Statistics
| Branch: | Revision:

root / kvm-all.c @ dc1c13d9

History | View | Annotate | Download (50.7 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu-barrier.h"
25
#include "qemu-option.h"
26
#include "qemu-config.h"
27
#include "sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/msi.h"
30
#include "gdbstub.h"
31
#include "kvm.h"
32
#include "bswap.h"
33
#include "memory.h"
34
#include "exec-memory.h"
35
#include "event_notifier.h"
36

    
37
/* This check must be after config-host.h is included */
38
#ifdef CONFIG_EVENTFD
39
#include <sys/eventfd.h>
40
#endif
41

    
42
#ifdef CONFIG_VALGRIND_H
43
#include <valgrind/memcheck.h>
44
#endif
45

    
46
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47
#define PAGE_SIZE TARGET_PAGE_SIZE
48

    
49
//#define DEBUG_KVM
50

    
51
#ifdef DEBUG_KVM
52
#define DPRINTF(fmt, ...) \
53
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54
#else
55
#define DPRINTF(fmt, ...) \
56
    do { } while (0)
57
#endif
58

    
59
#define KVM_MSI_HASHTAB_SIZE    256
60

    
61
typedef struct KVMSlot
62
{
63
    target_phys_addr_t start_addr;
64
    ram_addr_t memory_size;
65
    void *ram;
66
    int slot;
67
    int flags;
68
} KVMSlot;
69

    
70
typedef struct kvm_dirty_log KVMDirtyLog;
71

    
72
struct KVMState
73
{
74
    KVMSlot slots[32];
75
    int fd;
76
    int vmfd;
77
    int coalesced_mmio;
78
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79
    bool coalesced_flush_in_progress;
80
    int broken_set_mem_region;
81
    int migration_log;
82
    int vcpu_events;
83
    int robust_singlestep;
84
    int debugregs;
85
#ifdef KVM_CAP_SET_GUEST_DEBUG
86
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87
#endif
88
    int pit_state2;
89
    int xsave, xcrs;
90
    int many_ioeventfds;
91
    int intx_set_mask;
92
    /* The man page (and posix) say ioctl numbers are signed int, but
93
     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
94
     * unsigned, and treating them as signed here can break things */
95
    unsigned irq_set_ioctl;
96
#ifdef KVM_CAP_IRQ_ROUTING
97
    struct kvm_irq_routing *irq_routes;
98
    int nr_allocated_irq_routes;
99
    uint32_t *used_gsi_bitmap;
100
    unsigned int gsi_count;
101
    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102
    bool direct_msi;
103
#endif
104
};
105

    
106
KVMState *kvm_state;
107
bool kvm_kernel_irqchip;
108
bool kvm_async_interrupts_allowed;
109
bool kvm_irqfds_allowed;
110
bool kvm_msi_via_irqfd_allowed;
111
bool kvm_gsi_routing_allowed;
112

    
113
static const KVMCapabilityInfo kvm_required_capabilites[] = {
114
    KVM_CAP_INFO(USER_MEMORY),
115
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
116
    KVM_CAP_LAST_INFO
117
};
118

    
119
static KVMSlot *kvm_alloc_slot(KVMState *s)
120
{
121
    int i;
122

    
123
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124
        if (s->slots[i].memory_size == 0) {
125
            return &s->slots[i];
126
        }
127
    }
128

    
129
    fprintf(stderr, "%s: no free slot available\n", __func__);
130
    abort();
131
}
132

    
133
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
134
                                         target_phys_addr_t start_addr,
135
                                         target_phys_addr_t end_addr)
136
{
137
    int i;
138

    
139
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
140
        KVMSlot *mem = &s->slots[i];
141

    
142
        if (start_addr == mem->start_addr &&
143
            end_addr == mem->start_addr + mem->memory_size) {
144
            return mem;
145
        }
146
    }
147

    
148
    return NULL;
149
}
150

    
151
/*
152
 * Find overlapping slot with lowest start address
153
 */
154
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
155
                                            target_phys_addr_t start_addr,
156
                                            target_phys_addr_t end_addr)
157
{
158
    KVMSlot *found = NULL;
159
    int i;
160

    
161
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
162
        KVMSlot *mem = &s->slots[i];
163

    
164
        if (mem->memory_size == 0 ||
165
            (found && found->start_addr < mem->start_addr)) {
166
            continue;
167
        }
168

    
169
        if (end_addr > mem->start_addr &&
170
            start_addr < mem->start_addr + mem->memory_size) {
171
            found = mem;
172
        }
173
    }
174

    
175
    return found;
176
}
177

    
178
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
179
                                       target_phys_addr_t *phys_addr)
180
{
181
    int i;
182

    
183
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
184
        KVMSlot *mem = &s->slots[i];
185

    
186
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
187
            *phys_addr = mem->start_addr + (ram - mem->ram);
188
            return 1;
189
        }
190
    }
191

    
192
    return 0;
193
}
194

    
195
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
196
{
197
    struct kvm_userspace_memory_region mem;
198

    
199
    mem.slot = slot->slot;
200
    mem.guest_phys_addr = slot->start_addr;
201
    mem.memory_size = slot->memory_size;
202
    mem.userspace_addr = (unsigned long)slot->ram;
203
    mem.flags = slot->flags;
204
    if (s->migration_log) {
205
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
206
    }
207
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
208
}
209

    
210
static void kvm_reset_vcpu(void *opaque)
211
{
212
    CPUArchState *env = opaque;
213

    
214
    kvm_arch_reset_vcpu(env);
215
}
216

    
217
int kvm_init_vcpu(CPUArchState *env)
218
{
219
    KVMState *s = kvm_state;
220
    long mmap_size;
221
    int ret;
222

    
223
    DPRINTF("kvm_init_vcpu\n");
224

    
225
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
226
    if (ret < 0) {
227
        DPRINTF("kvm_create_vcpu failed\n");
228
        goto err;
229
    }
230

    
231
    env->kvm_fd = ret;
232
    env->kvm_state = s;
233
    env->kvm_vcpu_dirty = 1;
234

    
235
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
236
    if (mmap_size < 0) {
237
        ret = mmap_size;
238
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
239
        goto err;
240
    }
241

    
242
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
243
                        env->kvm_fd, 0);
244
    if (env->kvm_run == MAP_FAILED) {
245
        ret = -errno;
246
        DPRINTF("mmap'ing vcpu state failed\n");
247
        goto err;
248
    }
249

    
250
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
251
        s->coalesced_mmio_ring =
252
            (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
253
    }
254

    
255
    ret = kvm_arch_init_vcpu(env);
256
    if (ret == 0) {
257
        qemu_register_reset(kvm_reset_vcpu, env);
258
        kvm_arch_reset_vcpu(env);
259
    }
260
err:
261
    return ret;
262
}
263

    
264
/*
265
 * dirty pages logging control
266
 */
267

    
268
static int kvm_mem_flags(KVMState *s, bool log_dirty)
269
{
270
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
271
}
272

    
273
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
274
{
275
    KVMState *s = kvm_state;
276
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
277
    int old_flags;
278

