Statistics
| Branch: | Revision:

root / target-sh4 / op_helper.c @ db8d9902

History | View | Annotate | Download (10.6 kB)

1
/*
2
 *  SH4 emulation
3
 *
4
 *  Copyright (c) 2005 Samuel Tardieu
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include <assert.h>
21
#include "exec.h"
22
#include "helper.h"
23

    
24
#ifndef CONFIG_USER_ONLY
25

    
26
#define MMUSUFFIX _mmu
27

    
28
#define SHIFT 0
29
#include "softmmu_template.h"
30

    
31
#define SHIFT 1
32
#include "softmmu_template.h"
33

    
34
#define SHIFT 2
35
#include "softmmu_template.h"
36

    
37
#define SHIFT 3
38
#include "softmmu_template.h"
39

    
40
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
41
{
42
    TranslationBlock *tb;
43
    CPUState *saved_env;
44
    unsigned long pc;
45
    int ret;
46

    
47
    /* XXX: hack to restore env in all cases, even if not called from
48
       generated code */
49
    saved_env = env;
50
    env = cpu_single_env;
51
    ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
52
    if (ret) {
53
        if (retaddr) {
54
            /* now we have a real cpu fault */
55
            pc = (unsigned long) retaddr;
56
            tb = tb_find_pc(pc);
57
            if (tb) {
58
                /* the PC is inside the translated code. It means that we have
59
                   a virtual CPU fault */
60
                cpu_restore_state(tb, env, pc, NULL);
61
            }
62
        }
63
        cpu_loop_exit();
64
    }
65
    env = saved_env;
66
}
67

    
68
#endif
69

    
70
void helper_ldtlb(void)
71
{
72
#ifdef CONFIG_USER_ONLY
73
    /* XXXXX */
74
    assert(0);
75
#else
76
    cpu_load_tlb(env);
77
#endif
78
}
79

    
80
void helper_raise_illegal_instruction(void)
81
{
82
    env->exception_index = 0x180;
83
    cpu_loop_exit();
84
}
85

    
86
void helper_raise_slot_illegal_instruction(void)
87
{
88
    env->exception_index = 0x1a0;
89
    cpu_loop_exit();
90
}
91

    
92
void helper_debug(void)
93
{
94
    env->exception_index = EXCP_DEBUG;
95
    cpu_loop_exit();
96
}
97

    
98
void helper_sleep(uint32_t next_pc)
99
{
100
    env->halted = 1;
101
    env->exception_index = EXCP_HLT;
102
    env->pc = next_pc;
103
    cpu_loop_exit();
104
}
105

    
106
void helper_trapa(uint32_t tra)
107
{
108
    env->tra = tra << 2;
109
    env->exception_index = 0x160;
110
    cpu_loop_exit();
111
}
112

    
113
uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
114
{
115
    uint32_t tmp0, tmp1;
116

    
117
    tmp1 = arg0 + arg1;
118
    tmp0 = arg1;
119
    arg1 = tmp1 + (env->sr & 1);
120
    if (tmp0 > tmp1)
121
        env->sr |= SR_T;
122
    else
123
        env->sr &= ~SR_T;
124
    if (tmp1 > arg1)
125
        env->sr |= SR_T;
126
    return arg1;
127
}
128

    
129
uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
130
{
131
    uint32_t dest, src, ans;
132

    
133
    if ((int32_t) arg1 >= 0)
134
        dest = 0;
135
    else
136
        dest = 1;
137
    if ((int32_t) arg0 >= 0)
138
        src = 0;
139
    else
140
        src = 1;
141
    src += dest;
142
    arg1 += arg0;
143
    if ((int32_t) arg1 >= 0)
144
        ans = 0;
145
    else
146
        ans = 1;
147
    ans += dest;
148
    if (src == 0 || src == 2) {
149
        if (ans == 1)
150
            env->sr |= SR_T;
151
        else
152
            env->sr &= ~SR_T;
153
    } else
154
        env->sr &= ~SR_T;
155
    return arg1;
156
}
157

