Statistics
| Branch: | Revision:

root / linux-user / elfload.c @ dc364f4c

History | View | Annotate | Download (87.5 kB)

1
/* This is the Linux kernel elf-loading code, ported into user space */
2
#include <sys/time.h>
3
#include <sys/param.h>
4

    
5
#include <stdio.h>
6
#include <sys/types.h>
7
#include <fcntl.h>
8
#include <errno.h>
9
#include <unistd.h>
10
#include <sys/mman.h>
11
#include <sys/resource.h>
12
#include <stdlib.h>
13
#include <string.h>
14
#include <time.h>
15

    
16
#include "qemu.h"
17
#include "disas/disas.h"
18

    
19
#ifdef _ARCH_PPC64
20
#undef ARCH_DLINFO
21
#undef ELF_PLATFORM
22
#undef ELF_HWCAP
23
#undef ELF_CLASS
24
#undef ELF_DATA
25
#undef ELF_ARCH
26
#endif
27

    
28
#define ELF_OSABI   ELFOSABI_SYSV
29

    
30
/* from personality.h */
31

    
32
/*
33
 * Flags for bug emulation.
34
 *
35
 * These occupy the top three bytes.
36
 */
37
enum {
38
    ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
39
    FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
40
                                           descriptors (signal handling) */
41
    MMAP_PAGE_ZERO =    0x0100000,
42
    ADDR_COMPAT_LAYOUT = 0x0200000,
43
    READ_IMPLIES_EXEC = 0x0400000,
44
    ADDR_LIMIT_32BIT =  0x0800000,
45
    SHORT_INODE =       0x1000000,
46
    WHOLE_SECONDS =     0x2000000,
47
    STICKY_TIMEOUTS =   0x4000000,
48
    ADDR_LIMIT_3GB =    0x8000000,
49
};
50

    
51
/*
52
 * Personality types.
53
 *
54
 * These go in the low byte.  Avoid using the top bit, it will
55
 * conflict with error returns.
56
 */
57
enum {
58
    PER_LINUX =         0x0000,
59
    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
60
    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
61
    PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62
    PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63
    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64
    PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65
    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66
    PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
67
    PER_BSD =           0x0006,
68
    PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
69
    PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70
    PER_LINUX32 =       0x0008,
71
    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
72
    PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73
    PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74
    PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75
    PER_RISCOS =        0x000c,
76
    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
77
    PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78
    PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
79
    PER_HPUX =          0x0010,
80
    PER_MASK =          0x00ff,
81
};
82

    
83
/*
84
 * Return the base personality without flags.
85
 */
86
#define personality(pers)       (pers & PER_MASK)
87

    
88
/* this flag is uneffective under linux too, should be deleted */
89
#ifndef MAP_DENYWRITE
90
#define MAP_DENYWRITE 0
91
#endif
92

    
93
/* should probably go in elf.h */
94
#ifndef ELIBBAD
95
#define ELIBBAD 80
96
#endif
97

    
98
#ifdef TARGET_WORDS_BIGENDIAN
99
#define ELF_DATA        ELFDATA2MSB
100
#else
101
#define ELF_DATA        ELFDATA2LSB
102
#endif
103

    
104
#ifdef TARGET_ABI_MIPSN32
105
typedef abi_ullong      target_elf_greg_t;
106
#define tswapreg(ptr)   tswap64(ptr)
107
#else
108
typedef abi_ulong       target_elf_greg_t;
109
#define tswapreg(ptr)   tswapal(ptr)
110
#endif
111

    
112
#ifdef USE_UID16
113
typedef abi_ushort      target_uid_t;
114
typedef abi_ushort      target_gid_t;
115
#else
116
typedef abi_uint        target_uid_t;
117
typedef abi_uint        target_gid_t;
118
#endif
119
typedef abi_int         target_pid_t;
120

    
121
#ifdef TARGET_I386
122

    
123
#define ELF_PLATFORM get_elf_platform()
124

    
125
static const char *get_elf_platform(void)
126
{
127
    static char elf_platform[] = "i386";
128
    int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
129
    if (family > 6)
130
        family = 6;
131
    if (family >= 3)
132
        elf_platform[1] = '0' + family;
133
    return elf_platform;
134
}
135

    
136
#define ELF_HWCAP get_elf_hwcap()
137

    
138
static uint32_t get_elf_hwcap(void)
139
{
140
    X86CPU *cpu = X86_CPU(thread_cpu);
141

    
142
    return cpu->env.features[FEAT_1_EDX];
143
}
144

    
145
#ifdef TARGET_X86_64
146
#define ELF_START_MMAP 0x2aaaaab000ULL
147
#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
148

    
149
#define ELF_CLASS      ELFCLASS64
150
#define ELF_ARCH       EM_X86_64
151

    
152
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153
{
154
    regs->rax = 0;
155
    regs->rsp = infop->start_stack;
156
    regs->rip = infop->entry;
157
}
158

    
159
#define ELF_NREG    27
160
typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
161

    
162
/*
163
 * Note that ELF_NREG should be 29 as there should be place for
164
 * TRAPNO and ERR "registers" as well but linux doesn't dump
165
 * those.
166
 *
167
 * See linux kernel: arch/x86/include/asm/elf.h
168
 */
169
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170
{
171
    (*regs)[0] = env->regs[15];
172
    (*regs)[1] = env->regs[14];
173
    (*regs)[2] = env->regs[13];
174
    (*regs)[3] = env->regs[12];
175
    (*regs)[4] = env->regs[R_EBP];
176
    (*regs)[5] = env->regs[R_EBX];
177
    (*regs)[6] = env->regs[11];
178
    (*regs)[7] = env->regs[10];
179
    (*regs)[8] = env->regs[9];
180
    (*regs)[9] = env->regs[8];
181
    (*regs)[10] = env->regs[R_EAX];
182
    (*regs)[11] = env->regs[R_ECX];
183
    (*regs)[12] = env->regs[R_EDX];
184
    (*regs)[13] = env->regs[R_ESI];
185
    (*regs)[14] = env->regs[R_EDI];
186
    (*regs)[15] = env->regs[R_EAX]; /* XXX */
187
    (*regs)[16] = env->eip;
188
    (*regs)[17] = env->segs[R_CS].selector & 0xffff;
189
    (*regs)[18] = env->eflags;
190
    (*regs)[19] = env->regs[R_ESP];
191
    (*regs)[20] = env->segs[R_SS].selector & 0xffff;
192
    (*regs)[21] = env->segs[R_FS].selector & 0xffff;
193
    (*regs)[22] = env->segs[R_GS].selector & 0xffff;
194
    (*regs)[23] = env->segs[R_DS].selector & 0xffff;
195
    (*regs)[24] = env->segs[R_ES].selector & 0xffff;
196
    (*regs)[25] = env->segs[R_FS].selector & 0xffff;
197
    (*regs)[26] = env->segs[R_GS].selector & 0xffff;
198
}
199

    
200
#else
201

    
202
#define ELF_START_MMAP 0x80000000
203

    
204
/*
205
 * This is used to ensure we don't load something for the wrong architecture.
206
 */
207
#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
208

    
209
/*
210
 * These are used to set parameters in the core dumps.
211
 */
212
#define ELF_CLASS       ELFCLASS32
213
#define ELF_ARCH        EM_386
214

    
215
static inline void init_thread(struct target_pt_regs *regs,
216
                               struct image_info *infop)
217
{
218
    regs->esp = infop->start_stack;
219
    regs->eip = infop->entry;
220

    
221
    /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222
       starts %edx contains a pointer to a function which might be
223
       registered using `atexit'.  This provides a mean for the
224
       dynamic linker to call DT_FINI functions for shared libraries
225
       that have been loaded before the code runs.
226

227
       A value of 0 tells we have no such handler.  */
228
    regs->edx = 0;
229
}
230

    
231
#define ELF_NREG    17
232
typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
233