    
279
    old_flags = mem->flags;
280

    
281
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
282
    mem->flags = flags;
283

    
284
    /* If nothing changed effectively, no need to issue ioctl */
285
    if (s->migration_log) {
286
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
287
    }
288

    
289
    if (flags == old_flags) {
290
        return 0;
291
    }
292

    
293
    return kvm_set_user_memory_region(s, mem);
294
}
295

    
296
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
297
                                      ram_addr_t size, bool log_dirty)
298
{
299
    KVMState *s = kvm_state;
300
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
301

    
302
    if (mem == NULL)  {
303
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
304
                TARGET_FMT_plx "\n", __func__, phys_addr,
305
                (target_phys_addr_t)(phys_addr + size - 1));
306
        return -EINVAL;
307
    }
308
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
309
}
310

    
311
static void kvm_log_start(MemoryListener *listener,
312
                          MemoryRegionSection *section)
313
{
314
    int r;
315

    
316
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
317
                                   section->size, true);
318
    if (r < 0) {
319
        abort();
320
    }
321
}
322

    
323
static void kvm_log_stop(MemoryListener *listener,
324
                          MemoryRegionSection *section)
325
{
326
    int r;
327

    
328
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
329
                                   section->size, false);
330
    if (r < 0) {
331
        abort();
332
    }
333
}
334

    
335
static int kvm_set_migration_log(int enable)
336
{
337
    KVMState *s = kvm_state;
338
    KVMSlot *mem;
339
    int i, err;
340

    
341
    s->migration_log = enable;
342

    
343
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
344
        mem = &s->slots[i];
345

    
346
        if (!mem->memory_size) {
347
            continue;
348
        }
349
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
350
            continue;
351
        }
352
        err = kvm_set_user_memory_region(s, mem);
353
        if (err) {
354
            return err;
355
        }
356
    }
357
    return 0;
358
}
359

    
360
/* get kvm's dirty pages bitmap and update qemu's */
361
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
362
                                         unsigned long *bitmap)
363
{
364
    unsigned int i, j;
365
    unsigned long page_number, c;
366
    target_phys_addr_t addr, addr1;
367
    unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
368
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
369

    
370
    /*
371
     * bitmap-traveling is faster than memory-traveling (for addr...)
372
     * especially when most of the memory is not dirty.
373
     */
374
    for (i = 0; i < len; i++) {
375
        if (bitmap[i] != 0) {
376
            c = leul_to_cpu(bitmap[i]);
377
            do {
378
                j = ffsl(c) - 1;
379
                c &= ~(1ul << j);
380
                page_number = (i * HOST_LONG_BITS + j) * hpratio;
381
                addr1 = page_number * TARGET_PAGE_SIZE;
382
                addr = section->offset_within_region + addr1;
383
                memory_region_set_dirty(section->mr, addr,
384
                                        TARGET_PAGE_SIZE * hpratio);
385
            } while (c != 0);
386
        }
387
    }
388
    return 0;
389
}
390

    
391
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
392

    
393
/**
394
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
395
 * This function updates qemu's dirty bitmap using
396
 * memory_region_set_dirty().  This means all bits are set
397
 * to dirty.
398
 *
399
 * @start_add: start of logged region.
400
 * @end_addr: end of logged region.
401
 */
402
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
403
{
404
    KVMState *s = kvm_state;
405
    unsigned long size, allocated_size = 0;
406
    KVMDirtyLog d;
407
    KVMSlot *mem;
408
    int ret = 0;
409
    target_phys_addr_t start_addr = section->offset_within_address_space;
410
    target_phys_addr_t end_addr = start_addr + section->size;
411

    
412
    d.dirty_bitmap = NULL;
413
    while (start_addr < end_addr) {
414
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
415
        if (mem == NULL) {
416
            break;
417
        }
418

    
419
        /* XXX bad kernel interface alert
420
         * For dirty bitmap, kernel allocates array of size aligned to
421
         * bits-per-long.  But for case when the kernel is 64bits and
422
         * the userspace is 32bits, userspace can't align to the same
423
         * bits-per-long, since sizeof(long) is different between kernel
424
         * and user space.  This way, userspace will provide buffer which
425
         * may be 4 bytes less than the kernel will use, resulting in
426
         * userspace memory corruption (which is not detectable by valgrind
427
         * too, in most cases).
428
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
429
         * a hope that sizeof(long) wont become >8 any time soon.
430
         */
431
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
432
                     /*HOST_LONG_BITS*/ 64) / 8;
433
        if (!d.dirty_bitmap) {
434
            d.dirty_bitmap = g_malloc(size);
435
        } else if (size > allocated_size) {
436
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
437
        }
438
        allocated_size = size;
439
        memset(d.dirty_bitmap, 0, allocated_size);
440

    
441
        d.slot = mem->slot;
442

    
443
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
444
            DPRINTF("ioctl failed %d\n", errno);
445
            ret = -1;
446
            break;
447
        }
448

    
449
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
450
        start_addr = mem->start_addr + mem->memory_size;
451
    }
452
    g_free(d.dirty_bitmap);
453

    
454
    return ret;
455
}
456

    
457
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
458
{
459
    int ret = -ENOSYS;
460
    KVMState *s = kvm_state;
461

    
462
    if (s->coalesced_mmio) {
463
        struct kvm_coalesced_mmio_zone zone;
464

    
465
        zone.addr = start;
466
        zone.size = size;
467
        zone.pad = 0;
468

    
469
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
470
    }
471

    
472
    return ret;
473
}
474

    
475
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
476
{
477
    int ret = -ENOSYS;
478
    KVMState *s = kvm_state;
479

    
480
    if (s->coalesced_mmio) {
481
        struct kvm_coalesced_mmio_zone zone;
482

    
483
        zone.addr = start;
484
        zone.size = size;
485
        zone.pad = 0;
486

    
487
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
488
    }
489

    
490
    return ret;
491
}
492

    
493
int kvm_check_extension(KVMState *s, unsigned int extension)
494
{
495
    int ret;
496

    
497
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
498
    if (ret < 0) {
499
        ret = 0;
500
    }
501

    
502
    return ret;
503
}
504

    
505
static int kvm_check_many_ioeventfds(void)
506
{
507
    /* Userspace can use ioeventfd for io notification.  This requires a host
508
     * that supports eventfd(2) and an I/O thread; since eventfd does not
509
     * support SIGIO it cannot interrupt the vcpu.
510
     *
511
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
512
     * can avoid creating too many ioeventfds.
513
     */
514
#if defined(CONFIG_EVENTFD)
515
    int ioeventfds[7];
516
    int i, ret = 0;
517
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
518
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
519
        if (ioeventfds[i] < 0) {
520
            break;
521
        }
522
        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
523
        if (ret < 0) {
524
            close(ioeventfds[i]);
525
            break;
526
        }
527
    }
528

    
529
    /* Decide whether many devices are supported or not */
530
    ret = i == ARRAY_SIZE(ioeventfds);
531