    
158
#define T (env->sr & SR_T)
159
#define Q (env->sr & SR_Q ? 1 : 0)
160
#define M (env->sr & SR_M ? 1 : 0)
161
#define SETT env->sr |= SR_T
162
#define CLRT env->sr &= ~SR_T
163
#define SETQ env->sr |= SR_Q
164
#define CLRQ env->sr &= ~SR_Q
165
#define SETM env->sr |= SR_M
166
#define CLRM env->sr &= ~SR_M
167

    
168
uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
169
{
170
    uint32_t tmp0, tmp2;
171
    uint8_t old_q, tmp1 = 0xff;
172

    
173
    //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
174
    old_q = Q;
175
    if ((0x80000000 & arg1) != 0)
176
        SETQ;
177
    else
178
        CLRQ;
179
    tmp2 = arg0;
180
    arg1 <<= 1;
181
    arg1 |= T;
182
    switch (old_q) {
183
    case 0:
184
        switch (M) {
185
        case 0:
186
            tmp0 = arg1;
187
            arg1 -= tmp2;
188
            tmp1 = arg1 > tmp0;
189
            switch (Q) {
190
            case 0:
191
                if (tmp1)
192
                    SETQ;
193
                else
194
                    CLRQ;
195
                break;
196
            case 1:
197
                if (tmp1 == 0)
198
                    SETQ;
199
                else
200
                    CLRQ;
201
                break;
202
            }
203
            break;
204
        case 1:
205
            tmp0 = arg1;
206
            arg1 += tmp2;
207
            tmp1 = arg1 < tmp0;
208
            switch (Q) {
209
            case 0:
210
                if (tmp1 == 0)
211
                    SETQ;
212
                else
213
                    CLRQ;
214
                break;
215
            case 1:
216
                if (tmp1)
217
                    SETQ;
218
                else
219
                    CLRQ;
220
                break;
221
            }
222
            break;
223
        }
224
        break;
225
    case 1:
226
        switch (M) {
227
        case 0:
228
            tmp0 = arg1;
229
            arg1 += tmp2;
230
            tmp1 = arg1 < tmp0;
231
            switch (Q) {
232
            case 0:
233
                if (tmp1)
234
                    SETQ;
235
                else
236
                    CLRQ;
237
                break;
238
            case 1:
239
                if (tmp1 == 0)
240
                    SETQ;
241
                else
242
                    CLRQ;
243
                break;
244
            }
245
            break;
246
        case 1:
247
            tmp0 = arg1;
248
            arg1 -= tmp2;
249
            tmp1 = arg1 > tmp0;
250
            switch (Q) {
251
            case 0:
252
                if (tmp1 == 0)
253
                    SETQ;
254
                else
255
                    CLRQ;
256
                break;
257
            case 1:
258
                if (tmp1)
259
                    SETQ;
260
                else
261
                    CLRQ;
262
                break;
263
            }
264
            break;
265
        }
266
        break;
267
    }
268
    if (Q == M)
269
        SETT;
270
    else
271
        CLRT;
272
    //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
273
    return arg1;
274
}
275

    
276
void helper_macl(uint32_t arg0, uint32_t arg1)
277
{
278
    int64_t res;
279

    
280
    res = ((uint64_t) env->mach << 32) | env->macl;
281
    res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
282
    env->mach = (res >> 32) & 0xffffffff;
283
    env->macl = res & 0xffffffff;
284
    if (env->sr & SR_S) {
285
        if (res < 0)
286
            env->mach |= 0xffff0000;
287
        else
288
            env->mach &= 0x00007fff;
289
    }
290
}
291

    
292
void helper_macw(uint32_t arg0, uint32_t arg1)
293
{
294
    int64_t res;
295

    
296
    res = ((uint64_t) env->mach << 32) | env->macl;
297
    res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
298
    env->mach = (res >> 32) & 0xffffffff;
299
    env->macl = res & 0xffffffff;
300
    if (env->sr & SR_S) {
301
        if (res < -0x80000000) {
302
            env->mach = 1;
303
            env->macl = 0x80000000;
304
        } else if (res > 0x000000007fffffff) {
305
            env->mach = 1;
306
            env->macl = 0x7fffffff;
307
        }
308
    }
309
}
310