    
234
/*
235
 * Note that ELF_NREG should be 19 as there should be place for
236
 * TRAPNO and ERR "registers" as well but linux doesn't dump
237
 * those.
238
 *
239
 * See linux kernel: arch/x86/include/asm/elf.h
240
 */
241
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
242
{
243
    (*regs)[0] = env->regs[R_EBX];
244
    (*regs)[1] = env->regs[R_ECX];
245
    (*regs)[2] = env->regs[R_EDX];
246
    (*regs)[3] = env->regs[R_ESI];
247
    (*regs)[4] = env->regs[R_EDI];
248
    (*regs)[5] = env->regs[R_EBP];
249
    (*regs)[6] = env->regs[R_EAX];
250
    (*regs)[7] = env->segs[R_DS].selector & 0xffff;
251
    (*regs)[8] = env->segs[R_ES].selector & 0xffff;
252
    (*regs)[9] = env->segs[R_FS].selector & 0xffff;
253
    (*regs)[10] = env->segs[R_GS].selector & 0xffff;
254
    (*regs)[11] = env->regs[R_EAX]; /* XXX */
255
    (*regs)[12] = env->eip;
256
    (*regs)[13] = env->segs[R_CS].selector & 0xffff;
257
    (*regs)[14] = env->eflags;
258
    (*regs)[15] = env->regs[R_ESP];
259
    (*regs)[16] = env->segs[R_SS].selector & 0xffff;
260
}
261
#endif
262

    
263
#define USE_ELF_CORE_DUMP
264
#define ELF_EXEC_PAGESIZE       4096
265

    
266
#endif
267

    
268
#ifdef TARGET_ARM
269

    
270
#define ELF_START_MMAP 0x80000000
271

    
272
#define elf_check_arch(x) ((x) == ELF_MACHINE)
273

    
274
#define ELF_ARCH        ELF_MACHINE
275

    
276
#ifdef TARGET_AARCH64
277
#define ELF_CLASS       ELFCLASS64
278
#else
279
#define ELF_CLASS       ELFCLASS32
280
#endif
281

    
282
static inline void init_thread(struct target_pt_regs *regs,
283
                               struct image_info *infop)
284
{
285
    abi_long stack = infop->start_stack;
286
    memset(regs, 0, sizeof(*regs));
287

    
288
#ifdef TARGET_AARCH64
289
    regs->pc = infop->entry & ~0x3ULL;
290
    regs->sp = stack;
291
#else
292
    regs->ARM_cpsr = 0x10;
293
    if (infop->entry & 1)
294
        regs->ARM_cpsr |= CPSR_T;
295
    regs->ARM_pc = infop->entry & 0xfffffffe;
296
    regs->ARM_sp = infop->start_stack;
297
    /* FIXME - what to for failure of get_user()? */
298
    get_user_ual(regs->ARM_r2, stack + 8); /* envp */
299
    get_user_ual(regs->ARM_r1, stack + 4); /* envp */
300
    /* XXX: it seems that r0 is zeroed after ! */
301
    regs->ARM_r0 = 0;
302
    /* For uClinux PIC binaries.  */
303
    /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
304
    regs->ARM_r10 = infop->start_data;
305
#endif
306
}
307

    
308
#define ELF_NREG    18
309
typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
310

    
311
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
312
{
313
    (*regs)[0] = tswapreg(env->regs[0]);
314
    (*regs)[1] = tswapreg(env->regs[1]);
315
    (*regs)[2] = tswapreg(env->regs[2]);
316
    (*regs)[3] = tswapreg(env->regs[3]);
317
    (*regs)[4] = tswapreg(env->regs[4]);
318
    (*regs)[5] = tswapreg(env->regs[5]);
319
    (*regs)[6] = tswapreg(env->regs[6]);
320
    (*regs)[7] = tswapreg(env->regs[7]);
321
    (*regs)[8] = tswapreg(env->regs[8]);
322
    (*regs)[9] = tswapreg(env->regs[9]);
323
    (*regs)[10] = tswapreg(env->regs[10]);
324
    (*regs)[11] = tswapreg(env->regs[11]);
325
    (*regs)[12] = tswapreg(env->regs[12]);
326
    (*regs)[13] = tswapreg(env->regs[13]);
327
    (*regs)[14] = tswapreg(env->regs[14]);
328
    (*regs)[15] = tswapreg(env->regs[15]);
329

    
330
    (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
331
    (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
332
}
333

    
334
#define USE_ELF_CORE_DUMP
335
#define ELF_EXEC_PAGESIZE       4096
336

    
337
enum
338
{
339
    ARM_HWCAP_ARM_SWP       = 1 << 0,
340
    ARM_HWCAP_ARM_HALF      = 1 << 1,
341
    ARM_HWCAP_ARM_THUMB     = 1 << 2,
342
    ARM_HWCAP_ARM_26BIT     = 1 << 3,
343
    ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
344
    ARM_HWCAP_ARM_FPA       = 1 << 5,
345
    ARM_HWCAP_ARM_VFP       = 1 << 6,
346
    ARM_HWCAP_ARM_EDSP      = 1 << 7,
347
    ARM_HWCAP_ARM_JAVA      = 1 << 8,
348
    ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
349
    ARM_HWCAP_ARM_THUMBEE   = 1 << 10,
350
    ARM_HWCAP_ARM_NEON      = 1 << 11,
351
    ARM_HWCAP_ARM_VFPv3     = 1 << 12,
352
    ARM_HWCAP_ARM_VFPv3D16  = 1 << 13,
353
};
354

    
355
#define TARGET_HAS_VALIDATE_GUEST_SPACE
356
/* Return 1 if the proposed guest space is suitable for the guest.
357
 * Return 0 if the proposed guest space isn't suitable, but another
358
 * address space should be tried.
359
 * Return -1 if there is no way the proposed guest space can be
360
 * valid regardless of the base.
361
 * The guest code may leave a page mapped and populate it if the
362
 * address is suitable.
363
 */
364
static int validate_guest_space(unsigned long guest_base,
365
                                unsigned long guest_size)
366
{
367
    unsigned long real_start, test_page_addr;
368

    
369
    /* We need to check that we can force a fault on access to the
370
     * commpage at 0xffff0fxx
371
     */
372
    test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
373

    
374
    /* If the commpage lies within the already allocated guest space,
375
     * then there is no way we can allocate it.
376
     */
377
    if (test_page_addr >= guest_base
378
        && test_page_addr <= (guest_base + guest_size)) {
379
        return -1;
380
    }
381

    
382
    /* Note it needs to be writeable to let us initialise it */
383
    real_start = (unsigned long)
384
                 mmap((void *)test_page_addr, qemu_host_page_size,
385
                     PROT_READ | PROT_WRITE,
386
                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
387

    
388
    /* If we can't map it then try another address */
389
    if (real_start == -1ul) {
390
        return 0;
391
    }
392

    
393
    if (real_start != test_page_addr) {
394
        /* OS didn't put the page where we asked - unmap and reject */
395
        munmap((void *)real_start, qemu_host_page_size);
396
        return 0;
397
    }
398

    
399
    /* Leave the page mapped
400
     * Populate it (mmap should have left it all 0'd)
401
     */
402

    
403
    /* Kernel helper versions */
404
    __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
405

    
406
    /* Now it's populated make it RO */
407
    if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
408
        perror("Protecting guest commpage");
409
        exit(-1);
410
    }
411

    
412
    return 1; /* All good */
413
}
414

    
415

    
416
#define ELF_HWCAP get_elf_hwcap()
417

    
418
static uint32_t get_elf_hwcap(void)
419
{
420
    ARMCPU *cpu = ARM_CPU(thread_cpu);
421
    uint32_t hwcaps = 0;
422

    
423
    hwcaps |= ARM_HWCAP_ARM_SWP;
424
    hwcaps |= ARM_HWCAP_ARM_HALF;
425
    hwcaps |= ARM_HWCAP_ARM_THUMB;
426
    hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
427
    hwcaps |= ARM_HWCAP_ARM_FPA;
428

