val);
1964
    pci_dma_read(&s->dev, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1965
    txdw1 = le32_to_cpu(val);
1966
    pci_dma_read(&s->dev, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1967
    txbufLO = le32_to_cpu(val);
1968
    pci_dma_read(&s->dev, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1969
    txbufHI = le32_to_cpu(val);
1970

    
1971
    DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1972
        txdw0, txdw1, txbufLO, txbufHI);
1973

    
1974
/* w0 ownership flag */
1975
#define CP_TX_OWN (1<<31)
1976
/* w0 end of ring flag */
1977
#define CP_TX_EOR (1<<30)
1978
/* first segment of received packet flag */
1979
#define CP_TX_FS (1<<29)
1980
/* last segment of received packet flag */
1981
#define CP_TX_LS (1<<28)
1982
/* large send packet flag */
1983
#define CP_TX_LGSEN (1<<27)
1984
/* large send MSS mask, bits 16...25 */
1985
#define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1986

    
1987
/* IP checksum offload flag */
1988
#define CP_TX_IPCS (1<<18)
1989
/* UDP checksum offload flag */
1990
#define CP_TX_UDPCS (1<<17)
1991
/* TCP checksum offload flag */
1992
#define CP_TX_TCPCS (1<<16)
1993

    
1994
/* w0 bits 0...15 : buffer size */
1995
#define CP_TX_BUFFER_SIZE (1<<16)
1996
#define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1997
/* w1 add tag flag */
1998
#define CP_TX_TAGC (1<<17)
1999
/* w1 bits 0...15 : VLAN tag (big endian) */
2000
#define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2001
/* w2 low  32bit of Rx buffer ptr */
2002
/* w3 high 32bit of Rx buffer ptr */
2003

    
2004
/* set after transmission */
2005
/* FIFO underrun flag */
2006
#define CP_TX_STATUS_UNF (1<<25)
2007
/* transmit error summary flag, valid if set any of three below */
2008
#define CP_TX_STATUS_TES (1<<23)
2009
/* out-of-window collision flag */
2010
#define CP_TX_STATUS_OWC (1<<22)
2011
/* link failure flag */
2012
#define CP_TX_STATUS_LNKF (1<<21)
2013
/* excessive collisions flag */
2014
#define CP_TX_STATUS_EXC (1<<20)
2015

    
2016
    if (!(txdw0 & CP_TX_OWN))
2017
    {
2018
        DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2019
        return 0 ;
2020
    }
2021

    
2022
    DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2023

    
2024
    if (txdw0 & CP_TX_FS)
2025
    {
2026
        DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2027
            "descriptor\n", descriptor);
2028

    
2029
        /* reset internal buffer offset */
2030
        s->cplus_txbuffer_offset = 0;
2031
    }
2032

    
2033
    int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2034
    dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2035

    
2036
    /* make sure we have enough space to assemble the packet */
2037
    if (!s->cplus_txbuffer)
2038
    {
2039
        s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2040
        s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2041
        s->cplus_txbuffer_offset = 0;
2042

    
2043
        DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2044
            s->cplus_txbuffer_len);
2045
    }
2046

    
2047
    if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2048
    {
2049
        /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2050
        txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2051
        DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2052
                "length to %d\n", txsize);
2053
    }
2054

    
2055
    if (!s->cplus_txbuffer)
2056
    {
2057
        /* out of memory */
2058

    
2059
        DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2060
            s->cplus_txbuffer_len);
2061

    
2062
        /* update tally counter */
2063
        ++s->tally_counters.TxERR;
2064
        ++s->tally_counters.TxAbt;
2065

    
2066
        return 0;
2067
    }
2068

    
2069
    /* append more data to the packet */
2070

    
2071
    DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2072
            DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2073
            s->cplus_txbuffer_offset);
2074

    
2075
    pci_dma_read(&s->dev, tx_addr,
2076
                 s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2077
    s->cplus_txbuffer_offset += txsize;
2078

    
2079
    /* seek to next Rx descriptor */
2080
    if (txdw0 & CP_TX_EOR)
2081
    {
2082
        s->currCPlusTxDesc = 0;
2083
    }
2084
    else
2085
    {
2086
        ++s->currCPlusTxDesc;
2087
        if (s->currCPlusTxDesc >= 64)
2088
            s->currCPlusTxDesc = 0;
2089
    }
2090

    
2091
    /* transfer ownership to target */
2092
    txdw0 &= ~CP_RX_OWN;
2093

    
2094
    /* reset error indicator bits */
2095
    txdw0 &= ~CP_TX_STATUS_UNF;
2096
    txdw0 &= ~CP_TX_STATUS_TES;
2097
    txdw0 &= ~CP_TX_STATUS_OWC;
2098
    txdw0 &= ~CP_TX_STATUS_LNKF;
2099
    txdw0 &= ~CP_TX_STATUS_EXC;
2100

    
2101
    /* update ring data */
2102
    val = cpu_to_le32(txdw0);
2103
    pci_dma_write(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2104

    
2105
    /* Now decide if descriptor being processed is holding the last segment of packet */
2106
    if (txdw0 & CP_TX_LS)
2107
    {
2108
        uint8_t dot1q_buffer_space[VLAN_HLEN];
2109
        uint16_t *dot1q_buffer;
2110

    
2111
        DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2112
            descriptor);
2113

    
2114
        /* can transfer fully assembled packet */
2115

    
2116
        uint8_t *saved_buffer  = s->cplus_txbuffer;
2117
        int      saved_size    = s->cplus_txbuffer_offset;
2118
        int      saved_buffer_len = s->cplus_txbuffer_len;
2119

    
2120
        /* create vlan tag */
2121
        if (txdw1 & CP_TX_TAGC) {
2122
            /* the vlan tag is in BE byte order in the descriptor
2123
             * BE + le_to_cpu() + ~swap()~ = cpu */
2124
            DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2125
                bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2126

    
2127
            dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2128
            dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2129
            /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2130
            dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2131
        } else {
2132
            dot1q_buffer = NULL;
2133
        }
2134

    
2135
        /* reset the card space to protect from recursive call */
2136
        s->cplus_txbuffer = NULL;
2137
        s->cplus_txbuffer_offset = 0;
2138
        s->cplus_txbuffer_len = 0;
2139