    
311
uint32_t helper_negc(uint32_t arg)
312
{
313
    uint32_t temp;
314

    
315
    temp = -arg;
316
    arg = temp - (env->sr & SR_T);
317
    if (0 < temp)
318
        env->sr |= SR_T;
319
    else
320
        env->sr &= ~SR_T;
321
    if (temp < arg)
322
        env->sr |= SR_T;
323
    return arg;
324
}
325

    
326
uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
327
{
328
    uint32_t tmp0, tmp1;
329

    
330
    tmp1 = arg1 - arg0;
331
    tmp0 = arg1;
332
    arg1 = tmp1 - (env->sr & SR_T);
333
    if (tmp0 < tmp1)
334
        env->sr |= SR_T;
335
    else
336
        env->sr &= ~SR_T;
337
    if (tmp1 < arg1)
338
        env->sr |= SR_T;
339
    return arg1;
340
}
341

    
342
uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
343
{
344
    int32_t dest, src, ans;
345

    
346
    if ((int32_t) arg1 >= 0)
347
        dest = 0;
348
    else
349
        dest = 1;
350
    if ((int32_t) arg0 >= 0)
351
        src = 0;
352
    else
353
        src = 1;
354
    src += dest;
355
    arg1 -= arg0;
356
    if ((int32_t) arg1 >= 0)
357
        ans = 0;
358
    else
359
        ans = 1;
360
    ans += dest;
361
    if (src == 1) {
362
        if (ans == 1)
363
            env->sr |= SR_T;
364
        else
365
            env->sr &= ~SR_T;
366
    } else
367
        env->sr &= ~SR_T;
368
    return arg1;
369
}
370

    
371
static inline void set_t(void)
372
{
373
    env->sr |= SR_T;
374
}
375

    
376
static inline void clr_t(void)
377
{
378
    env->sr &= ~SR_T;
379
}
380

    
381
void helper_ld_fpscr(uint32_t val)
382
{
383
    env->fpscr = val & 0x003fffff;
384
    if (val & 0x01)
385
        set_float_rounding_mode(float_round_to_zero, &env->fp_status);
386
    else
387
        set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
388
}
389

    
390
uint32_t helper_fabs_FT(uint32_t t0)
391
{
392
    CPU_FloatU f;
393
    f.l = t0;
394
    f.f = float32_abs(f.f);
395
    return f.l;
396
}
397

    
398
uint64_t helper_fabs_DT(uint64_t t0)
399
{
400
    CPU_DoubleU d;
401
    d.ll = t0;
402
    d.d = float64_abs(d.d);
403
    return d.ll;
404
}
405

    
406
uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
407
{
408
    CPU_FloatU f0, f1;
409
    f0.l = t0;
410
    f1.l = t1;
411
    f0.f = float32_add(f0.f, f1.f, &env->fp_status);
412
    return f0.l;
413
}
414

    
415
uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
416
{
417
    CPU_DoubleU d0, d1;
418
    d0.ll = t0;
419
    d1.ll = t1;
420
    d0.d = float64_add(d0.d, d1.d, &env->fp_status);
421
    return d0.ll;
422
}
423

    
424
void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
425
{
426
    CPU_FloatU f0, f1;
427
    f0.l = t0;
428
    f1.l = t1;
429

    
430
    if (float32_compare(f0.f, f1.f, &env->fp_status) == 0)
431
        set_t();
432
    else
433
        clr_t();
434
}
435

    
436
void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
437
{
438
    CPU_DoubleU d0, d1;
439
    d0.ll = t0;
440
    d1.ll = t1;
441

    
442
    if (float64_compare(d0.d, d1.d, &env->fp_status) == 0)
443
        set_t();
444
    else
445
        clr_t();
446
}
447

    
448
void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
449
{
450
    CPU_FloatU f0, f1;
451
    f0.l = t0;
452
    f1.l = t1;
453