    
429
    /* probe for the extra features */
430
#define GET_FEATURE(feat, hwcap) \
431
    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
432
    GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
433
    GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
434
    GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
435
    GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
436
    GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
437
    GET_FEATURE(ARM_FEATURE_VFP_FP16, ARM_HWCAP_ARM_VFPv3D16);
438
#undef GET_FEATURE
439

    
440
    return hwcaps;
441
}
442

    
443
#endif
444

    
445
#ifdef TARGET_UNICORE32
446

    
447
#define ELF_START_MMAP          0x80000000
448

    
449
#define elf_check_arch(x)       ((x) == EM_UNICORE32)
450

    
451
#define ELF_CLASS               ELFCLASS32
452
#define ELF_DATA                ELFDATA2LSB
453
#define ELF_ARCH                EM_UNICORE32
454

    
455
static inline void init_thread(struct target_pt_regs *regs,
456
        struct image_info *infop)
457
{
458
    abi_long stack = infop->start_stack;
459
    memset(regs, 0, sizeof(*regs));
460
    regs->UC32_REG_asr = 0x10;
461
    regs->UC32_REG_pc = infop->entry & 0xfffffffe;
462
    regs->UC32_REG_sp = infop->start_stack;
463
    /* FIXME - what to for failure of get_user()? */
464
    get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
465
    get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
466
    /* XXX: it seems that r0 is zeroed after ! */
467
    regs->UC32_REG_00 = 0;
468
}
469

    
470
#define ELF_NREG    34
471
typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
472

    
473
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
474
{
475
    (*regs)[0] = env->regs[0];
476
    (*regs)[1] = env->regs[1];
477
    (*regs)[2] = env->regs[2];
478
    (*regs)[3] = env->regs[3];
479
    (*regs)[4] = env->regs[4];
480
    (*regs)[5] = env->regs[5];
481
    (*regs)[6] = env->regs[6];
482
    (*regs)[7] = env->regs[7];
483
    (*regs)[8] = env->regs[8];
484
    (*regs)[9] = env->regs[9];
485
    (*regs)[10] = env->regs[10];
486
    (*regs)[11] = env->regs[11];
487
    (*regs)[12] = env->regs[12];
488
    (*regs)[13] = env->regs[13];
489
    (*regs)[14] = env->regs[14];
490
    (*regs)[15] = env->regs[15];
491
    (*regs)[16] = env->regs[16];
492
    (*regs)[17] = env->regs[17];
493
    (*regs)[18] = env->regs[18];
494
    (*regs)[19] = env->regs[19];
495
    (*regs)[20] = env->regs[20];
496
    (*regs)[21] = env->regs[21];
497
    (*regs)[22] = env->regs[22];
498
    (*regs)[23] = env->regs[23];
499
    (*regs)[24] = env->regs[24];
500
    (*regs)[25] = env->regs[25];
501
    (*regs)[26] = env->regs[26];
502
    (*regs)[27] = env->regs[27];
503
    (*regs)[28] = env->regs[28];
504
    (*regs)[29] = env->regs[29];
505
    (*regs)[30] = env->regs[30];
506
    (*regs)[31] = env->regs[31];
507

    
508
    (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
509
    (*regs)[33] = env->regs[0]; /* XXX */
510
}
511

    
512
#define USE_ELF_CORE_DUMP
513
#define ELF_EXEC_PAGESIZE               4096
514

    
515
#define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
516

    
517
#endif
518

    
519
#ifdef TARGET_SPARC
520
#ifdef TARGET_SPARC64
521

    
522
#define ELF_START_MMAP 0x80000000
523
#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
524
                    | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
525
#ifndef TARGET_ABI32
526
#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
527
#else
528
#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
529
#endif
530

    
531
#define ELF_CLASS   ELFCLASS64
532
#define ELF_ARCH    EM_SPARCV9
533

    
534
#define STACK_BIAS              2047
535

    
536
static inline void init_thread(struct target_pt_regs *regs,
537
                               struct image_info *infop)
538
{
539
#ifndef TARGET_ABI32
540
    regs->tstate = 0;
541
#endif
542
    regs->pc = infop->entry;
543
    regs->npc = regs->pc + 4;
544
    regs->y = 0;
545
#ifdef TARGET_ABI32
546
    regs->u_regs[14] = infop->start_stack - 16 * 4;
547
#else
548
    if (personality(infop->personality) == PER_LINUX32)
549
        regs->u_regs[14] = infop->start_stack - 16 * 4;
550
    else
551
        regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
552
#endif
553
}
554

    
555
#else
556
#define ELF_START_MMAP 0x80000000
557
#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
558
                    | HWCAP_SPARC_MULDIV)
559
#define elf_check_arch(x) ( (x) == EM_SPARC )
560

    
561
#define ELF_CLASS   ELFCLASS32
562
#define ELF_ARCH    EM_SPARC
563

    
564
static inline void init_thread(struct target_pt_regs *regs,
565
                               struct image_info *infop)
566
{
567
    regs->psr = 0;
568
    regs->pc = infop->entry;
569
    regs->npc = regs->pc + 4;
570
    regs->y = 0;
571
    regs->u_regs[14] = infop->start_stack - 16 * 4;
572
}
573

    
574
#endif
575
#endif
576

    
577
#ifdef TARGET_PPC
578

    
579
#define ELF_START_MMAP 0x80000000
580

    
581
#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
582

    
583
#define elf_check_arch(x) ( (x) == EM_PPC64 )
584

    
585
#define ELF_CLASS       ELFCLASS64
586

    
587
#else
588

    
589
#define elf_check_arch(x) ( (x) == EM_PPC )
590

    
591
#define ELF_CLASS       ELFCLASS32
592

    
593
#endif
594

    
595
#define ELF_ARCH        EM_PPC
596

    
597
/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
598
   See arch/powerpc/include/asm/cputable.h.  */
599
enum {
600
    QEMU_PPC_FEATURE_32 = 0x80000000,
601
    QEMU_PPC_FEATURE_64 = 0x40000000,
602
    QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
603
    QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
604
    QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
605
    QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
606
    QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
607
    QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
608
    QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
609
    QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
610
    QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
611
    QEMU_PPC_FEATURE_NO_TB = 0x00100000,
612
    QEMU_PPC_FEATURE_POWER4 = 0x00080000,
613
    QEMU_PPC_FEATURE_POWER5 = 0x00040000,
614
    QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
615
    QEMU_PPC_FEATURE_CELL = 0x00010000,
616
    QEMU_PPC_FEATURE_BOOKE = 0x00008000,
617
    QEMU_PPC_FEATURE_SMT = 0x00004000,
618
    QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
619
    QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
620
    QEMU_PPC_FEATURE_PA6T = 0x00000800,
621
    QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
622
    QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
623
    QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
624
    QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
625
    QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
626

    
627
    QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
628
    QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
629
};
630

    
631
#define ELF_HWCAP get_elf_hwcap()
632

    
633
static uint32_t get_elf_hwcap(void)
634
{
635
    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
636
    uint32_t features = 0;
637

    
638
    /* We don't have to be terribly complete here; the high points are
639
       Altivec/FP/SPE support.  Anything else is just a bonus.  */
640
#define GET_FEATURE(flag, feature)                                      \
641
    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
642
    GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
643
    GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
644
    GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
645
    GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
646
    GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
647
    GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
648
    GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
649
    GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
650
#undef GET_FEATURE
651

    
652
    return features;
653
}
654

    
655
/*
656
 * The requirements here are:
657
 * - keep the final alignment of sp (sp & 0xf)
658
 * - make sure the 32-bit value at the first 16 byte aligned position of
659
 *   AUXV is greater than 16 for glibc compatibility.
660
 *   AT_IGNOREPPC is used for that.
661
 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
662
 *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
663
 */
664
#define DLINFO_ARCH_ITEMS       5
665
#define ARCH_DLINFO                                     \
666
    do {                                                \
667
        NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20);              \
668
        NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20);              \
669
        NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
670
        /*                                              \
671
         * Now handle glibc compatibility.              \
672
         */                                             \
673
        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
674
        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
675
    } while (0)
676