    
532
    while (i-- > 0) {
533
        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
534
        close(ioeventfds[i]);
535
    }
536
    return ret;
537
#else
538
    return 0;
539
#endif
540
}
541

    
542
static const KVMCapabilityInfo *
543
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
544
{
545
    while (list->name) {
546
        if (!kvm_check_extension(s, list->value)) {
547
            return list;
548
        }
549
        list++;
550
    }
551
    return NULL;
552
}
553

    
554
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
555
{
556
    KVMState *s = kvm_state;
557
    KVMSlot *mem, old;
558
    int err;
559
    MemoryRegion *mr = section->mr;
560
    bool log_dirty = memory_region_is_logging(mr);
561
    target_phys_addr_t start_addr = section->offset_within_address_space;
562
    ram_addr_t size = section->size;
563
    void *ram = NULL;
564
    unsigned delta;
565

    
566
    /* kvm works in page size chunks, but the function may be called
567
       with sub-page size and unaligned start address. */
568
    delta = TARGET_PAGE_ALIGN(size) - size;
569
    if (delta > size) {
570
        return;
571
    }
572
    start_addr += delta;
573
    size -= delta;
574
    size &= TARGET_PAGE_MASK;
575
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
576
        return;
577
    }
578

    
579
    if (!memory_region_is_ram(mr)) {
580
        return;
581
    }
582

    
583
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
584

    
585
    while (1) {
586
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
587
        if (!mem) {
588
            break;
589
        }
590

    
591
        if (add && start_addr >= mem->start_addr &&
592
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
593
            (ram - start_addr == mem->ram - mem->start_addr)) {
594
            /* The new slot fits into the existing one and comes with
595
             * identical parameters - update flags and done. */
596
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
597
            return;
598
        }
599

    
600
        old = *mem;
601

    
602
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
603
            kvm_physical_sync_dirty_bitmap(section);
604
        }
605

    
606
        /* unregister the overlapping slot */
607
        mem->memory_size = 0;
608
        err = kvm_set_user_memory_region(s, mem);
609
        if (err) {
610
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
611
                    __func__, strerror(-err));
612
            abort();
613
        }
614

    
615
        /* Workaround for older KVM versions: we can't join slots, even not by
616
         * unregistering the previous ones and then registering the larger
617
         * slot. We have to maintain the existing fragmentation. Sigh.
618
         *
619
         * This workaround assumes that the new slot starts at the same
620
         * address as the first existing one. If not or if some overlapping
621
         * slot comes around later, we will fail (not seen in practice so far)
622
         * - and actually require a recent KVM version. */
623
        if (s->broken_set_mem_region &&
624
            old.start_addr == start_addr && old.memory_size < size && add) {
625
            mem = kvm_alloc_slot(s);
626
            mem->memory_size = old.memory_size;
627
            mem->start_addr = old.start_addr;
628
            mem->ram = old.ram;
629
            mem->flags = kvm_mem_flags(s, log_dirty);
630

    
631
            err = kvm_set_user_memory_region(s, mem);
632
            if (err) {
633
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
634
                        strerror(-err));
635
                abort();
636
            }
637

    
638
            start_addr += old.memory_size;
639
            ram += old.memory_size;
640
            size -= old.memory_size;
641
            continue;
642
        }
643

    
644
        /* register prefix slot */
645
        if (old.start_addr < start_addr) {
646
            mem = kvm_alloc_slot(s);
647
            mem->memory_size = start_addr - old.start_addr;
648
            mem->start_addr = old.start_addr;
649
            mem->ram = old.ram;
650
            mem->flags =  kvm_mem_flags(s, log_dirty);
651

    
652
            err = kvm_set_user_memory_region(s, mem);
653
            if (err) {
654
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
655
                        __func__, strerror(-err));
656
#ifdef TARGET_PPC
657
                fprintf(stderr, "%s: This is probably because your kernel's " \
658
                                "PAGE_SIZE is too big. Please try to use 4k " \
659
                                "PAGE_SIZE!\n", __func__);
660
#endif
661
                abort();
662
            }
663
        }
664

    
665
        /* register suffix slot */
666
        if (old.start_addr + old.memory_size > start_addr + size) {
667
            ram_addr_t size_delta;
668

    
669
            mem = kvm_alloc_slot(s);
670
            mem->start_addr = start_addr + size;
671
            size_delta = mem->start_addr - old.start_addr;
672
            mem->memory_size = old.memory_size - size_delta;
673
            mem->ram = old.ram + size_delta;
674
            mem->flags = kvm_mem_flags(s, log_dirty);
675

    
676
            err = kvm_set_user_memory_region(s, mem);
677
            if (err) {
678
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
679
                        __func__, strerror(-err));
680
                abort();
681
            }
682
        }
683
    }
684

    
685
    /* in case the KVM bug workaround already "consumed" the new slot */
686
    if (!size) {
687
        return;
688
    }
689
    if (!add) {
690
        return;
691
    }
692
    mem = kvm_alloc_slot(s);
693
    mem->memory_size = size;
694
    mem->start_addr = start_addr;
695
    mem->ram = ram;
696
    mem->flags = kvm_mem_flags(s, log_dirty);
697

    
698
    err = kvm_set_user_memory_region(s, mem);
699
    if (err) {
700
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
701
                strerror(-err));
702
        abort();
703
    }
704
}
705

    
706
static void kvm_begin(MemoryListener *listener)
707
{
708
}
709

    
710
static void kvm_commit(MemoryListener *listener)
711
{
712
}
713

    
714
static void kvm_region_add(MemoryListener *listener,
715
                           MemoryRegionSection *section)
716
{
717
    kvm_set_phys_mem(section, true);
718
}
719

    
720
static void kvm_region_del(MemoryListener *listener,
721
                           MemoryRegionSection *section)
722
{
723
    kvm_set_phys_mem(section, false);
724
}
725

    
726
static void kvm_region_nop(MemoryListener *listener,
727
                           MemoryRegionSection *section)
728
{
729
}
730

    
731
static void kvm_log_sync(MemoryListener *listener,
732
                         MemoryRegionSection *section)
733
{
734
    int r;
735

    
736
    r = kvm_physical_sync_dirty_bitmap(section);
737
    if (r < 0) {
738
        abort();
739
    }
740
}
741

    
742
static void kvm_log_global_start(struct MemoryListener *listener)
743
{
744
    int r;
745

    
746
    r = kvm_set_migration_log(1);
747
    assert(r >= 0);
748
}
749

    
750
static void kvm_log_global_stop(struct MemoryListener *listener)
751
{
752
    int r;
753

    
754
    r = kvm_set_migration_log(0);
755
    assert(r >= 0);
756
}
757

    
758
static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
759
                                  bool match_data, uint64_t data, int fd)
760
{
761
    int r;
762

    
763
    assert(match_data && section->size <= 8);
764

    
765
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
766
                               data, true, section->size);
767
    if (r < 0) {
768
        abort();
769
    }
770
}
771

    
772
static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
773
                                  bool match_data, uint64_t data, int fd)
774
{
775
    int r;
776