    
454
    if (float32_compare(f0.f, f1.f, &env->fp_status) == 1)
455
        set_t();
456
    else
457
        clr_t();
458
}
459

    
460
void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
461
{
462
    CPU_DoubleU d0, d1;
463
    d0.ll = t0;
464
    d1.ll = t1;
465

    
466
    if (float64_compare(d0.d, d1.d, &env->fp_status) == 1)
467
        set_t();
468
    else
469
        clr_t();
470
}
471

    
472
uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
473
{
474
    CPU_DoubleU d;
475
    CPU_FloatU f;
476
    f.l = t0;
477
    d.d = float32_to_float64(f.f, &env->fp_status);
478
    return d.ll;
479
}
480

    
481
uint32_t helper_fcnvds_DT_FT(uint64_t t0)
482
{
483
    CPU_DoubleU d;
484
    CPU_FloatU f;
485
    d.ll = t0;
486
    f.f = float64_to_float32(d.d, &env->fp_status);
487
    return f.l;
488
}
489

    
490
uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
491
{
492
    CPU_FloatU f0, f1;
493
    f0.l = t0;
494
    f1.l = t1;
495
    f0.f = float32_div(f0.f, f1.f, &env->fp_status);
496
    return f0.l;
497
}
498

    
499
uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
500
{
501
    CPU_DoubleU d0, d1;
502
    d0.ll = t0;
503
    d1.ll = t1;
504
    d0.d = float64_div(d0.d, d1.d, &env->fp_status);
505
    return d0.ll;
506
}
507

    
508
uint32_t helper_float_FT(uint32_t t0)
509
{
510
    CPU_FloatU f;
511
    f.f = int32_to_float32(t0, &env->fp_status);
512
    return f.l;
513
}
514

    
515
uint64_t helper_float_DT(uint32_t t0)
516
{
517
    CPU_DoubleU d;
518
    d.d = int32_to_float64(t0, &env->fp_status);
519
    return d.ll;
520
}
521

    
522
uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
523
{
524
    CPU_FloatU f0, f1;
525
    f0.l = t0;
526
    f1.l = t1;
527
    f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
528
    return f0.l;
529
}
530

    
531
uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
532
{
533
    CPU_DoubleU d0, d1;
534
    d0.ll = t0;
535
    d1.ll = t1;
536
    d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
537
    return d0.ll;
538
}
539

    
540
uint32_t helper_fneg_T(uint32_t t0)
541
{
542
    CPU_FloatU f;
543
    f.l = t0;
544
    f.f = float32_chs(f.f);
545
    return f.l;
546
}
547

    
548
uint32_t helper_fsqrt_FT(uint32_t t0)
549
{
550
    CPU_FloatU f;
551
    f.l = t0;
552
    f.f = float32_sqrt(f.f, &env->fp_status);
553
    return f.l;
554
}
555

    
556
uint64_t helper_fsqrt_DT(uint64_t t0)
557
{
558
    CPU_DoubleU d;
559
    d.ll = t0;
560
    d.d = float64_sqrt(d.d, &env->fp_status);
561
    return d.ll;
562
}
563

    
564
uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
565
{
566
    CPU_FloatU f0, f1;
567
    f0.l = t0;
568
    f1.l = t1;
569
    f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
570
    return f0.l;
571
}
572

    
573
uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
574
{
575
    CPU_DoubleU d0, d1;
576
    d0.ll = t0;
577
    d1.ll = t1;
578
    d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
579
    return d0.ll;
580
}
581

    
582
uint32_t helper_ftrc_FT(uint32_t t0)
583
{
584
    CPU_FloatU f;
585
    f.l = t0;
586
    return float32_to_int32_round_to_zero(f.f, &env->fp_status);
587
}
588

    
589
uint32_t helper_ftrc_DT(uint64_t t0)
590
{
591
    CPU_DoubleU d;
592
    d.ll = t0;
593
    return float64_to_int32_round_to_zero(d.d, &env->fp_status);
594
}