    
677
static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
678
{
679
    _regs->gpr[1] = infop->start_stack;
680
#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
681
    _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
682
    infop->entry = ldq_raw(infop->entry) + infop->load_bias;
683
#endif
684
    _regs->nip = infop->entry;
685
}
686

    
687
/* See linux kernel: arch/powerpc/include/asm/elf.h.  */
688
#define ELF_NREG 48
689
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
690

    
691
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
692
{
693
    int i;
694
    target_ulong ccr = 0;
695

    
696
    for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
697
        (*regs)[i] = tswapreg(env->gpr[i]);
698
    }
699

    
700
    (*regs)[32] = tswapreg(env->nip);
701
    (*regs)[33] = tswapreg(env->msr);
702
    (*regs)[35] = tswapreg(env->ctr);
703
    (*regs)[36] = tswapreg(env->lr);
704
    (*regs)[37] = tswapreg(env->xer);
705

    
706
    for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
707
        ccr |= env->crf[i] << (32 - ((i + 1) * 4));
708
    }
709
    (*regs)[38] = tswapreg(ccr);
710
}
711

    
712
#define USE_ELF_CORE_DUMP
713
#define ELF_EXEC_PAGESIZE       4096
714

    
715
#endif
716

    
717
#ifdef TARGET_MIPS
718

    
719
#define ELF_START_MMAP 0x80000000
720

    
721
#define elf_check_arch(x) ( (x) == EM_MIPS )
722

    
723
#ifdef TARGET_MIPS64
724
#define ELF_CLASS   ELFCLASS64
725
#else
726
#define ELF_CLASS   ELFCLASS32
727
#endif
728
#define ELF_ARCH    EM_MIPS
729

    
730
static inline void init_thread(struct target_pt_regs *regs,
731
                               struct image_info *infop)
732
{
733
    regs->cp0_status = 2 << CP0St_KSU;
734
    regs->cp0_epc = infop->entry;
735
    regs->regs[29] = infop->start_stack;
736
}
737

    
738
/* See linux kernel: arch/mips/include/asm/elf.h.  */
739
#define ELF_NREG 45
740
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
741

    
742
/* See linux kernel: arch/mips/include/asm/reg.h.  */
743
enum {
744
#ifdef TARGET_MIPS64
745
    TARGET_EF_R0 = 0,
746
#else
747
    TARGET_EF_R0 = 6,
748
#endif
749
    TARGET_EF_R26 = TARGET_EF_R0 + 26,
750
    TARGET_EF_R27 = TARGET_EF_R0 + 27,
751
    TARGET_EF_LO = TARGET_EF_R0 + 32,
752
    TARGET_EF_HI = TARGET_EF_R0 + 33,
753
    TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
754
    TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
755
    TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
756
    TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
757
};
758

    
759
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
760
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
761
{
762
    int i;
763

    
764
    for (i = 0; i < TARGET_EF_R0; i++) {
765
        (*regs)[i] = 0;
766
    }
767
    (*regs)[TARGET_EF_R0] = 0;
768

    
769
    for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
770
        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
771
    }
772

    
773
    (*regs)[TARGET_EF_R26] = 0;
774
    (*regs)[TARGET_EF_R27] = 0;
775
    (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
776
    (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
777
    (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
778
    (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
779
    (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
780
    (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
781
}
782

    
783
#define USE_ELF_CORE_DUMP
784
#define ELF_EXEC_PAGESIZE        4096
785

    
786
#endif /* TARGET_MIPS */
787

    
788
#ifdef TARGET_MICROBLAZE
789

    
790
#define ELF_START_MMAP 0x80000000
791

    
792
#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
793

    
794
#define ELF_CLASS   ELFCLASS32
795
#define ELF_ARCH    EM_MICROBLAZE
796

    
797
static inline void init_thread(struct target_pt_regs *regs,
798
                               struct image_info *infop)
799
{
800
    regs->pc = infop->entry;
801
    regs->r1 = infop->start_stack;
802

    
803
}
804

    
805
#define ELF_EXEC_PAGESIZE        4096
806

    
807
#define USE_ELF_CORE_DUMP
808
#define ELF_NREG 38
809
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
810

    
811
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
812
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
813
{
814
    int i, pos = 0;
815

    
816
    for (i = 0; i < 32; i++) {
817
        (*regs)[pos++] = tswapreg(env->regs[i]);
818
    }
819

    
820
    for (i = 0; i < 6; i++) {
821
        (*regs)[pos++] = tswapreg(env->sregs[i]);
822
    }
823
}
824

    
825
#endif /* TARGET_MICROBLAZE */
826

    
827
#ifdef TARGET_OPENRISC
828

    
829
#define ELF_START_MMAP 0x08000000
830

    
831
#define elf_check_arch(x) ((x) == EM_OPENRISC)
832

    
833
#define ELF_ARCH EM_OPENRISC
834
#define ELF_CLASS ELFCLASS32
835
#define ELF_DATA  ELFDATA2MSB
836

    
837
static inline void init_thread(struct target_pt_regs *regs,
838
                               struct image_info *infop)
839
{
840
    regs->pc = infop->entry;
841
    regs->gpr[1] = infop->start_stack;
842
}
843

    
844
#define USE_ELF_CORE_DUMP
845
#define ELF_EXEC_PAGESIZE 8192
846

    
847
/* See linux kernel arch/openrisc/include/asm/elf.h.  */
848
#define ELF_NREG 34 /* gprs and pc, sr */
849
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
850

    
851
static void elf_core_copy_regs(target_elf_gregset_t *regs,
852
                               const CPUOpenRISCState *env)
853
{
854
    int i;
855

    
856
    for (i = 0; i < 32; i++) {
857
        (*regs)[i] = tswapreg(env->gpr[i]);
858
    }
859

    
860
    (*regs)[32] = tswapreg(env->pc);
861
    (*regs)[33] = tswapreg(env->sr);
862
}
863
#define ELF_HWCAP 0
864
#define ELF_PLATFORM NULL
865

    
866
#endif /* TARGET_OPENRISC */
867

    
868
#ifdef TARGET_SH4
869

    
870
#define ELF_START_MMAP 0x80000000
871

    
872
#define elf_check_arch(x) ( (x) == EM_SH )
873

    
874
#define ELF_CLASS ELFCLASS32
875
#define ELF_ARCH  EM_SH
876

    
877
static inline void init_thread(struct target_pt_regs *regs,
878
                               struct image_info *infop)
879
{
880
    /* Check other registers XXXXX */
881
    regs->pc = infop->entry;
882
    regs->regs[15] = infop->start_stack;
883
}
884

    
885
/* See linux kernel: arch/sh/include/asm/elf.h.  */
886
#define ELF_NREG 23
887
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
888

    
889
/* See linux kernel: arch/sh/include/asm/ptrace.h.  */
890
enum {
891
    TARGET_REG_PC = 16,
892
    TARGET_REG_PR = 17,
893
    TARGET_REG_SR = 18,
894
    TARGET_REG_GBR = 19,
895
    TARGET_REG_MACH = 20,
896
    TARGET_REG_MACL = 21,
897
    TARGET_REG_SYSCALL = 22
898
};
899

    
900
static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
901
                                      const CPUSH4State *env)
902
{
903
    int i;
904

    
905
    for (i = 0; i < 16; i++) {
906
        (*regs[i]) = tswapreg(env->gregs[i]);
907
    }
908

    
909
    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
910
    (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
911
    (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
912
    (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
913
    (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
914
    (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
915
    (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
916
}
917

    
918
#define USE_ELF_CORE_DUMP
919
#define ELF_EXEC_PAGESIZE        4096
920

    
921
#endif
922

    
923
#ifdef TARGET_CRIS
924

    
925
#define ELF_START_MMAP 0x80000000
926

    
927
#define elf_check_arch(x) ( (x) == EM_CRIS )
928

    
929
#define ELF_CLASS ELFCLASS32
930
#define ELF_ARCH  EM_CRIS
931

    
932
static inline void init_thread(struct target_pt_regs *regs,
933
                               struct image_info *infop)
934
{
935
    regs->erp = infop->entry;
936
}
937