    
777
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
778
                               data, false, section->size);
779
    if (r < 0) {
780
        abort();
781
    }
782
}
783

    
784
static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
785
                                 bool match_data, uint64_t data, int fd)
786
{
787
    int r;
788

    
789
    assert(match_data && section->size == 2);
790

    
791
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
792
                                   data, true);
793
    if (r < 0) {
794
        abort();
795
    }
796
}
797

    
798
static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
799
                                 bool match_data, uint64_t data, int fd)
800

    
801
{
802
    int r;
803

    
804
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
805
                                   data, false);
806
    if (r < 0) {
807
        abort();
808
    }
809
}
810

    
811
static void kvm_eventfd_add(MemoryListener *listener,
812
                            MemoryRegionSection *section,
813
                            bool match_data, uint64_t data,
814
                            EventNotifier *e)
815
{
816
    if (section->address_space == get_system_memory()) {
817
        kvm_mem_ioeventfd_add(section, match_data, data,
818
                              event_notifier_get_fd(e));
819
    } else {
820
        kvm_io_ioeventfd_add(section, match_data, data,
821
                             event_notifier_get_fd(e));
822
    }
823
}
824

    
825
static void kvm_eventfd_del(MemoryListener *listener,
826
                            MemoryRegionSection *section,
827
                            bool match_data, uint64_t data,
828
                            EventNotifier *e)
829
{
830
    if (section->address_space == get_system_memory()) {
831
        kvm_mem_ioeventfd_del(section, match_data, data,
832
                              event_notifier_get_fd(e));
833
    } else {
834
        kvm_io_ioeventfd_del(section, match_data, data,
835
                             event_notifier_get_fd(e));
836
    }
837
}
838

    
839
static MemoryListener kvm_memory_listener = {
840
    .begin = kvm_begin,
841
    .commit = kvm_commit,
842
    .region_add = kvm_region_add,
843
    .region_del = kvm_region_del,
844
    .region_nop = kvm_region_nop,
845
    .log_start = kvm_log_start,
846
    .log_stop = kvm_log_stop,
847
    .log_sync = kvm_log_sync,
848
    .log_global_start = kvm_log_global_start,
849
    .log_global_stop = kvm_log_global_stop,
850
    .eventfd_add = kvm_eventfd_add,
851
    .eventfd_del = kvm_eventfd_del,
852
    .priority = 10,
853
};
854

    
855
static void kvm_handle_interrupt(CPUArchState *env, int mask)
856
{
857
    env->interrupt_request |= mask;
858

    
859
    if (!qemu_cpu_is_self(env)) {
860
        qemu_cpu_kick(env);
861
    }
862
}
863

    
864
int kvm_set_irq(KVMState *s, int irq, int level)
865
{
866
    struct kvm_irq_level event;
867
    int ret;
868

    
869
    assert(kvm_async_interrupts_enabled());
870

    
871
    event.level = level;
872
    event.irq = irq;
873
    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
874
    if (ret < 0) {
875
        perror("kvm_set_irq");
876
        abort();
877
    }
878

    
879
    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
880
}
881

    
882
#ifdef KVM_CAP_IRQ_ROUTING
883
typedef struct KVMMSIRoute {
884
    struct kvm_irq_routing_entry kroute;
885
    QTAILQ_ENTRY(KVMMSIRoute) entry;
886
} KVMMSIRoute;
887

    
888
static void set_gsi(KVMState *s, unsigned int gsi)
889
{
890
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
891
}
892

    
893
static void clear_gsi(KVMState *s, unsigned int gsi)
894
{
895
    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
896
}
897

    
898
static void kvm_init_irq_routing(KVMState *s)
899
{
900
    int gsi_count, i;
901

    
902
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
903
    if (gsi_count > 0) {
904
        unsigned int gsi_bits, i;
905

    
906
        /* Round up so we can search ints using ffs */
907
        gsi_bits = ALIGN(gsi_count, 32);
908
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
909
        s->gsi_count = gsi_count;
910

    
911
        /* Mark any over-allocated bits as already in use */
912
        for (i = gsi_count; i < gsi_bits; i++) {
913
            set_gsi(s, i);
914
        }
915
    }
916

    
917
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
918
    s->nr_allocated_irq_routes = 0;
919

    
920
    if (!s->direct_msi) {
921
        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
922
            QTAILQ_INIT(&s->msi_hashtab[i]);
923
        }
924
    }
925

    
926
    kvm_arch_init_irq_routing(s);
927
}
928

    
929
static void kvm_irqchip_commit_routes(KVMState *s)
930
{
931
    int ret;
932

    
933
    s->irq_routes->flags = 0;
934
    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
935
    assert(ret == 0);
936
}
937

    
938
static void kvm_add_routing_entry(KVMState *s,
939
                                  struct kvm_irq_routing_entry *entry)
940
{
941
    struct kvm_irq_routing_entry *new;
942
    int n, size;
943

    
944
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
945
        n = s->nr_allocated_irq_routes * 2;
946
        if (n < 64) {
947
            n = 64;
948
        }
949
        size = sizeof(struct kvm_irq_routing);
950
        size += n * sizeof(*new);
951
        s->irq_routes = g_realloc(s->irq_routes, size);
952
        s->nr_allocated_irq_routes = n;
953
    }
954
    n = s->irq_routes->nr++;
955
    new = &s->irq_routes->entries[n];
956
    memset(new, 0, sizeof(*new));
957
    new->gsi = entry->gsi;
958
    new->type = entry->type;
959
    new->flags = entry->flags;
960
    new->u = entry->u;
961

    
962
    set_gsi(s, entry->gsi);
963

    
964
    kvm_irqchip_commit_routes(s);
965
}
966

    
967
static int kvm_update_routing_entry(KVMState *s,
968
                                    struct kvm_irq_routing_entry *new_entry)
969
{
970
    struct kvm_irq_routing_entry *entry;
971
    int n;
972

    
973
    for (n = 0; n < s->irq_routes->nr; n++) {
974
        entry = &s->irq_routes->entries[n];
975
        if (entry->gsi != new_entry->gsi) {
976
            continue;
977
        }
978

    
979
        entry->type = new_entry->type;
980
        entry->flags = new_entry->flags;
981
        entry->u = new_entry->u;
982

    
983
        kvm_irqchip_commit_routes(s);
984

    
985
        return 0;
986
    }
987

    
988
    return -ESRCH;
989
}
990

    
991
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
992
{
993
    struct kvm_irq_routing_entry e;
994

    
995
    assert(pin < s->gsi_count);
996

    
997
    e.gsi = irq;
998
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
999
    e.flags = 0;
1000
    e.u.irqchip.irqchip = irqchip;
1001
    e.u.irqchip.pin = pin;
1002
    kvm_add_routing_entry(s, &e);
1003
}
1004

    
1005
void kvm_irqchip_release_virq(KVMState *s, int virq)
1006
{
1007
    struct kvm_irq_routing_entry *e;
1008
    int i;
1009