    
2140
        if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2141
        {
2142
            DPRINTF("+++ C+ mode offloaded task checksum\n");
2143

    
2144
            /* ip packet header */
2145
            ip_header *ip = NULL;
2146
            int hlen = 0;
2147
            uint8_t  ip_protocol = 0;
2148
            uint16_t ip_data_len = 0;
2149

    
2150
            uint8_t *eth_payload_data = NULL;
2151
            size_t   eth_payload_len  = 0;
2152

    
2153
            int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2154
            if (proto == ETH_P_IP)
2155
            {
2156
                DPRINTF("+++ C+ mode has IP packet\n");
2157

    
2158
                /* not aligned */
2159
                eth_payload_data = saved_buffer + ETH_HLEN;
2160
                eth_payload_len  = saved_size   - ETH_HLEN;
2161

    
2162
                ip = (ip_header*)eth_payload_data;
2163

    
2164
                if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2165
                    DPRINTF("+++ C+ mode packet has bad IP version %d "
2166
                        "expected %d\n", IP_HEADER_VERSION(ip),
2167
                        IP_HEADER_VERSION_4);
2168
                    ip = NULL;
2169
                } else {
2170
                    hlen = IP_HEADER_LENGTH(ip);
2171
                    ip_protocol = ip->ip_p;
2172
                    ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2173
                }
2174
            }
2175

    
2176
            if (ip)
2177
            {
2178
                if (txdw0 & CP_TX_IPCS)
2179
                {
2180
                    DPRINTF("+++ C+ mode need IP checksum\n");
2181

    
2182
                    if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2183
                        /* bad packet header len */
2184
                        /* or packet too short */
2185
                    }
2186
                    else
2187
                    {
2188
                        ip->ip_sum = 0;
2189
                        ip->ip_sum = ip_checksum(ip, hlen);
2190
                        DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2191
                            hlen, ip->ip_sum);
2192
                    }
2193
                }
2194

    
2195
                if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2196
                {
2197
                    int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2198

    
2199
                    DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2200
                        "frame data %d specified MSS=%d\n", ETH_MTU,
2201
                        ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2202

    
2203
                    int tcp_send_offset = 0;
2204
                    int send_count = 0;
2205

    
2206
                    /* maximum IP header length is 60 bytes */
2207
                    uint8_t saved_ip_header[60];
2208

    
2209
                    /* save IP header template; data area is used in tcp checksum calculation */
2210
                    memcpy(saved_ip_header, eth_payload_data, hlen);
2211

    
2212
                    /* a placeholder for checksum calculation routine in tcp case */
2213
                    uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2214
                    //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2215

    
2216
                    /* pointer to TCP header */
2217
                    tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2218

    
2219
                    int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2220

    
2221
                    /* ETH_MTU = ip header len + tcp header len + payload */
2222
                    int tcp_data_len = ip_data_len - tcp_hlen;
2223
                    int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2224

    
2225
                    DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2226
                        "data len %d TCP chunk size %d\n", ip_data_len,
2227
                        tcp_hlen, tcp_data_len, tcp_chunk_size);
2228

    
2229
                    /* note the cycle below overwrites IP header data,
2230
                       but restores it from saved_ip_header before sending packet */
2231

    
2232
                    int is_last_frame = 0;
2233

    
2234
                    for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2235
                    {
2236
                        uint16_t chunk_size = tcp_chunk_size;
2237

    
2238
                        /* check if this is the last frame */
2239
                        if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2240
                        {
2241
                            is_last_frame = 1;
2242
                            chunk_size = tcp_data_len - tcp_send_offset;
2243
                        }
2244

    
2245
                        DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2246
                            be32_to_cpu(p_tcp_hdr->th_seq));
2247

    
2248
                        /* add 4 TCP pseudoheader fields */
2249
                        /* copy IP source and destination fields */
2250
                        memcpy(data_to_checksum, saved_ip_header + 12, 8);
2251

    
2252
                        DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2253
                            "packet with %d bytes data\n", tcp_hlen +
2254
                            chunk_size);
2255

    
2256
                        if (tcp_send_offset)
2257
                        {
2258
                            memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2259
                        }
2260

    
2261
                        /* keep PUSH and FIN flags only for the last frame */
2262
                        if (!is_last_frame)
2263
                        {
2264
                            TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2265
                        }
2266

    
2267
                        /* recalculate TCP checksum */
2268
                        ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2269
                        p_tcpip_hdr->zeros      = 0;
2270
                        p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2271
                        p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2272

    
2273
                        p_tcp_hdr->th_sum = 0;
2274

    
2275
                        int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2276
                        DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2277
                            tcp_checksum);
2278

    
2279
                        p_tcp_hdr->th_sum = tcp_checksum;
2280

    
2281
                        /* restore IP header */
2282
                        memcpy(eth_payload_data, saved_ip_header, hlen);
2283

    
2284
                        /* set IP data length and recalculate IP checksum */
2285
                        ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2286

    
2287
                        /* increment IP id for subsequent frames */
2288
                        ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2289

    
2290
                        ip->ip_sum = 0;
2291
                        ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2292
                        DPRINTF("+++ C+ mode TSO IP header len=%d "
2293
                            "checksum=%04x\n", hlen, ip->ip_sum);
2294

    
2295
                        int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2296
                        DPRINTF("+++ C+ mode TSO transferring packet size "
2297
                            "%d\n", tso_send_size);
2298
                        rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2299
                            0, (uint8_t *) dot1q_buffer);
2300

    
2301
                        /* add transferred count to TCP sequence number */
2302
                        p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2303
                        ++send_count;
2304
                    }
2305

    
2306
                    /* Stop sending this frame */
2307
                    saved_size = 0;
2308
                }
2309
                else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2310
                {
2311
                    DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2312

    
2313
                    /* maximum IP header length is 60 bytes */
2314
                    uint8_t saved_ip_header[60];
2315
                    memcpy(saved_ip_header, eth_payload_data, hlen);
2316

    
2317
                    uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2318
                    //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2319

    
2320
                    /* add 4 TCP pseudoheader fields */
2321
                    /* copy IP source and destination fields */
2322
                    memcpy(data_to_checksum, saved_ip_header + 12, 8);
2323