    
938
#define ELF_EXEC_PAGESIZE        8192
939

    
940
#endif
941

    
942
#ifdef TARGET_M68K
943

    
944
#define ELF_START_MMAP 0x80000000
945

    
946
#define elf_check_arch(x) ( (x) == EM_68K )
947

    
948
#define ELF_CLASS       ELFCLASS32
949
#define ELF_ARCH        EM_68K
950

    
951
/* ??? Does this need to do anything?
952
   #define ELF_PLAT_INIT(_r) */
953

    
954
static inline void init_thread(struct target_pt_regs *regs,
955
                               struct image_info *infop)
956
{
957
    regs->usp = infop->start_stack;
958
    regs->sr = 0;
959
    regs->pc = infop->entry;
960
}
961

    
962
/* See linux kernel: arch/m68k/include/asm/elf.h.  */
963
#define ELF_NREG 20
964
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
965

    
966
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
967
{
968
    (*regs)[0] = tswapreg(env->dregs[1]);
969
    (*regs)[1] = tswapreg(env->dregs[2]);
970
    (*regs)[2] = tswapreg(env->dregs[3]);
971
    (*regs)[3] = tswapreg(env->dregs[4]);
972
    (*regs)[4] = tswapreg(env->dregs[5]);
973
    (*regs)[5] = tswapreg(env->dregs[6]);
974
    (*regs)[6] = tswapreg(env->dregs[7]);
975
    (*regs)[7] = tswapreg(env->aregs[0]);
976
    (*regs)[8] = tswapreg(env->aregs[1]);
977
    (*regs)[9] = tswapreg(env->aregs[2]);
978
    (*regs)[10] = tswapreg(env->aregs[3]);
979
    (*regs)[11] = tswapreg(env->aregs[4]);
980
    (*regs)[12] = tswapreg(env->aregs[5]);
981
    (*regs)[13] = tswapreg(env->aregs[6]);
982
    (*regs)[14] = tswapreg(env->dregs[0]);
983
    (*regs)[15] = tswapreg(env->aregs[7]);
984
    (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
985
    (*regs)[17] = tswapreg(env->sr);
986
    (*regs)[18] = tswapreg(env->pc);
987
    (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
988
}
989

    
990
#define USE_ELF_CORE_DUMP
991
#define ELF_EXEC_PAGESIZE       8192
992

    
993
#endif
994

    
995
#ifdef TARGET_ALPHA
996

    
997
#define ELF_START_MMAP (0x30000000000ULL)
998

    
999
#define elf_check_arch(x) ( (x) == ELF_ARCH )
1000

    
1001
#define ELF_CLASS      ELFCLASS64
1002
#define ELF_ARCH       EM_ALPHA
1003

    
1004
static inline void init_thread(struct target_pt_regs *regs,
1005
                               struct image_info *infop)
1006
{
1007
    regs->pc = infop->entry;
1008
    regs->ps = 8;
1009
    regs->usp = infop->start_stack;
1010
}
1011

    
1012
#define ELF_EXEC_PAGESIZE        8192
1013

    
1014
#endif /* TARGET_ALPHA */
1015

    
1016
#ifdef TARGET_S390X
1017

    
1018
#define ELF_START_MMAP (0x20000000000ULL)
1019

    
1020
#define elf_check_arch(x) ( (x) == ELF_ARCH )
1021

    
1022
#define ELF_CLASS        ELFCLASS64
1023
#define ELF_DATA        ELFDATA2MSB
1024
#define ELF_ARCH        EM_S390
1025

    
1026
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1027
{
1028
    regs->psw.addr = infop->entry;
1029
    regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1030
    regs->gprs[15] = infop->start_stack;
1031
}
1032

    
1033
#endif /* TARGET_S390X */
1034

    
1035
#ifndef ELF_PLATFORM
1036
#define ELF_PLATFORM (NULL)
1037
#endif
1038

    
1039
#ifndef ELF_HWCAP
1040
#define ELF_HWCAP 0
1041
#endif
1042

    
1043
#ifdef TARGET_ABI32
1044
#undef ELF_CLASS
1045
#define ELF_CLASS ELFCLASS32
1046
#undef bswaptls
1047
#define bswaptls(ptr) bswap32s(ptr)
1048
#endif
1049

    
1050
#include "elf.h"
1051

    
1052
struct exec
1053
{
1054
    unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1055
    unsigned int a_text;   /* length of text, in bytes */
1056
    unsigned int a_data;   /* length of data, in bytes */
1057
    unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1058
    unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1059
    unsigned int a_entry;  /* start address */
1060
    unsigned int a_trsize; /* length of relocation info for text, in bytes */
1061
    unsigned int a_drsize; /* length of relocation info for data, in bytes */
1062
};
1063

    
1064

    
1065
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1066
#define OMAGIC 0407
1067
#define NMAGIC 0410
1068
#define ZMAGIC 0413
1069
#define QMAGIC 0314
1070

    
1071
/* Necessary parameters */
1072
#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1073
#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1074
#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1075

    
1076
#define DLINFO_ITEMS 13
1077

    
1078
static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1079
{
1080
    memcpy(to, from, n);
1081
}
1082

    
1083
#ifdef BSWAP_NEEDED
1084
static void bswap_ehdr(struct elfhdr *ehdr)
1085
{
1086
    bswap16s(&ehdr->e_type);            /* Object file type */
1087
    bswap16s(&ehdr->e_machine);         /* Architecture */
1088
    bswap32s(&ehdr->e_version);         /* Object file version */
1089
    bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1090
    bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1091
    bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1092
    bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1093
    bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1094
    bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1095
    bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1096
    bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1097
    bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1098
    bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1099
}
1100

    
1101
static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1102
{
1103
    int i;
1104
    for (i = 0; i < phnum; ++i, ++phdr) {
1105
        bswap32s(&phdr->p_type);        /* Segment type */
1106
        bswap32s(&phdr->p_flags);       /* Segment flags */
1107
        bswaptls(&phdr->p_offset);      /* Segment file offset */
1108
        bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1109
        bswaptls(&phdr->p_paddr);       /* Segment physical address */
1110
        bswaptls(&phdr->p_filesz);      /* Segment size in file */
1111
        bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1112
        bswaptls(&phdr->p_align);       /* Segment alignment */
1113
    }
1114
}
1115

    
1116
static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1117
{
1118
    int i;
1119
    for (i = 0; i < shnum; ++i, ++shdr) {
1120
        bswap32s(&shdr->sh_name);
1121
        bswap32s(&shdr->sh_type);
1122
        bswaptls(&shdr->sh_flags);
1123
        bswaptls(&shdr->sh_addr);
1124
        bswaptls(&shdr->sh_offset);
1125
        bswaptls(&shdr->sh_size);
1126
        bswap32s(&shdr->sh_link);
1127
        bswap32s(&shdr->sh_info);
1128
        bswaptls(&shdr->sh_addralign);
1129
        bswaptls(&shdr->sh_entsize);
1130
    }
1131
}
1132

    
1133
static void bswap_sym(struct elf_sym *sym)
1134
{
1135
    bswap32s(&sym->st_name);
1136
    bswaptls(&sym->st_value);
1137
    bswaptls(&sym->st_size);
1138
    bswap16s(&sym->st_shndx);
1139
}
1140
#else
1141
static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1142
static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1143
static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1144
static inline void bswap_sym(struct elf_sym *sym) { }
1145
#endif
1146

    
1147
#ifdef USE_ELF_CORE_DUMP
1148
static int elf_core_dump(int, const CPUArchState *);
1149
#endif /* USE_ELF_CORE_DUMP */
1150
static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1151