    
1010
    for (i = 0; i < s->irq_routes->nr; i++) {
1011
        e = &s->irq_routes->entries[i];
1012
        if (e->gsi == virq) {
1013
            s->irq_routes->nr--;
1014
            *e = s->irq_routes->entries[s->irq_routes->nr];
1015
        }
1016
    }
1017
    clear_gsi(s, virq);
1018

    
1019
    kvm_irqchip_commit_routes(s);
1020
}
1021

    
1022
static unsigned int kvm_hash_msi(uint32_t data)
1023
{
1024
    /* This is optimized for IA32 MSI layout. However, no other arch shall
1025
     * repeat the mistake of not providing a direct MSI injection API. */
1026
    return data & 0xff;
1027
}
1028

    
1029
static void kvm_flush_dynamic_msi_routes(KVMState *s)
1030
{
1031
    KVMMSIRoute *route, *next;
1032
    unsigned int hash;
1033

    
1034
    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1035
        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1036
            kvm_irqchip_release_virq(s, route->kroute.gsi);
1037
            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1038
            g_free(route);
1039
        }
1040
    }
1041
}
1042

    
1043
static int kvm_irqchip_get_virq(KVMState *s)
1044
{
1045
    uint32_t *word = s->used_gsi_bitmap;
1046
    int max_words = ALIGN(s->gsi_count, 32) / 32;
1047
    int i, bit;
1048
    bool retry = true;
1049

    
1050
again:
1051
    /* Return the lowest unused GSI in the bitmap */
1052
    for (i = 0; i < max_words; i++) {
1053
        bit = ffs(~word[i]);
1054
        if (!bit) {
1055
            continue;
1056
        }
1057

    
1058
        return bit - 1 + i * 32;
1059
    }
1060
    if (!s->direct_msi && retry) {
1061
        retry = false;
1062
        kvm_flush_dynamic_msi_routes(s);
1063
        goto again;
1064
    }
1065
    return -ENOSPC;
1066

    
1067
}
1068

    
1069
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1070
{
1071
    unsigned int hash = kvm_hash_msi(msg.data);
1072
    KVMMSIRoute *route;
1073

    
1074
    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1075
        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1076
            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1077
            route->kroute.u.msi.data == msg.data) {
1078
            return route;
1079
        }
1080
    }
1081
    return NULL;
1082
}
1083

    
1084
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1085
{
1086
    struct kvm_msi msi;
1087
    KVMMSIRoute *route;
1088

    
1089
    if (s->direct_msi) {
1090
        msi.address_lo = (uint32_t)msg.address;
1091
        msi.address_hi = msg.address >> 32;
1092
        msi.data = msg.data;
1093
        msi.flags = 0;
1094
        memset(msi.pad, 0, sizeof(msi.pad));
1095

    
1096
        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1097
    }
1098

    
1099
    route = kvm_lookup_msi_route(s, msg);
1100
    if (!route) {
1101
        int virq;
1102

    
1103
        virq = kvm_irqchip_get_virq(s);
1104
        if (virq < 0) {
1105
            return virq;
1106
        }
1107

    
1108
        route = g_malloc(sizeof(KVMMSIRoute));
1109
        route->kroute.gsi = virq;
1110
        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1111
        route->kroute.flags = 0;
1112
        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1113
        route->kroute.u.msi.address_hi = msg.address >> 32;
1114
        route->kroute.u.msi.data = msg.data;
1115

    
1116
        kvm_add_routing_entry(s, &route->kroute);
1117

    
1118
        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1119
                           entry);
1120
    }
1121

    
1122
    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1123

    
1124
    return kvm_set_irq(s, route->kroute.gsi, 1);
1125
}
1126

    
1127
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1128
{
1129
    struct kvm_irq_routing_entry kroute;
1130
    int virq;
1131

    
1132
    if (!kvm_gsi_routing_enabled()) {
1133
        return -ENOSYS;
1134
    }
1135

    
1136
    virq = kvm_irqchip_get_virq(s);
1137
    if (virq < 0) {
1138
        return virq;
1139
    }
1140

    
1141
    kroute.gsi = virq;
1142
    kroute.type = KVM_IRQ_ROUTING_MSI;
1143
    kroute.flags = 0;
1144
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1145
    kroute.u.msi.address_hi = msg.address >> 32;
1146
    kroute.u.msi.data = msg.data;
1147

    
1148
    kvm_add_routing_entry(s, &kroute);
1149

    
1150
    return virq;
1151
}
1152

    
1153
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1154
{
1155
    struct kvm_irq_routing_entry kroute;
1156

    
1157
    if (!kvm_irqchip_in_kernel()) {
1158
        return -ENOSYS;
1159
    }
1160

    
1161
    kroute.gsi = virq;
1162
    kroute.type = KVM_IRQ_ROUTING_MSI;
1163
    kroute.flags = 0;
1164
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1165
    kroute.u.msi.address_hi = msg.address >> 32;
1166
    kroute.u.msi.data = msg.data;
1167

    
1168
    return kvm_update_routing_entry(s, &kroute);
1169
}
1170

    
1171
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1172
{
1173
    struct kvm_irqfd irqfd = {
1174
        .fd = fd,
1175
        .gsi = virq,
1176
        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1177
    };
1178

    
1179
    if (!kvm_irqfds_enabled()) {
1180
        return -ENOSYS;
1181
    }
1182

    
1183
    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1184
}
1185

    
1186
#else /* !KVM_CAP_IRQ_ROUTING */
1187

    
1188
static void kvm_init_irq_routing(KVMState *s)
1189
{
1190
}
1191

    
1192
void kvm_irqchip_release_virq(KVMState *s, int virq)
1193
{
1194
}
1195

    
1196
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1197
{
1198
    abort();
1199
}
1200

    
1201
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1202
{
1203
    return -ENOSYS;
1204
}
1205

    
1206
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1207
{
1208
    abort();
1209
}
1210
#endif /* !KVM_CAP_IRQ_ROUTING */
1211

    
1212
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1213
{
1214
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1215
}
1216

    
1217
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1218
{
1219
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1220
}
1221

    
1222
static int kvm_irqchip_create(KVMState *s)
1223
{
1224
    QemuOptsList *list = qemu_find_opts("machine");
1225
    int ret;
1226

    
1227
    if (QTAILQ_EMPTY(&list->head) ||
1228
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1229
                           "kernel_irqchip", true) ||
1230
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1231
        return 0;
1232
    }
1233

    
1234
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1235
    if (ret < 0) {
1236
        fprintf(stderr, "Create kernel irqchip failed\n");
1237
        return ret;
1238
    }
1239

    
1240
    kvm_kernel_irqchip = true;
1241
    /* If we have an in-kernel IRQ chip then we must have asynchronous
1242
     * interrupt delivery (though the reverse is not necessarily true)
1243
     */
1244
    kvm_async_interrupts_allowed = true;
1245