    
2324
                    if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2325
                    {
2326
                        DPRINTF("+++ C+ mode calculating TCP checksum for "
2327
                            "packet with %d bytes data\n", ip_data_len);
2328

    
2329
                        ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2330
                        p_tcpip_hdr->zeros      = 0;
2331
                        p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2332
                        p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2333

    
2334
                        tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2335

    
2336
                        p_tcp_hdr->th_sum = 0;
2337

    
2338
                        int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2339
                        DPRINTF("+++ C+ mode TCP checksum %04x\n",
2340
                            tcp_checksum);
2341

    
2342
                        p_tcp_hdr->th_sum = tcp_checksum;
2343
                    }
2344
                    else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2345
                    {
2346
                        DPRINTF("+++ C+ mode calculating UDP checksum for "
2347
                            "packet with %d bytes data\n", ip_data_len);
2348

    
2349
                        ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2350
                        p_udpip_hdr->zeros      = 0;
2351
                        p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2352
                        p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2353

    
2354
                        udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2355

    
2356
                        p_udp_hdr->uh_sum = 0;
2357

    
2358
                        int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2359
                        DPRINTF("+++ C+ mode UDP checksum %04x\n",
2360
                            udp_checksum);
2361

    
2362
                        p_udp_hdr->uh_sum = udp_checksum;
2363
                    }
2364

    
2365
                    /* restore IP header */
2366
                    memcpy(eth_payload_data, saved_ip_header, hlen);
2367
                }
2368
            }
2369
        }
2370

    
2371
        /* update tally counter */
2372
        ++s->tally_counters.TxOk;
2373

    
2374
        DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2375

    
2376
        rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2377
            (uint8_t *) dot1q_buffer);
2378

    
2379
        /* restore card space if there was no recursion and reset offset */
2380
        if (!s->cplus_txbuffer)
2381
        {
2382
            s->cplus_txbuffer        = saved_buffer;
2383
            s->cplus_txbuffer_len    = saved_buffer_len;
2384
            s->cplus_txbuffer_offset = 0;
2385
        }
2386
        else
2387
        {
2388
            g_free(saved_buffer);
2389
        }
2390
    }
2391
    else
2392
    {
2393
        DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2394
    }
2395

    
2396
    return 1;
2397
}
2398

    
2399
static void rtl8139_cplus_transmit(RTL8139State *s)
2400
{
2401
    int txcount = 0;
2402

    
2403
    while (rtl8139_cplus_transmit_one(s))
2404
    {
2405
        ++txcount;
2406
    }
2407

    
2408
    /* Mark transfer completed */
2409
    if (!txcount)
2410
    {
2411
        DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2412
            s->currCPlusTxDesc);
2413
    }
2414
    else
2415
    {
2416
        /* update interrupt status */
2417
        s->IntrStatus |= TxOK;
2418
        rtl8139_update_irq(s);
2419
    }
2420
}
2421

    
2422
static void rtl8139_transmit(RTL8139State *s)
2423
{
2424
    int descriptor = s->currTxDesc, txcount = 0;
2425

    
2426
    /*while*/
2427
    if (rtl8139_transmit_one(s, descriptor))
2428
    {
2429
        ++s->currTxDesc;
2430
        s->currTxDesc %= 4;
2431
        ++txcount;
2432
    }
2433

    
2434
    /* Mark transfer completed */
2435
    if (!txcount)
2436
    {
2437
        DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2438
            s->currTxDesc);
2439
    }
2440
}
2441

    
2442
static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2443
{
2444

    
2445
    int descriptor = txRegOffset/4;
2446

    
2447
    /* handle C+ transmit mode register configuration */
2448

    
2449
    if (s->cplus_enabled)
2450
    {
2451
        DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2452
            "descriptor=%d\n", txRegOffset, val, descriptor);
2453

    
2454
        /* handle Dump Tally Counters command */
2455
        s->TxStatus[descriptor] = val;
2456

    
2457
        if (descriptor == 0 && (val & 0x8))
2458
        {
2459
            hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2460

    
2461
            /* dump tally counters to specified memory location */
2462
            RTL8139TallyCounters_dma_write(s, tc_addr);
2463

    
2464
            /* mark dump completed */
2465
            s->TxStatus[0] &= ~0x8;
2466
        }
2467

    
2468
        return;
2469
    }
2470

    
2471
    DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2472
        txRegOffset, val, descriptor);
2473

    
2474
    /* mask only reserved bits */
2475
    val &= ~0xff00c000; /* these bits are reset on write */
2476
    val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2477

    
2478
    s->TxStatus[descriptor] = val;
2479

    
2480
    /* attempt to start transmission */
2481
    rtl8139_transmit(s);
2482
}
2483

    
2484
static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2485
                                             uint32_t base, uint8_t addr,
2486
                                             int size)
2487
{
2488
    uint32_t reg = (addr - base) / 4;
2489
    uint32_t offset = addr & 0x3;
2490
    uint32_t ret = 0;
2491

    
2492
    if (addr & (size - 1)) {
2493
        DPRINTF("not implemented read for TxStatus/TxAddr "
2494
                "addr=0x%x size=0x%x\n", addr, size);
2495
        return ret;
2496
    }
2497

    
2498
    switch (size) {
2499
    case 1: /* fall through */
2500
    case 2: /* fall through */
2501
    case 4:
2502
        ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2503
        DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2504
                reg, addr, size, ret);
2505
        break;
2506
    default:
2507
        DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2508
        break;
2509
    }
2510

    
2511
    return ret;
2512
}
2513

    
2514
static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2515
{
2516
    uint16_t ret = 0;
2517

    
2518
    /* Simulate TSAD, it is read only anyway */
2519

    
2520
    ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2521
         |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2522
         |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2523
         |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2524

    
2525
         |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2526
         |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2527
         |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2528
         |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2529

    
2530
         |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2531
         |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2532
         |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2533
         |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2534

    
2535
         |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2536
         |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2537
         |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2538
         |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2539

    
2540

    
2541
    DPRINTF("TSAD read val=0x%04x\n", ret);
2542

    
2543
    return ret;
2544
}
2545

    
2546
static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2547
{
2548
    uint16_t ret = s->CSCR;
2549

    
2550
    DPRINTF("CSCR read val=0x%04x\n", ret);
2551

    
2552
    return ret;
2553
}
2554

    
2555
static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2556
{
2557
    DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2558