    
1152
/* Verify the portions of EHDR within E_IDENT for the target.
1153
   This can be performed before bswapping the entire header.  */
1154
static bool elf_check_ident(struct elfhdr *ehdr)
1155
{
1156
    return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1157
            && ehdr->e_ident[EI_MAG1] == ELFMAG1
1158
            && ehdr->e_ident[EI_MAG2] == ELFMAG2
1159
            && ehdr->e_ident[EI_MAG3] == ELFMAG3
1160
            && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1161
            && ehdr->e_ident[EI_DATA] == ELF_DATA
1162
            && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1163
}
1164

    
1165
/* Verify the portions of EHDR outside of E_IDENT for the target.
1166
   This has to wait until after bswapping the header.  */
1167
static bool elf_check_ehdr(struct elfhdr *ehdr)
1168
{
1169
    return (elf_check_arch(ehdr->e_machine)
1170
            && ehdr->e_ehsize == sizeof(struct elfhdr)
1171
            && ehdr->e_phentsize == sizeof(struct elf_phdr)
1172
            && ehdr->e_shentsize == sizeof(struct elf_shdr)
1173
            && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1174
}
1175

    
1176
/*
1177
 * 'copy_elf_strings()' copies argument/envelope strings from user
1178
 * memory to free pages in kernel mem. These are in a format ready
1179
 * to be put directly into the top of new user memory.
1180
 *
1181
 */
1182
static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1183
                                  abi_ulong p)
1184
{
1185
    char *tmp, *tmp1, *pag = NULL;
1186
    int len, offset = 0;
1187

    
1188
    if (!p) {
1189
        return 0;       /* bullet-proofing */
1190
    }
1191
    while (argc-- > 0) {
1192
        tmp = argv[argc];
1193
        if (!tmp) {
1194
            fprintf(stderr, "VFS: argc is wrong");
1195
            exit(-1);
1196
        }
1197
        tmp1 = tmp;
1198
        while (*tmp++);
1199
        len = tmp - tmp1;
1200
        if (p < len) {  /* this shouldn't happen - 128kB */
1201
            return 0;
1202
        }
1203
        while (len) {
1204
            --p; --tmp; --len;
1205
            if (--offset < 0) {
1206
                offset = p % TARGET_PAGE_SIZE;
1207
                pag = (char *)page[p/TARGET_PAGE_SIZE];
1208
                if (!pag) {
1209
                    pag = g_try_malloc0(TARGET_PAGE_SIZE);
1210
                    page[p/TARGET_PAGE_SIZE] = pag;
1211
                    if (!pag)
1212
                        return 0;
1213
                }
1214
            }
1215
            if (len == 0 || offset == 0) {
1216
                *(pag + offset) = *tmp;
1217
            }
1218
            else {
1219
                int bytes_to_copy = (len > offset) ? offset : len;
1220
                tmp -= bytes_to_copy;
1221
                p -= bytes_to_copy;
1222
                offset -= bytes_to_copy;
1223
                len -= bytes_to_copy;
1224
                memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1225
            }
1226
        }
1227
    }
1228
    return p;
1229
}
1230

    
1231
static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1232
                                 struct image_info *info)
1233
{
1234
    abi_ulong stack_base, size, error, guard;
1235
    int i;
1236

    
1237
    /* Create enough stack to hold everything.  If we don't use
1238
       it for args, we'll use it for something else.  */
1239
    size = guest_stack_size;
1240
    if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1241
        size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1242
    }
1243
    guard = TARGET_PAGE_SIZE;
1244
    if (guard < qemu_real_host_page_size) {
1245
        guard = qemu_real_host_page_size;
1246
    }
1247

    
1248
    error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1249
                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1250
    if (error == -1) {
1251
        perror("mmap stack");
1252
        exit(-1);
1253
    }
1254

    
1255
    /* We reserve one extra page at the top of the stack as guard.  */
1256
    target_mprotect(error, guard, PROT_NONE);
1257

    
1258
    info->stack_limit = error + guard;
1259
    stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1260
    p += stack_base;
1261

    
1262
    for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1263
        if (bprm->page[i]) {
1264
            info->rss++;
1265
            /* FIXME - check return value of memcpy_to_target() for failure */
1266
            memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1267
            g_free(bprm->page[i]);
1268
        }
1269
        stack_base += TARGET_PAGE_SIZE;
1270
    }
1271
    return p;
1272
}
1273

    
1274
/* Map and zero the bss.  We need to explicitly zero any fractional pages
1275
   after the data section (i.e. bss).  */
1276
static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1277
{
1278
    uintptr_t host_start, host_map_start, host_end;
1279

    
1280
    last_bss = TARGET_PAGE_ALIGN(last_bss);
1281

    
1282
    /* ??? There is confusion between qemu_real_host_page_size and
1283
       qemu_host_page_size here and elsewhere in target_mmap, which
1284
       may lead to the end of the data section mapping from the file
1285
       not being mapped.  At least there was an explicit test and
1286
       comment for that here, suggesting that "the file size must
1287
       be known".  The comment probably pre-dates the introduction
1288
       of the fstat system call in target_mmap which does in fact
1289
       find out the size.  What isn't clear is if the workaround
1290
       here is still actually needed.  For now, continue with it,
1291
       but merge it with the "normal" mmap that would allocate the bss.  */
1292

    
1293
    host_start = (uintptr_t) g2h(elf_bss);
1294
    host_end = (uintptr_t) g2h(last_bss);
1295
    host_map_start = (host_start + qemu_real_host_page_size - 1);
1296
    host_map_start &= -qemu_real_host_page_size;
1297

    
1298
    if (host_map_start < host_end) {
1299
        void *p = mmap((void *)host_map_start, host_end - host_map_start,
1300
                       prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1301
        if (p == MAP_FAILED) {
1302
            perror("cannot mmap brk");
1303
            exit(-1);
1304
        }
1305

    
1306
        /* Since we didn't use target_mmap, make sure to record
1307
           the validity of the pages with qemu.  */
1308
        page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
1309
    }
1310

    
1311
    if (host_start < host_map_start) {
1312
        memset((void *)host_start, 0, host_map_start - host_start);
1313
    }
1314
}
1315

    
1316
#ifdef CONFIG_USE_FDPIC
1317
static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1318
{
1319
    uint16_t n;
1320
    struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1321

    
1322
    /* elf32_fdpic_loadseg */
1323
    n = info->nsegs;
1324
    while (n--) {
1325
        sp -= 12;
1326
        put_user_u32(loadsegs[n].addr, sp+0);
1327
        put_user_u32(loadsegs[n].p_vaddr, sp+4);
1328
        put_user_u32(loadsegs[n].p_memsz, sp+8);
1329
    }
1330

    
1331
    /* elf32_fdpic_loadmap */
1332
    sp -= 4;
1333
    put_user_u16(0, sp+0); /* version */
1334
    put_user_u16(info->nsegs, sp+2); /* nsegs */
1335

    
1336
    info->personality = PER_LINUX_FDPIC;
1337
    info->loadmap_addr = sp;
1338

    
1339
    return sp;
1340
}
1341
#endif
1342

    
1343
static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1344
                                   struct elfhdr *exec,
1345
                                   struct image_info *info,
1346
                                   struct image_info *interp_info)
1347
{
1348
    abi_ulong sp;
1349
    abi_ulong sp_auxv;
1350
    int size;
1351
    int i;
1352
    abi_ulong u_rand_bytes;
1353
    uint8_t k_rand_bytes[16];
1354
    abi_ulong u_platform;
1355
    const char *k_platform;
1356
    const int n = sizeof(elf_addr_t);
1357

    
1358
    sp = p;
1359

    
1360
#ifdef CONFIG_USE_FDPIC
1361
    /* Needs to be before we load the env/argc/... */
1362
    if (elf_is_fdpic(exec)) {
1363
        /* Need 4 byte alignment for these structs */
1364
        sp &= ~3;
1365
        sp = loader_build_fdpic_loadmap(info, sp);
1366
        info->other_info = interp_info;
1367
        if (interp_info) {
1368
            interp_info->other_info = info;
1369
            sp = loader_build_fdpic_loadmap(interp_info, sp);
1370
        }
1371
    }
1372
#endif
1373