    
1246
    kvm_init_irq_routing(s);
1247

    
1248
    return 0;
1249
}
1250

    
1251
static int kvm_max_vcpus(KVMState *s)
1252
{
1253
    int ret;
1254

    
1255
    /* Find number of supported CPUs using the recommended
1256
     * procedure from the kernel API documentation to cope with
1257
     * older kernels that may be missing capabilities.
1258
     */
1259
    ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1260
    if (ret) {
1261
        return ret;
1262
    }
1263
    ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1264
    if (ret) {
1265
        return ret;
1266
    }
1267

    
1268
    return 4;
1269
}
1270

    
1271
int kvm_init(void)
1272
{
1273
    static const char upgrade_note[] =
1274
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1275
        "(see http://sourceforge.net/projects/kvm).\n";
1276
    KVMState *s;
1277
    const KVMCapabilityInfo *missing_cap;
1278
    int ret;
1279
    int i;
1280
    int max_vcpus;
1281

    
1282
    s = g_malloc0(sizeof(KVMState));
1283

    
1284
    /*
1285
     * On systems where the kernel can support different base page
1286
     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1287
     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1288
     * page size for the system though.
1289
     */
1290
    assert(TARGET_PAGE_SIZE <= getpagesize());
1291

    
1292
#ifdef KVM_CAP_SET_GUEST_DEBUG
1293
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1294
#endif
1295
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1296
        s->slots[i].slot = i;
1297
    }
1298
    s->vmfd = -1;
1299
    s->fd = qemu_open("/dev/kvm", O_RDWR);
1300
    if (s->fd == -1) {
1301
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1302
        ret = -errno;
1303
        goto err;
1304
    }
1305

    
1306
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1307
    if (ret < KVM_API_VERSION) {
1308
        if (ret > 0) {
1309
            ret = -EINVAL;
1310
        }
1311
        fprintf(stderr, "kvm version too old\n");
1312
        goto err;
1313
    }
1314

    
1315
    if (ret > KVM_API_VERSION) {
1316
        ret = -EINVAL;
1317
        fprintf(stderr, "kvm version not supported\n");
1318
        goto err;
1319
    }
1320

    
1321
    max_vcpus = kvm_max_vcpus(s);
1322
    if (smp_cpus > max_vcpus) {
1323
        ret = -EINVAL;
1324
        fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1325
                "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1326
        goto err;
1327
    }
1328

    
1329
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1330
    if (s->vmfd < 0) {
1331
#ifdef TARGET_S390X
1332
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1333
                        "your host kernel command line\n");
1334
#endif
1335
        ret = s->vmfd;
1336
        goto err;
1337
    }
1338

    
1339
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1340
    if (!missing_cap) {
1341
        missing_cap =
1342
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1343
    }
1344
    if (missing_cap) {
1345
        ret = -EINVAL;
1346
        fprintf(stderr, "kvm does not support %s\n%s",
1347
                missing_cap->name, upgrade_note);
1348
        goto err;
1349
    }
1350

    
1351
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1352

    
1353
    s->broken_set_mem_region = 1;
1354
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1355
    if (ret > 0) {
1356
        s->broken_set_mem_region = 0;
1357
    }
1358

    
1359
#ifdef KVM_CAP_VCPU_EVENTS
1360
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1361
#endif
1362

    
1363
    s->robust_singlestep =
1364
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1365

    
1366
#ifdef KVM_CAP_DEBUGREGS
1367
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1368
#endif
1369

    
1370
#ifdef KVM_CAP_XSAVE
1371
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1372
#endif
1373

    
1374
#ifdef KVM_CAP_XCRS
1375
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1376
#endif
1377

    
1378
#ifdef KVM_CAP_PIT_STATE2
1379
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1380
#endif
1381

    
1382
#ifdef KVM_CAP_IRQ_ROUTING
1383
    s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1384
#endif
1385

    
1386
    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1387

    
1388
    s->irq_set_ioctl = KVM_IRQ_LINE;
1389
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1390
        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1391
    }
1392

    
1393
    ret = kvm_arch_init(s);
1394
    if (ret < 0) {
1395
        goto err;
1396
    }
1397

    
1398
    ret = kvm_irqchip_create(s);
1399
    if (ret < 0) {
1400
        goto err;
1401
    }
1402

    
1403
    kvm_state = s;
1404
    memory_listener_register(&kvm_memory_listener, NULL);
1405

    
1406
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1407

    
1408
    cpu_interrupt_handler = kvm_handle_interrupt;
1409

    
1410
    return 0;
1411

    
1412
err:
1413
    if (s->vmfd >= 0) {
1414
        close(s->vmfd);
1415
    }
1416
    if (s->fd != -1) {
1417
        close(s->fd);
1418
    }
1419
    g_free(s);
1420

    
1421
    return ret;
1422
}
1423

    
1424
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1425
                          uint32_t count)
1426
{
1427
    int i;
1428
    uint8_t *ptr = data;
1429

    
1430
    for (i = 0; i < count; i++) {
1431
        if (direction == KVM_EXIT_IO_IN) {
1432
            switch (size) {
1433
            case 1:
1434
                stb_p(ptr, cpu_inb(port));
1435
                break;
1436
            case 2:
1437
                stw_p(ptr, cpu_inw(port));
1438
                break;
1439
            case 4:
1440
                stl_p(ptr, cpu_inl(port));
1441
                break;
1442
            }
1443
        } else {
1444
            switch (size) {
1445
            case 1:
1446
                cpu_outb(port, ldub_p(ptr));
1447
                break;
1448
            case 2:
1449
                cpu_outw(port, lduw_p(ptr));
1450
                break;
1451
            case 4:
1452
                cpu_outl(port, ldl_p(ptr));
1453
                break;
1454
            }
1455
        }
1456

    
1457
        ptr += size;
1458
    }
1459
}
1460

    
1461
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1462
{
1463
    fprintf(stderr, "KVM internal error.");
1464
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1465
        int i;
1466

    
1467
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1468
        for (i = 0; i < run->internal.ndata; ++i) {
1469
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1470
                    i, (uint64_t)run->internal.data[i]);
1471
        }
1472
    } else {
1473
        fprintf(stderr, "\n");
1474
    }
1475
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1476
        fprintf(stderr, "emulation failure\n");
1477
        if (!kvm_arch_stop_on_emulation_error(env)) {
1478
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1479
            return EXCP_INTERRUPT;
1480
        }
1481
    }
1482
    /* FIXME: Should trigger a qmp message to let management know
1483
     * something went wrong.
1484
     */
1485
    return -1;
1486
}
1487

    
1488
void kvm_flush_coalesced_mmio_buffer(void)
1489
{
1490
    KVMState *s = kvm_state;
1491

    
1492
    if (s->coalesced_flush_in_progress) {
1493
        return;
1494
    }
1495

    
1496
    s->coalesced_flush_in_progress = true;
1497

    
1498
    if (s->coalesced_mmio_ring) {
1499
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1500
        while (ring->first != ring->last) {
1501
            struct kvm_coalesced_mmio *ent;
1502

    
1503
            ent = &ring->coalesced_mmio[ring->first];
1504

    
1505
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1506
            smp_wmb();
1507
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1508
        }
1509
    }
1510