    
2559
    s->TxAddr[txAddrOffset/4] = val;
2560
}
2561

    
2562
static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2563
{
2564
    uint32_t ret = s->TxAddr[txAddrOffset/4];
2565

    
2566
    DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2567

    
2568
    return ret;
2569
}
2570

    
2571
static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2572
{
2573
    DPRINTF("RxBufPtr write val=0x%04x\n", val);
2574

    
2575
    /* this value is off by 16 */
2576
    s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2577

    
2578
    /* more buffer space may be available so try to receive */
2579
    qemu_flush_queued_packets(qemu_get_queue(s->nic));
2580

    
2581
    DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2582
        s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2583
}
2584

    
2585
static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2586
{
2587
    /* this value is off by 16 */
2588
    uint32_t ret = s->RxBufPtr - 0x10;
2589

    
2590
    DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2591

    
2592
    return ret;
2593
}
2594

    
2595
static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2596
{
2597
    /* this value is NOT off by 16 */
2598
    uint32_t ret = s->RxBufAddr;
2599

    
2600
    DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2601

    
2602
    return ret;
2603
}
2604

    
2605
static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2606
{
2607
    DPRINTF("RxBuf write val=0x%08x\n", val);
2608

    
2609
    s->RxBuf = val;
2610

    
2611
    /* may need to reset rxring here */
2612
}
2613

    
2614
static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2615
{
2616
    uint32_t ret = s->RxBuf;
2617

    
2618
    DPRINTF("RxBuf read val=0x%08x\n", ret);
2619

    
2620
    return ret;
2621
}
2622

    
2623
static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2624
{
2625
    DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2626

    
2627
    /* mask unwritable bits */
2628
    val = SET_MASKED(val, 0x1e00, s->IntrMask);
2629

    
2630
    s->IntrMask = val;
2631

    
2632
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2633
    rtl8139_update_irq(s);
2634

    
2635
}
2636

    
2637
static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2638
{
2639
    uint32_t ret = s->IntrMask;
2640

    
2641
    DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2642

    
2643
    return ret;
2644
}
2645

    
2646
static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2647
{
2648
    DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2649

    
2650
#if 0
2651

2652
    /* writing to ISR has no effect */
2653

2654
    return;
2655

2656
#else
2657
    uint16_t newStatus = s->IntrStatus & ~val;
2658

    
2659
    /* mask unwritable bits */
2660
    newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2661

    
2662
    /* writing 1 to interrupt status register bit clears it */
2663
    s->IntrStatus = 0;
2664
    rtl8139_update_irq(s);
2665

    
2666
    s->IntrStatus = newStatus;
2667
    /*
2668
     * Computing if we miss an interrupt here is not that correct but
2669
     * considered that we should have had already an interrupt
2670
     * and probably emulated is slower is better to assume this resetting was
2671
     * done before testing on previous rtl8139_update_irq lead to IRQ losing
2672
     */
2673
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2674
    rtl8139_update_irq(s);
2675

    
2676
#endif
2677
}
2678

    
2679
static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2680
{
2681
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2682

    
2683
    uint32_t ret = s->IntrStatus;
2684

    
2685
    DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2686

    
2687
#if 0
2688

2689
    /* reading ISR clears all interrupts */
2690
    s->IntrStatus = 0;
2691

2692
    rtl8139_update_irq(s);
2693

2694
#endif
2695

    
2696
    return ret;
2697
}
2698

    
2699
static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2700
{
2701
    DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2702

    
2703
    /* mask unwritable bits */
2704
    val = SET_MASKED(val, 0xf000, s->MultiIntr);
2705

    
2706
    s->MultiIntr = val;
2707
}
2708

    
2709
static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2710
{
2711
    uint32_t ret = s->MultiIntr;
2712

    
2713
    DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2714

    
2715
    return ret;
2716
}
2717

    
2718
static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2719
{
2720
    RTL8139State *s = opaque;
2721

    
2722
    switch (addr)
2723
    {
2724
        case MAC0 ... MAC0+5:
2725
            s->phys[addr - MAC0] = val;
2726
            break;
2727
        case MAC0+6 ... MAC0+7:
2728
            /* reserved */
2729
            break;
2730
        case MAR0 ... MAR0+7:
2731
            s->mult[addr - MAR0] = val;
2732
            break;
2733
        case ChipCmd:
2734
            rtl8139_ChipCmd_write(s, val);
2735
            break;
2736
        case Cfg9346:
2737
            rtl8139_Cfg9346_write(s, val);
2738
            break;
2739
        case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2740
            rtl8139_TxConfig_writeb(s, val);
2741
            break;
2742
        case Config0:
2743
            rtl8139_Config0_write(s, val);
2744
            break;
2745
        case Config1:
2746
            rtl8139_Config1_write(s, val);
2747
            break;
2748
        case Config3:
2749
            rtl8139_Config3_write(s, val);
2750
            break;
2751
        case Config4:
2752
            rtl8139_Config4_write(s, val);
2753
            break;
2754
        case Config5:
2755
            rtl8139_Config5_write(s, val);
2756
            break;
2757
        case MediaStatus:
2758
            /* ignore */
2759
            DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2760
                val);
2761
            break;
2762

    
2763
        case HltClk:
2764
            DPRINTF("HltClk write val=0x%08x\n", val);
2765
            if (val == 'R')
2766
            {
2767
                s->clock_enabled = 1;
2768
            }
2769
            else if (val == 'H')
2770
            {
2771
                s->clock_enabled = 0;
2772
            }
2773
            break;
2774

    
2775
        case TxThresh:
2776
            DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2777
            s->TxThresh = val;
2778
            break;
2779

    
2780
        case TxPoll:
2781
            DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2782
            if (val & (1 << 7))
2783
            {
2784
                DPRINTF("C+ TxPoll high priority transmission (not "
2785
                    "implemented)\n");
2786
                //rtl8139_cplus_transmit(s);
2787
            }
2788
            if (val & (1 << 6))
2789
            {
2790
                DPRINTF("C+ TxPoll normal priority transmission\n");
2791
                rtl8139_cplus_transmit(s);
2792
            }
2793

    
2794
            break;
2795

    
2796
        default:
2797
            DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2798
                val);
2799
            break;
2800
    }
2801
}
2802