    
1374
    u_platform = 0;
1375
    k_platform = ELF_PLATFORM;
1376
    if (k_platform) {
1377
        size_t len = strlen(k_platform) + 1;
1378
        sp -= (len + n - 1) & ~(n - 1);
1379
        u_platform = sp;
1380
        /* FIXME - check return value of memcpy_to_target() for failure */
1381
        memcpy_to_target(sp, k_platform, len);
1382
    }
1383

    
1384
    /*
1385
     * Generate 16 random bytes for userspace PRNG seeding (not
1386
     * cryptically secure but it's not the aim of QEMU).
1387
     */
1388
    srand((unsigned int) time(NULL));
1389
    for (i = 0; i < 16; i++) {
1390
        k_rand_bytes[i] = rand();
1391
    }
1392
    sp -= 16;
1393
    u_rand_bytes = sp;
1394
    /* FIXME - check return value of memcpy_to_target() for failure */
1395
    memcpy_to_target(sp, k_rand_bytes, 16);
1396

    
1397
    /*
1398
     * Force 16 byte _final_ alignment here for generality.
1399
     */
1400
    sp = sp &~ (abi_ulong)15;
1401
    size = (DLINFO_ITEMS + 1) * 2;
1402
    if (k_platform)
1403
        size += 2;
1404
#ifdef DLINFO_ARCH_ITEMS
1405
    size += DLINFO_ARCH_ITEMS * 2;
1406
#endif
1407
    size += envc + argc + 2;
1408
    size += 1;  /* argc itself */
1409
    size *= n;
1410
    if (size & 15)
1411
        sp -= 16 - (size & 15);
1412

    
1413
    /* This is correct because Linux defines
1414
     * elf_addr_t as Elf32_Off / Elf64_Off
1415
     */
1416
#define NEW_AUX_ENT(id, val) do {               \
1417
        sp -= n; put_user_ual(val, sp);         \
1418
        sp -= n; put_user_ual(id, sp);          \
1419
    } while(0)
1420

    
1421
    sp_auxv = sp;
1422
    NEW_AUX_ENT (AT_NULL, 0);
1423

    
1424
    /* There must be exactly DLINFO_ITEMS entries here.  */
1425
    NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1426
    NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1427
    NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1428
    NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1429
    NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1430
    NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1431
    NEW_AUX_ENT(AT_ENTRY, info->entry);
1432
    NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1433
    NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1434
    NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1435
    NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1436
    NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1437
    NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1438
    NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1439

    
1440
    if (k_platform)
1441
        NEW_AUX_ENT(AT_PLATFORM, u_platform);
1442
#ifdef ARCH_DLINFO
1443
    /*
1444
     * ARCH_DLINFO must come last so platform specific code can enforce
1445
     * special alignment requirements on the AUXV if necessary (eg. PPC).
1446
     */
1447
    ARCH_DLINFO;
1448
#endif
1449
#undef NEW_AUX_ENT
1450

    
1451
    info->saved_auxv = sp;
1452
    info->auxv_len = sp_auxv - sp;
1453

    
1454
    sp = loader_build_argptr(envc, argc, sp, p, 0);
1455
    return sp;
1456
}
1457

    
1458
#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1459
/* If the guest doesn't have a validation function just agree */
1460
static int validate_guest_space(unsigned long guest_base,
1461
                                unsigned long guest_size)
1462
{
1463
    return 1;
1464
}
1465
#endif
1466

    
1467
unsigned long init_guest_space(unsigned long host_start,
1468
                               unsigned long host_size,
1469
                               unsigned long guest_start,
1470
                               bool fixed)
1471
{
1472
    unsigned long current_start, real_start;
1473
    int flags;
1474

    
1475
    assert(host_start || host_size);
1476

    
1477
    /* If just a starting address is given, then just verify that
1478
     * address.  */
1479
    if (host_start && !host_size) {
1480
        if (validate_guest_space(host_start, host_size) == 1) {
1481
            return host_start;
1482
        } else {
1483
            return (unsigned long)-1;
1484
        }
1485
    }
1486

    
1487
    /* Setup the initial flags and start address.  */
1488
    current_start = host_start & qemu_host_page_mask;
1489
    flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1490
    if (fixed) {
1491
        flags |= MAP_FIXED;
1492
    }
1493

    
1494
    /* Otherwise, a non-zero size region of memory needs to be mapped
1495
     * and validated.  */
1496
    while (1) {
1497
        unsigned long real_size = host_size;
1498

    
1499
        /* Do not use mmap_find_vma here because that is limited to the
1500
         * guest address space.  We are going to make the
1501
         * guest address space fit whatever we're given.
1502
         */
1503
        real_start = (unsigned long)
1504
            mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1505
        if (real_start == (unsigned long)-1) {
1506
            return (unsigned long)-1;
1507
        }
1508

    
1509
        /* Ensure the address is properly aligned.  */
1510
        if (real_start & ~qemu_host_page_mask) {
1511
            munmap((void *)real_start, host_size);
1512
            real_size = host_size + qemu_host_page_size;
1513
            real_start = (unsigned long)
1514
                mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1515
            if (real_start == (unsigned long)-1) {
1516
                return (unsigned long)-1;
1517
            }
1518
            real_start = HOST_PAGE_ALIGN(real_start);
1519
        }
1520

    
1521
        /* Check to see if the address is valid.  */
1522
        if (!host_start || real_start == current_start) {
1523
            int valid = validate_guest_space(real_start - guest_start,
1524
                                             real_size);
1525
            if (valid == 1) {
1526
                break;
1527
            } else if (valid == -1) {
1528
                return (unsigned long)-1;
1529
            }
1530
            /* valid == 0, so try again. */
1531
        }
1532

    
1533
        /* That address didn't work.  Unmap and try a different one.
1534
         * The address the host picked because is typically right at
1535
         * the top of the host address space and leaves the guest with
1536
         * no usable address space.  Resort to a linear search.  We
1537
         * already compensated for mmap_min_addr, so this should not
1538
         * happen often.  Probably means we got unlucky and host
1539
         * address space randomization put a shared library somewhere
1540
         * inconvenient.
1541
         */
1542
        munmap((void *)real_start, host_size);
1543
        current_start += qemu_host_page_size;
1544
        if (host_start == current_start) {
1545
            /* Theoretically possible if host doesn't have any suitably
1546
             * aligned areas.  Normally the first mmap will fail.
1547
             */
1548
            return (unsigned long)-1;
1549
        }
1550
    }
1551

    
1552
    qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1553

    
1554
    return real_start;
1555
}
1556

    
1557
static void probe_guest_base(const char *image_name,
1558
                             abi_ulong loaddr, abi_ulong hiaddr)
1559
{
1560
    /* Probe for a suitable guest base address, if the user has not set
1561
     * it explicitly, and set guest_base appropriately.
1562
     * In case of error we will print a suitable message and exit.
1563
     */
1564
#if defined(CONFIG_USE_GUEST_BASE)
1565
    const char *errmsg;
1566
    if (!have_guest_base && !reserved_va) {
1567
        unsigned long host_start, real_start, host_size;
1568

    
1569
        /* Round addresses to page boundaries.  */
1570
        loaddr &= qemu_host_page_mask;
1571
        hiaddr = HOST_PAGE_ALIGN(hiaddr);
1572

    
1573
        if (loaddr < mmap_min_addr) {
1574
            host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1575
        } else {
1576
            host_start = loaddr;
1577
            if (host_start != loaddr) {
1578
                errmsg = "Address overflow loading ELF binary";
1579
                goto exit_errmsg;
1580
            }
1581
        }
1582
        host_size = hiaddr - loaddr;
1583