    
1511
    s->coalesced_flush_in_progress = false;
1512
}
1513

    
1514
static void do_kvm_cpu_synchronize_state(void *_env)
1515
{
1516
    CPUArchState *env = _env;
1517

    
1518
    if (!env->kvm_vcpu_dirty) {
1519
        kvm_arch_get_registers(env);
1520
        env->kvm_vcpu_dirty = 1;
1521
    }
1522
}
1523

    
1524
void kvm_cpu_synchronize_state(CPUArchState *env)
1525
{
1526
    if (!env->kvm_vcpu_dirty) {
1527
        run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1528
    }
1529
}
1530

    
1531
void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1532
{
1533
    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1534
    env->kvm_vcpu_dirty = 0;
1535
}
1536

    
1537
void kvm_cpu_synchronize_post_init(CPUArchState *env)
1538
{
1539
    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1540
    env->kvm_vcpu_dirty = 0;
1541
}
1542

    
1543
int kvm_cpu_exec(CPUArchState *env)
1544
{
1545
    struct kvm_run *run = env->kvm_run;
1546
    int ret, run_ret;
1547

    
1548
    DPRINTF("kvm_cpu_exec()\n");
1549

    
1550
    if (kvm_arch_process_async_events(env)) {
1551
        env->exit_request = 0;
1552
        return EXCP_HLT;
1553
    }
1554

    
1555
    do {
1556
        if (env->kvm_vcpu_dirty) {
1557
            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1558
            env->kvm_vcpu_dirty = 0;
1559
        }
1560

    
1561
        kvm_arch_pre_run(env, run);
1562
        if (env->exit_request) {
1563
            DPRINTF("interrupt exit requested\n");
1564
            /*
1565
             * KVM requires us to reenter the kernel after IO exits to complete
1566
             * instruction emulation. This self-signal will ensure that we
1567
             * leave ASAP again.
1568
             */
1569
            qemu_cpu_kick_self();
1570
        }
1571
        qemu_mutex_unlock_iothread();
1572

    
1573
        run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1574

    
1575
        qemu_mutex_lock_iothread();
1576
        kvm_arch_post_run(env, run);
1577

    
1578
        if (run_ret < 0) {
1579
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1580
                DPRINTF("io window exit\n");
1581
                ret = EXCP_INTERRUPT;
1582
                break;
1583
            }
1584
            fprintf(stderr, "error: kvm run failed %s\n",
1585
                    strerror(-run_ret));
1586
            abort();
1587
        }
1588

    
1589
        switch (run->exit_reason) {
1590
        case KVM_EXIT_IO:
1591
            DPRINTF("handle_io\n");
1592
            kvm_handle_io(run->io.port,
1593
                          (uint8_t *)run + run->io.data_offset,
1594
                          run->io.direction,
1595
                          run->io.size,
1596
                          run->io.count);
1597
            ret = 0;
1598
            break;
1599
        case KVM_EXIT_MMIO:
1600
            DPRINTF("handle_mmio\n");
1601
            cpu_physical_memory_rw(run->mmio.phys_addr,
1602
                                   run->mmio.data,
1603
                                   run->mmio.len,
1604
                                   run->mmio.is_write);
1605
            ret = 0;
1606
            break;
1607
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1608
            DPRINTF("irq_window_open\n");
1609
            ret = EXCP_INTERRUPT;
1610
            break;
1611
        case KVM_EXIT_SHUTDOWN:
1612
            DPRINTF("shutdown\n");
1613
            qemu_system_reset_request();
1614
            ret = EXCP_INTERRUPT;
1615
            break;
1616
        case KVM_EXIT_UNKNOWN:
1617
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1618
                    (uint64_t)run->hw.hardware_exit_reason);
1619
            ret = -1;
1620
            break;
1621
        case KVM_EXIT_INTERNAL_ERROR:
1622
            ret = kvm_handle_internal_error(env, run);
1623
            break;
1624
        default:
1625
            DPRINTF("kvm_arch_handle_exit\n");
1626
            ret = kvm_arch_handle_exit(env, run);
1627
            break;
1628
        }
1629
    } while (ret == 0);
1630

    
1631
    if (ret < 0) {
1632
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1633
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1634
    }
1635

    
1636
    env->exit_request = 0;
1637
    return ret;
1638
}
1639

    
1640
int kvm_ioctl(KVMState *s, int type, ...)
1641
{
1642
    int ret;
1643
    void *arg;
1644
    va_list ap;
1645

    
1646
    va_start(ap, type);
1647
    arg = va_arg(ap, void *);
1648
    va_end(ap);
1649

    
1650
    ret = ioctl(s->fd, type, arg);
1651
    if (ret == -1) {
1652
        ret = -errno;
1653
    }
1654
    return ret;
1655
}
1656

    
1657
int kvm_vm_ioctl(KVMState *s, int type, ...)
1658
{
1659
    int ret;
1660
    void *arg;
1661
    va_list ap;
1662

    
1663
    va_start(ap, type);
1664
    arg = va_arg(ap, void *);
1665
    va_end(ap);
1666

    
1667
    ret = ioctl(s->vmfd, type, arg);
1668
    if (ret == -1) {
1669
        ret = -errno;
1670
    }
1671
    return ret;
1672
}
1673

    
1674
int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1675
{
1676
    int ret;
1677
    void *arg;
1678
    va_list ap;
1679

    
1680
    va_start(ap, type);
1681
    arg = va_arg(ap, void *);
1682
    va_end(ap);
1683

    
1684
    ret = ioctl(env->kvm_fd, type, arg);
1685
    if (ret == -1) {
1686
        ret = -errno;
1687
    }
1688
    return ret;
1689
}
1690

    
1691
int kvm_has_sync_mmu(void)
1692
{
1693
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1694
}
1695

    
1696
int kvm_has_vcpu_events(void)
1697
{
1698
    return kvm_state->vcpu_events;
1699
}
1700

    
1701
int kvm_has_robust_singlestep(void)
1702
{
1703
    return kvm_state->robust_singlestep;
1704
}
1705

    
1706
int kvm_has_debugregs(void)
1707
{
1708
    return kvm_state->debugregs;
1709
}
1710

    
1711
int kvm_has_xsave(void)
1712
{
1713
    return kvm_state->xsave;
1714
}
1715

    
1716
int kvm_has_xcrs(void)
1717
{
1718
    return kvm_state->xcrs;
1719
}
1720

    
1721
int kvm_has_pit_state2(void)
1722
{
1723
    return kvm_state->pit_state2;
1724
}
1725

    
1726
int kvm_has_many_ioeventfds(void)
1727
{
1728
    if (!kvm_enabled()) {
1729
        return 0;
1730
    }
1731
    return kvm_state->many_ioeventfds;
1732
}
1733

    
1734
int kvm_has_gsi_routing(void)
1735
{
1736
#ifdef KVM_CAP_IRQ_ROUTING
1737
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1738
#else
1739
    return false;
1740
#endif
1741
}
1742

    
1743
int kvm_has_intx_set_mask(void)
1744
{
1745
    return kvm_state->intx_set_mask;
1746
}
1747