    
2803
static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2804
{
2805
    RTL8139State *s = opaque;
2806

    
2807
    switch (addr)
2808
    {
2809
        case IntrMask:
2810
            rtl8139_IntrMask_write(s, val);
2811
            break;
2812

    
2813
        case IntrStatus:
2814
            rtl8139_IntrStatus_write(s, val);
2815
            break;
2816

    
2817
        case MultiIntr:
2818
            rtl8139_MultiIntr_write(s, val);
2819
            break;
2820

    
2821
        case RxBufPtr:
2822
            rtl8139_RxBufPtr_write(s, val);
2823
            break;
2824

    
2825
        case BasicModeCtrl:
2826
            rtl8139_BasicModeCtrl_write(s, val);
2827
            break;
2828
        case BasicModeStatus:
2829
            rtl8139_BasicModeStatus_write(s, val);
2830
            break;
2831
        case NWayAdvert:
2832
            DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2833
            s->NWayAdvert = val;
2834
            break;
2835
        case NWayLPAR:
2836
            DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2837
            break;
2838
        case NWayExpansion:
2839
            DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2840
            s->NWayExpansion = val;
2841
            break;
2842

    
2843
        case CpCmd:
2844
            rtl8139_CpCmd_write(s, val);
2845
            break;
2846

    
2847
        case IntrMitigate:
2848
            rtl8139_IntrMitigate_write(s, val);
2849
            break;
2850

    
2851
        default:
2852
            DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2853
                addr, val);
2854

    
2855
            rtl8139_io_writeb(opaque, addr, val & 0xff);
2856
            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2857
            break;
2858
    }
2859
}
2860

    
2861
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2862
{
2863
    int64_t pci_time, next_time;
2864
    uint32_t low_pci;
2865

    
2866
    DPRINTF("entered rtl8139_set_next_tctr_time\n");
2867

    
2868
    if (s->TimerExpire && current_time >= s->TimerExpire) {
2869
        s->IntrStatus |= PCSTimeout;
2870
        rtl8139_update_irq(s);
2871
    }
2872

    
2873
    /* Set QEMU timer only if needed that is
2874
     * - TimerInt <> 0 (we have a timer)
2875
     * - mask = 1 (we want an interrupt timer)
2876
     * - irq = 0  (irq is not already active)
2877
     * If any of above change we need to compute timer again
2878
     * Also we must check if timer is passed without QEMU timer
2879
     */
2880
    s->TimerExpire = 0;
2881
    if (!s->TimerInt) {
2882
        return;
2883
    }
2884

    
2885
    pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2886
                                get_ticks_per_sec());
2887
    low_pci = pci_time & 0xffffffff;
2888
    pci_time = pci_time - low_pci + s->TimerInt;
2889
    if (low_pci >= s->TimerInt) {
2890
        pci_time += 0x100000000LL;
2891
    }
2892
    next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2893
                                                PCI_FREQUENCY);
2894
    s->TimerExpire = next_time;
2895

    
2896
    if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2897
        qemu_mod_timer(s->timer, next_time);
2898
    }
2899
}
2900

    
2901
static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2902
{
2903
    RTL8139State *s = opaque;
2904

    
2905
    switch (addr)
2906
    {
2907
        case RxMissed:
2908
            DPRINTF("RxMissed clearing on write\n");
2909
            s->RxMissed = 0;
2910
            break;
2911

    
2912
        case TxConfig:
2913
            rtl8139_TxConfig_write(s, val);
2914
            break;
2915

    
2916
        case RxConfig:
2917
            rtl8139_RxConfig_write(s, val);
2918
            break;
2919

    
2920
        case TxStatus0 ... TxStatus0+4*4-1:
2921
            rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2922
            break;
2923

    
2924
        case TxAddr0 ... TxAddr0+4*4-1:
2925
            rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2926
            break;
2927

    
2928
        case RxBuf:
2929
            rtl8139_RxBuf_write(s, val);
2930
            break;
2931

    
2932
        case RxRingAddrLO:
2933
            DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2934
            s->RxRingAddrLO = val;
2935
            break;
2936

    
2937
        case RxRingAddrHI:
2938
            DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2939
            s->RxRingAddrHI = val;
2940
            break;
2941

    
2942
        case Timer:
2943
            DPRINTF("TCTR Timer reset on write\n");
2944
            s->TCTR_base = qemu_get_clock_ns(vm_clock);
2945
            rtl8139_set_next_tctr_time(s, s->TCTR_base);
2946
            break;
2947

    
2948
        case FlashReg:
2949
            DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2950
            if (s->TimerInt != val) {
2951
                s->TimerInt = val;
2952
                rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2953
            }
2954
            break;
2955

    
2956
        default:
2957
            DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2958
                addr, val);
2959
            rtl8139_io_writeb(opaque, addr, val & 0xff);
2960
            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2961
            rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2962
            rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2963
            break;
2964
    }
2965
}
2966

    
2967
static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2968
{
2969
    RTL8139State *s = opaque;
2970
    int ret;
2971

    
2972
    switch (addr)
2973
    {
2974
        case MAC0 ... MAC0+5:
2975
            ret = s->phys[addr - MAC0];
2976
            break;
2977
        case MAC0+6 ... MAC0+7:
2978
            ret = 0;
2979
            break;
2980
        case MAR0 ... MAR0+7:
2981
            ret = s->mult[addr - MAR0];
2982
            break;
2983
        case TxStatus0 ... TxStatus0+4*4-1:
2984
            ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2985
                                               addr, 1);
2986
            break;
2987
        case ChipCmd:
2988
            ret = rtl8139_ChipCmd_read(s);
2989
            break;
2990
        case Cfg9346:
2991
            ret = rtl8139_Cfg9346_read(s);
2992
            break;
2993
        case Config0:
2994
            ret = rtl8139_Config0_read(s);
2995
            break;
2996
        case Config1:
2997
            ret = rtl8139_Config1_read(s);
2998
            break;
2999
        case Config3:
3000
            ret = rtl8139_Config3_read(s);
3001
            break;
3002
        case Config4:
3003
            ret = rtl8139_Config4_read(s);
3004
            break;
3005
        case Config5:
3006
            ret = rtl8139_Config5_read(s);
3007
            break;
3008

    
3009
        case MediaStatus:
3010
            /* The LinkDown bit of MediaStatus is inverse with link status */
3011
            ret = 0xd0 | (~s->BasicModeStatus & 0x04);
3012
            DPRINTF("MediaStatus read 0x%x\n", ret);
3013
            break;
3014

    
3015
        case HltClk:
3016
            ret = s->clock_enabled;
3017
            DPRINTF("HltClk read 0x%x\n", ret);
3018
            break;
3019

    
3020
        case PCIRevisionID:
3021
            ret = RTL8139_PCI_REVID;
3022
            DPRINTF("PCI Revision ID read 0x%x\n", ret);
3023
            break;
3024

    
3025
        case TxThresh:
3026
            ret = s->TxThresh;
3027
            DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3028
            break;
3029

    
3030
        case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3031
            ret = s->TxConfig >> 24;
3032
            DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3033
            break;
3034

    
3035
        default:
3036
            DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3037
            ret = 0;
3038
            break;
3039
    }
3040

    
3041
    return ret;
3042
}
3043

    
3044
static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3045
{
3046
    RTL8139State *s = opaque;
3047
    uint32_t ret;
3048

    
3049
    switch (addr)
3050
    {
3051
        case TxAddr0 ... TxAddr0+4*4-1:
3052
            ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
3053
            break;
3054
        case IntrMask:
3055
            ret = rtl8139_IntrMask_read(s);
3056
            break;
3057

    
3058
        case IntrStatus:
3059
            ret = rtl8139_IntrStatus_read(s);
3060
            break;
3061

    
3062
        case MultiIntr:
3063
            ret = rtl8139_MultiIntr_read(s);
3064
            break;
3065

    
3066
        case RxBufPtr:
3067
            ret = rtl8139_RxBufPtr_read(s);
3068
            break;
3069

    
3070
        case RxBufAddr:
3071
            ret = rtl8139_RxBufAddr_read(s);
3072
            break;
3073

    
3074
        case BasicModeCtrl:
3075
            ret = rtl8139_BasicModeCtrl_read(s);
3076
            break;
3077
        case BasicModeStatus:
3078
            ret = rtl8139_BasicModeStatus_read(s);
3079
            break;
3080
        case NWayAdvert:
3081
            ret = s->NWayAdvert;
3082
            DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3083
            break;
3084
        case NWayLPAR:
3085
            ret = s->NWayLPAR;
3086
            DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3087
            break;
3088
        case NWayExpansion:
3089
            ret = s->NWayExpansion;
3090
            DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3091
            break;
3092

    
3093
        case CpCmd:
3094
            ret = rtl8139_CpCmd_read(s);
3095
            break;
3096

    
3097
        case IntrMitigate:
3098
            ret = rtl8139_IntrMitigate_read(s);
3099
            break;
3100

    
3101
        case TxSummary:
3102
            ret = rtl8139_TSAD_read(s);
3103
            break;
3104

    
3105
        case CSCR:
3106
            ret = rtl8139_CSCR_read(s);
3107
            break;
3108

    
3109
        default:
3110
            DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3111

    
3112
            ret  = rtl8139_io_readb(opaque, addr);
3113
            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3114

    
3115
            DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3116
            break;
3117
    }
3118

    
3119
    return ret;
3120
}
3121

    
3122
static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3123
{
3124
    RTL8139State *s = opaque;
3125
    uint32_t ret;
3126

    
3127
    switch (addr)
3128
    {
3129
        case RxMissed:
3130
            ret = s->RxMissed;
3131

    
3132
            DPRINTF("RxMissed read val=0x%08x\n", ret);
3133
            break;
3134

    
3135
        case TxConfig:
3136
            ret = rtl8139_TxConfig_read(s);
3137
            break;
3138

    
3139
        case RxConfig:
3140
            ret = rtl8139_RxConfig_read(s);
3141
            break;
3142

    
3143
        case TxStatus0 ... TxStatus0+4*4-1:
3144
            ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3145
                                               addr, 4);
3146
            break;
3147

    
3148
        case TxAddr0 ... TxAddr0+4*4-1:
3149
            ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3150
            break;
3151

    
3152
        case RxBuf:
3153
            ret = rtl8139_RxBuf_read(s);
3154
            break;
3155

    
3156
        case RxRingAddrLO:
3157
            ret = s->RxRingAddrLO;
3158
            DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3159
            break;
3160

    
3161
        case RxRingAddrHI:
3162
            ret = s->RxRingAddrHI;
3163
            DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3164
            break;
3165

    
3166
        case Timer:
3167
            ret = muldiv64(qemu_get_clock_ns(vm_clock) - s->TCTR_base,
3168
                           PCI_FREQUENCY, get_ticks_per_sec());
3169
            DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3170
            break;
3171

    
3172
        case FlashReg:
3173
            ret = s->TimerInt;
3174
            DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3175
            break;
3176

    
3177
        default:
3178
            DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3179

    
3180
            ret  = rtl8139_io_readb(opaque, addr);
3181
            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3182
            ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3183
            ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3184

    
3185
            DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3186
            break;
3187
    }
3188

    
3189
    return ret;
3190
}
3191

    
3192
/* */
3193

    
3194
static void rtl8139_mmio_writeb(void *opaque, hwaddr addr, uint32_t val)
3195
{
3196
    rtl8139_io_writeb(opaque, addr & 0xFF, val);
3197
}
3198

    
3199
static void rtl8139_mmio_writew(void *opaque, hwaddr addr, uint32_t val)
3200
{
3201
    rtl8139_io_writew(opaque, addr & 0xFF, val);
3202
}
3203

    
3204
static void rtl8139_mmio_writel(void *opaque, hwaddr addr, uint32_t val)
3205
{
3206
    rtl8139_io_writel(opaque, addr & 0xFF, val);
3207
}
3208

    
3209
static uint32_t rtl8139_mmio_readb(void *opaque, hwaddr addr)
3210
{
3211
    return rtl8139_io_readb(opaque, addr & 0xFF);
3212
}
3213

    
3214
static uint32_t rtl8139_mmio_readw(void *opaque, hwaddr addr)
3215
{
3216
    uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3217
    return val;
3218
}
3219

    
3220
static uint32_t rtl8139_mmio_readl(void *opaque, hwaddr addr)
3221
{
3222
    uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3223
    return val;
3224
}
3225