    
1748
void *kvm_vmalloc(ram_addr_t size)
1749
{
1750
#ifdef TARGET_S390X
1751
    void *mem;
1752

    
1753
    mem = kvm_arch_vmalloc(size);
1754
    if (mem) {
1755
        return mem;
1756
    }
1757
#endif
1758
    return qemu_vmalloc(size);
1759
}
1760

    
1761
void kvm_setup_guest_memory(void *start, size_t size)
1762
{
1763
#ifdef CONFIG_VALGRIND_H
1764
    VALGRIND_MAKE_MEM_DEFINED(start, size);
1765
#endif
1766
    if (!kvm_has_sync_mmu()) {
1767
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1768

    
1769
        if (ret) {
1770
            perror("qemu_madvise");
1771
            fprintf(stderr,
1772
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1773
            exit(1);
1774
        }
1775
    }
1776
}
1777

    
1778
#ifdef KVM_CAP_SET_GUEST_DEBUG
1779
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1780
                                                 target_ulong pc)
1781
{
1782
    struct kvm_sw_breakpoint *bp;
1783

    
1784
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1785
        if (bp->pc == pc) {
1786
            return bp;
1787
        }
1788
    }
1789
    return NULL;
1790
}
1791

    
1792
int kvm_sw_breakpoints_active(CPUArchState *env)
1793
{
1794
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1795
}
1796

    
1797
struct kvm_set_guest_debug_data {
1798
    struct kvm_guest_debug dbg;
1799
    CPUArchState *env;
1800
    int err;
1801
};
1802

    
1803
static void kvm_invoke_set_guest_debug(void *data)
1804
{
1805
    struct kvm_set_guest_debug_data *dbg_data = data;
1806
    CPUArchState *env = dbg_data->env;
1807

    
1808
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1809
}
1810

    
1811
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1812
{
1813
    struct kvm_set_guest_debug_data data;
1814

    
1815
    data.dbg.control = reinject_trap;
1816

    
1817
    if (env->singlestep_enabled) {
1818
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1819
    }
1820
    kvm_arch_update_guest_debug(env, &data.dbg);
1821
    data.env = env;
1822

    
1823
    run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1824
    return data.err;
1825
}
1826

    
1827
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1828
                          target_ulong len, int type)
1829
{
1830
    struct kvm_sw_breakpoint *bp;
1831
    CPUArchState *env;
1832
    int err;
1833

    
1834
    if (type == GDB_BREAKPOINT_SW) {
1835
        bp = kvm_find_sw_breakpoint(current_env, addr);
1836
        if (bp) {
1837
            bp->use_count++;
1838
            return 0;
1839
        }
1840

    
1841
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1842
        if (!bp) {
1843
            return -ENOMEM;
1844
        }
1845

    
1846
        bp->pc = addr;
1847
        bp->use_count = 1;
1848
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1849
        if (err) {
1850
            g_free(bp);
1851
            return err;
1852
        }
1853

    
1854
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1855
                          bp, entry);
1856
    } else {
1857
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1858
        if (err) {
1859
            return err;
1860
        }
1861
    }
1862

    
1863
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1864
        err = kvm_update_guest_debug(env, 0);
1865
        if (err) {
1866
            return err;
1867
        }
1868
    }
1869
    return 0;
1870
}
1871

    
1872
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1873
                          target_ulong len, int type)
1874
{
1875
    struct kvm_sw_breakpoint *bp;
1876
    CPUArchState *env;
1877
    int err;
1878

    
1879
    if (type == GDB_BREAKPOINT_SW) {
1880
        bp = kvm_find_sw_breakpoint(current_env, addr);
1881
        if (!bp) {
1882
            return -ENOENT;
1883
        }
1884

    
1885
        if (bp->use_count > 1) {
1886
            bp->use_count--;
1887
            return 0;
1888
        }
1889

    
1890
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1891
        if (err) {
1892
            return err;
1893
        }
1894

    
1895
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1896
        g_free(bp);
1897
    } else {
1898
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1899
        if (err) {
1900
            return err;
1901
        }
1902
    }
1903

    
1904
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1905
        err = kvm_update_guest_debug(env, 0);
1906
        if (err) {
1907
            return err;
1908
        }
1909
    }
1910
    return 0;
1911
}
1912

    
1913
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1914
{
1915
    struct kvm_sw_breakpoint *bp, *next;
1916
    KVMState *s = current_env->kvm_state;
1917
    CPUArchState *env;
1918

    
1919
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1920
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1921
            /* Try harder to find a CPU that currently sees the breakpoint. */
1922
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1923
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1924
                    break;
1925
                }
1926
            }
1927
        }
1928
    }
1929
    kvm_arch_remove_all_hw_breakpoints();
1930

    
1931
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1932
        kvm_update_guest_debug(env, 0);
1933
    }
1934
}
1935

    
1936
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1937

    
1938
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1939
{
1940
    return -EINVAL;
1941
}
1942

    
1943
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1944
                          target_ulong len, int type)
1945
{
1946
    return -EINVAL;
1947
}
1948

    
1949
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1950
                          target_ulong len, int type)
1951
{
1952
    return -EINVAL;
1953
}
1954

    
1955
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1956
{
1957
}
1958
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1959

    
1960
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1961
{
1962
    struct kvm_signal_mask *sigmask;
1963
    int r;
1964

    
1965
    if (!sigset) {
1966
        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1967
    }
1968

    
1969
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1970

    
1971
    sigmask->len = 8;
1972
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1973
    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1974
    g_free(sigmask);
1975

    
1976
    return r;
1977
}
1978

    
1979
int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1980
                           uint32_t size)
1981
{
1982
    int ret;
1983
    struct kvm_ioeventfd iofd;
1984

    
1985
    iofd.datamatch = val;
1986
    iofd.addr = addr;
1987
    iofd.len = size;
1988
    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1989
    iofd.fd = fd;
1990

    
1991
    if (!kvm_enabled()) {
1992
        return -ENOSYS;
1993
    }
1994

    
1995
    if (!assign) {
1996
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1997
    }
1998

    
1999
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
2000

    
2001
    if (ret < 0) {
2002
        return -errno;
2003
    }
2004

    
2005
    return 0;
2006
}
2007

    
2008
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
2009
{
2010
    struct kvm_ioeventfd kick = {
2011
        .datamatch = val,
2012
        .addr = addr,
2013
        .len = 2,
2014
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
2015
        .fd = fd,
2016
    };
2017
    int r;
2018
    if (!kvm_enabled()) {
2019
        return -ENOSYS;
2020
    }
2021
    if (!assign) {
2022
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2023
    }
2024
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2025
    if (r < 0) {
2026
        return r;
2027
    }
2028
    return 0;
2029
}
2030

    
2031
int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
2032
{
2033
    return kvm_arch_on_sigbus_vcpu(env, code, addr);
2034
}
2035

    
2036
int kvm_on_sigbus(int code, void *addr)
2037
{
2038
    return kvm_arch_on_sigbus(code, addr);
2039
}