    
3226
static int rtl8139_post_load(void *opaque, int version_id)
3227
{
3228
    RTL8139State* s = opaque;
3229
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3230
    if (version_id < 4) {
3231
        s->cplus_enabled = s->CpCmd != 0;
3232
    }
3233

    
3234
    /* nc.link_down can't be migrated, so infer link_down according
3235
     * to link status bit in BasicModeStatus */
3236
    qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3237

    
3238
    return 0;
3239
}
3240

    
3241
static bool rtl8139_hotplug_ready_needed(void *opaque)
3242
{
3243
    return qdev_machine_modified();
3244
}
3245

    
3246
static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3247
    .name = "rtl8139/hotplug_ready",
3248
    .version_id = 1,
3249
    .minimum_version_id = 1,
3250
    .minimum_version_id_old = 1,
3251
    .fields      = (VMStateField []) {
3252
        VMSTATE_END_OF_LIST()
3253
    }
3254
};
3255

    
3256
static void rtl8139_pre_save(void *opaque)
3257
{
3258
    RTL8139State* s = opaque;
3259
    int64_t current_time = qemu_get_clock_ns(vm_clock);
3260

    
3261
    /* set IntrStatus correctly */
3262
    rtl8139_set_next_tctr_time(s, current_time);
3263
    s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3264
                       get_ticks_per_sec());
3265
    s->rtl8139_mmio_io_addr_dummy = 0;
3266
}
3267

    
3268
static const VMStateDescription vmstate_rtl8139 = {
3269
    .name = "rtl8139",
3270
    .version_id = 4,
3271
    .minimum_version_id = 3,
3272
    .minimum_version_id_old = 3,
3273
    .post_load = rtl8139_post_load,
3274
    .pre_save  = rtl8139_pre_save,
3275
    .fields      = (VMStateField []) {
3276
        VMSTATE_PCI_DEVICE(dev, RTL8139State),
3277
        VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3278
        VMSTATE_BUFFER(mult, RTL8139State),
3279
        VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3280
        VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3281

    
3282
        VMSTATE_UINT32(RxBuf, RTL8139State),
3283
        VMSTATE_UINT32(RxBufferSize, RTL8139State),
3284
        VMSTATE_UINT32(RxBufPtr, RTL8139State),
3285
        VMSTATE_UINT32(RxBufAddr, RTL8139State),
3286

    
3287
        VMSTATE_UINT16(IntrStatus, RTL8139State),
3288
        VMSTATE_UINT16(IntrMask, RTL8139State),
3289

    
3290
        VMSTATE_UINT32(TxConfig, RTL8139State),
3291
        VMSTATE_UINT32(RxConfig, RTL8139State),
3292
        VMSTATE_UINT32(RxMissed, RTL8139State),
3293
        VMSTATE_UINT16(CSCR, RTL8139State),
3294

    
3295
        VMSTATE_UINT8(Cfg9346, RTL8139State),
3296
        VMSTATE_UINT8(Config0, RTL8139State),
3297
        VMSTATE_UINT8(Config1, RTL8139State),
3298
        VMSTATE_UINT8(Config3, RTL8139State),
3299
        VMSTATE_UINT8(Config4, RTL8139State),
3300
        VMSTATE_UINT8(Config5, RTL8139State),
3301

    
3302
        VMSTATE_UINT8(clock_enabled, RTL8139State),
3303
        VMSTATE_UINT8(bChipCmdState, RTL8139State),
3304

    
3305
        VMSTATE_UINT16(MultiIntr, RTL8139State),
3306

    
3307
        VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3308
        VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3309
        VMSTATE_UINT16(NWayAdvert, RTL8139State),
3310
        VMSTATE_UINT16(NWayLPAR, RTL8139State),
3311
        VMSTATE_UINT16(NWayExpansion, RTL8139State),
3312

    
3313
        VMSTATE_UINT16(CpCmd, RTL8139State),
3314
        VMSTATE_UINT8(TxThresh, RTL8139State),
3315

    
3316
        VMSTATE_UNUSED(4),
3317
        VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3318
        VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3319

    
3320
        VMSTATE_UINT32(currTxDesc, RTL8139State),
3321
        VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3322
        VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3323
        VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3324
        VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3325

    
3326
        VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3327
        VMSTATE_INT32(eeprom.mode, RTL8139State),
3328
        VMSTATE_UINT32(eeprom.tick, RTL8139State),
3329
        VMSTATE_UINT8(eeprom.address, RTL8139State),
3330
        VMSTATE_UINT16(eeprom.input, RTL8139State),
3331
        VMSTATE_UINT16(eeprom.output, RTL8139State),
3332

    
3333
        VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3334
        VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3335
        VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3336
        VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3337

    
3338
        VMSTATE_UINT32(TCTR, RTL8139State),
3339
        VMSTATE_UINT32(TimerInt, RTL8139State),
3340
        VMSTATE_INT64(TCTR_base, RTL8139State),
3341

    
3342
        VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3343
                       vmstate_tally_counters, RTL8139TallyCounters),
3344

    
3345
        VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3346
        VMSTATE_END_OF_LIST()
3347
    },
3348
    .subsections = (VMStateSubsection []) {
3349
        {
3350
            .vmsd = &vmstate_rtl8139_hotplug_ready,
3351
            .needed = rtl8139_hotplug_ready_needed,
3352
        }, {
3353
            /* empty */
3354
        }
3355
    }
3356
};
3357

    
3358
/***********************************************************/
3359
/* PCI RTL8139 definitions */
3360

    
3361
static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3362
                                 uint64_t val, unsigned size)
3363
{
3364
    switch (size) {
3365
    case 1:
3366
        rtl8139_io_writeb(opaque, addr, val);
3367
        break;
3368
    case 2:
3369
        rtl8139_io_writew(opaque, addr, val);
3370
        break;
3371
    case 4:
3372
        rtl8139_io_writel(opaque, addr, val);
3373
        break;
3374
    }
3375
}
3376

    
3377
static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3378
                                    unsigned size)
3379
{
3380
    switch (size) {
3381
    case 1:
3382
        return rtl8139_io_readb(opaque, addr);
3383
    case 2:
3384
        return rtl8139_io_readw(opaque, addr);
3385
    case 4:
3386
        return rtl8139_io_readl(opaque, addr);
3387
    }
3388

    
3389
    return -1;
3390
}
3391

    
3392
static const MemoryRegionOps rtl8139_io_ops = {
3393
    .read = rtl8139_ioport_read,
3394
    .write = rtl8139_ioport_write,
3395
    .impl = {
3396
        .min_access_size = 1,
3397
        .max_access_size = 4,
3398
    },
3399
    .endianness = DEVICE_LITTLE_ENDIAN,
3400
};
3401

    
3402
static const MemoryRegionOps rtl8139_mmio_ops = {
3403
    .old_mmio = {
3404
        .read = {
3405
            rtl8139_mmio_readb,
3406
            rtl8139_mmio_readw,
3407
            rtl8139_mmio_readl,
3408
        },
3409
        .write = {
3410
            rtl8139_mmio_writeb,
3411
            rtl8139_mmio_writew,
3412
            rtl8139_mmio_writel,
3413
        },
3414
    },
3415
    .endianness = DEVICE_LITTLE_ENDIAN,
3416
};
3417

    
3418
static void rtl8139_timer(void *opaque)
3419
{
3420
    RTL8139State *s = opaque;
3421

    
3422
    if (!s->clock_enabled)
3423
    {
3424
        DPRINTF(">>> timer: clock is not running\n");
3425
        return;
3426
    }
3427

    
3428
    s->IntrStatus |= PCSTimeout;
3429
    rtl8139_update_irq(s);
3430
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3431
}
3432

    
3433
static void rtl8139_cleanup(NetClientState *nc)
3434
{
3435
    RTL8139State *s = qemu_get_nic_opaque(nc);
3436

    
3437
    s->nic = NULL;
3438
}
3439

    
3440
static void pci_rtl8139_uninit(PCIDevice *dev)
3441
{
3442
    RTL8139State *s = DO_UPCAST(RTL8139State, dev, dev);
3443

    
3444
    memory_region_destroy(&s->bar_io);
3445
    memory_region_destroy(&s->bar_mem);
3446
    if (s->cplus_txbuffer) {
3447
        g_free(s->cplus_txbuffer);
3448
        s->cplus_txbuffer = NULL;
3449
    }
3450
    qemu_del_timer(s->timer);
3451
    qemu_free_timer(s->timer);
3452
    qemu_del_nic(s->nic);
3453
}
3454

    
3455
static void rtl8139_set_link_status(NetClientState *nc)
3456
{
3457
    RTL8139State *s = qemu_get_nic_opaque(nc);
3458

    
3459
    if (nc->link_down) {
3460
        s->BasicModeStatus &= ~0x04;
3461
    } else {
3462
        s->BasicModeStatus |= 0x04;
3463
    }
3464

    
3465
    s->IntrStatus |= RxUnderrun;
3466
    rtl8139_update_irq(s);
3467
}
3468

    
3469
static NetClientInfo net_rtl8139_info = {
3470
    .type = NET_CLIENT_OPTIONS_KIND_NIC,
3471
    .size = sizeof(NICState),
3472
    .can_receive = rtl8139_can_receive,
3473
    .receive = rtl8139_receive,
3474
    .cleanup = rtl8139_cleanup,
3475
    .link_status_changed = rtl8139_set_link_status,
3476
};
3477

    
3478
static int pci_rtl8139_init(PCIDevice *dev)
3479
{
3480
    RTL8139State * s = DO_UPCAST(RTL8139State, dev, dev);
3481
    uint8_t *pci_conf;
3482

    
3483
    pci_conf = s->dev.config;
3484
    pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3485
    /* TODO: start of capability list, but no capability
3486
     * list bit in status register, and offset 0xdc seems unused. */
3487
    pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3488

    
3489
    memory_region_init_io(&s->bar_io, &rtl8139_io_ops, s, "rtl8139", 0x100);
3490
    memory_region_init_io(&s->bar_mem, &rtl8139_mmio_ops, s, "rtl8139", 0x100);
3491
    pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3492
    pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3493

    
3494
    qemu_macaddr_default_if_unset(&s->conf.macaddr);
3495

    
3496
    /* prepare eeprom */
3497
    s->eeprom.contents[0] = 0x8129;
3498
#if 1
3499
    /* PCI vendor and device ID should be mirrored here */
3500
    s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3501
    s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3502
#endif
3503
    s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3504
    s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3505
    s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3506

    
3507
    s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3508
                          object_get_typename(OBJECT(dev)), dev->qdev.id, s);
3509
    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3510

    
3511
    s->cplus_txbuffer = NULL;
3512
    s->cplus_txbuffer_len = 0;
3513
    s->cplus_txbuffer_offset = 0;
3514

    
3515
    s->TimerExpire = 0;
3516
    s->timer = qemu_new_timer_ns(vm_clock, rtl8139_timer, s);
3517
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3518

    
3519
    add_boot_device_path(s->conf.bootindex, &dev->qdev, "/ethernet-phy@0");
3520

    
3521
    return 0;
3522
}
3523

    
3524
static Property rtl8139_properties[] = {
3525
    DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3526
    DEFINE_PROP_END_OF_LIST(),
3527
};
3528

    
3529
static void rtl8139_class_init(ObjectClass *klass, void *data)
3530
{
3531
    DeviceClass *dc = DEVICE_CLASS(klass);
3532
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3533

    
3534
    k->init = pci_rtl8139_init;
3535
    k->exit = pci_rtl8139_uninit;
3536
    k->romfile = "efi-rtl8139.rom";
3537
    k->vendor_id = PCI_VENDOR_ID_REALTEK;
3538
    k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3539
    k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3540
    k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3541
    dc->reset = rtl8139_reset;
3542
    dc->vmsd = &vmstate_rtl8139;
3543
    dc->props = rtl8139_properties;
3544
}
3545

    
3546
static const TypeInfo rtl8139_info = {
3547
    .name          = "rtl8139",
3548
    .parent        = TYPE_PCI_DEVICE,
3549
    .instance_size = sizeof(RTL8139State),
3550
    .class_init    = rtl8139_class_init,
3551
};
3552

    
3553
static void rtl8139_register_types(void)
3554
{
3555
    type_register_static(&rtl8139_info);
3556
}
3557

    
3558
type_init(rtl8139_register_types)