    
1584
        /* Setup the initial guest memory space with ranges gleaned from
1585
         * the ELF image that is being loaded.
1586
         */
1587
        real_start = init_guest_space(host_start, host_size, loaddr, false);
1588
        if (real_start == (unsigned long)-1) {
1589
            errmsg = "Unable to find space for application";
1590
            goto exit_errmsg;
1591
        }
1592
        guest_base = real_start - loaddr;
1593

    
1594
        qemu_log("Relocating guest address space from 0x"
1595
                 TARGET_ABI_FMT_lx " to 0x%lx\n",
1596
                 loaddr, real_start);
1597
    }
1598
    return;
1599

    
1600
exit_errmsg:
1601
    fprintf(stderr, "%s: %s\n", image_name, errmsg);
1602
    exit(-1);
1603
#endif
1604
}
1605

    
1606

    
1607
/* Load an ELF image into the address space.
1608

1609
   IMAGE_NAME is the filename of the image, to use in error messages.
1610
   IMAGE_FD is the open file descriptor for the image.
1611

1612
   BPRM_BUF is a copy of the beginning of the file; this of course
1613
   contains the elf file header at offset 0.  It is assumed that this
1614
   buffer is sufficiently aligned to present no problems to the host
1615
   in accessing data at aligned offsets within the buffer.
1616

1617
   On return: INFO values will be filled in, as necessary or available.  */
1618

    
1619
static void load_elf_image(const char *image_name, int image_fd,
1620
                           struct image_info *info, char **pinterp_name,
1621
                           char bprm_buf[BPRM_BUF_SIZE])
1622
{
1623
    struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1624
    struct elf_phdr *phdr;
1625
    abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1626
    int i, retval;
1627
    const char *errmsg;
1628

    
1629
    /* First of all, some simple consistency checks */
1630
    errmsg = "Invalid ELF image for this architecture";
1631
    if (!elf_check_ident(ehdr)) {
1632
        goto exit_errmsg;
1633
    }
1634
    bswap_ehdr(ehdr);
1635
    if (!elf_check_ehdr(ehdr)) {
1636
        goto exit_errmsg;
1637
    }
1638

    
1639
    i = ehdr->e_phnum * sizeof(struct elf_phdr);
1640
    if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1641
        phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1642
    } else {
1643
        phdr = (struct elf_phdr *) alloca(i);
1644
        retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1645
        if (retval != i) {
1646
            goto exit_read;
1647
        }
1648
    }
1649
    bswap_phdr(phdr, ehdr->e_phnum);
1650

    
1651
#ifdef CONFIG_USE_FDPIC
1652
    info->nsegs = 0;
1653
    info->pt_dynamic_addr = 0;
1654
#endif
1655

    
1656
    /* Find the maximum size of the image and allocate an appropriate
1657
       amount of memory to handle that.  */
1658
    loaddr = -1, hiaddr = 0;
1659
    for (i = 0; i < ehdr->e_phnum; ++i) {
1660
        if (phdr[i].p_type == PT_LOAD) {
1661
            abi_ulong a = phdr[i].p_vaddr;
1662
            if (a < loaddr) {
1663
                loaddr = a;
1664
            }
1665
            a += phdr[i].p_memsz;
1666
            if (a > hiaddr) {
1667
                hiaddr = a;
1668
            }
1669
#ifdef CONFIG_USE_FDPIC
1670
            ++info->nsegs;
1671
#endif
1672
        }
1673
    }
1674

    
1675
    load_addr = loaddr;
1676
    if (ehdr->e_type == ET_DYN) {
1677
        /* The image indicates that it can be loaded anywhere.  Find a
1678
           location that can hold the memory space required.  If the
1679
           image is pre-linked, LOADDR will be non-zero.  Since we do
1680
           not supply MAP_FIXED here we'll use that address if and
1681
           only if it remains available.  */
1682
        load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1683
                                MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1684
                                -1, 0);
1685
        if (load_addr == -1) {
1686
            goto exit_perror;
1687
        }
1688
    } else if (pinterp_name != NULL) {
1689
        /* This is the main executable.  Make sure that the low
1690
           address does not conflict with MMAP_MIN_ADDR or the
1691
           QEMU application itself.  */
1692
        probe_guest_base(image_name, loaddr, hiaddr);
1693
    }
1694
    load_bias = load_addr - loaddr;
1695

    
1696
#ifdef CONFIG_USE_FDPIC
1697
    {
1698
        struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1699
            g_malloc(sizeof(*loadsegs) * info->nsegs);
1700

    
1701
        for (i = 0; i < ehdr->e_phnum; ++i) {
1702
            switch (phdr[i].p_type) {
1703
            case PT_DYNAMIC:
1704
                info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1705
                break;
1706
            case PT_LOAD:
1707
                loadsegs->addr = phdr[i].p_vaddr + load_bias;
1708
                loadsegs->p_vaddr = phdr[i].p_vaddr;
1709
                loadsegs->p_memsz = phdr[i].p_memsz;
1710
                ++loadsegs;
1711
                break;
1712
            }
1713
        }
1714
    }
1715
#endif
1716

    
1717
    info->load_bias = load_bias;
1718
    info->load_addr = load_addr;
1719
    info->entry = ehdr->e_entry + load_bias;
1720
    info->start_code = -1;
1721
    info->end_code = 0;
1722
    info->start_data = -1;
1723
    info->end_data = 0;
1724
    info->brk = 0;
1725
    info->elf_flags = ehdr->e_flags;
1726

    
1727
    for (i = 0; i < ehdr->e_phnum; i++) {
1728
        struct elf_phdr *eppnt = phdr + i;
1729
        if (eppnt->p_type == PT_LOAD) {
1730
            abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1731
            int elf_prot = 0;
1732

    
1733
            if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1734
            if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1735
            if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1736

    
1737
            vaddr = load_bias + eppnt->p_vaddr;
1738
            vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1739
            vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1740

    
1741
            error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1742
                                elf_prot, MAP_PRIVATE | MAP_FIXED,
1743
                                image_fd, eppnt->p_offset - vaddr_po);
1744
            if (error == -1) {
1745
                goto exit_perror;
1746
            }
1747

    
1748
            vaddr_ef = vaddr + eppnt->p_filesz;
1749
            vaddr_em = vaddr + eppnt->p_memsz;
1750

    
1751
            /* If the load segment requests extra zeros (e.g. bss), map it.  */
1752
            if (vaddr_ef < vaddr_em) {
1753
                zero_bss(vaddr_ef, vaddr_em, elf_prot);
1754
            }
1755

    
1756
            /* Find the full program boundaries.  */
1757
            if (elf_prot & PROT_EXEC) {
1758
                if (vaddr < info->start_code) {
1759
                    info->start_code = vaddr;
1760
                }
1761
                if (vaddr_ef > info->end_code) {
1762
                    info->end_code = vaddr_ef;
1763
                }
1764
            }
1765
            if (elf_prot & PROT_WRITE) {
1766
                if (vaddr < info->start_data) {
1767
                    info->start_data = vaddr;
1768
                }
1769
                if (vaddr_ef > info->end_data) {
1770
                    info->end_data = vaddr_ef;
1771
                }
1772
                if (vaddr_em > info->brk) {
1773
                    info->brk = vaddr_em;
1774
                }
1775
            }
1776
        } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1777
            char *interp_name;
1778

    
1779
            if (*pinterp_name) {
1780
                errmsg = "Multiple PT_INTERP entries";
1781
                goto exit_errmsg;
1782
            }
1783
            interp_name = malloc(eppnt->p_filesz);
1784
            if (!interp_name) {
1785
                goto exit_perror;
1786
            }
1787

    
1788
            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1789
                memcpy(interp_name, bprm_buf + eppnt->p_offset,
1790
                       eppnt->p_filesz);
1791
            } else {
1792
                retval = pread(image_fd, interp_name, eppnt->p_filesz,
1793
                               eppnt->p_offset);
1794
                if (retval != eppnt->p_filesz) {
1795
                    goto exit_perror;
1796
                }
1797
            }
1798
            if (interp_name[eppnt->p_filesz - 1] != 0) {
1799
                errmsg = "Invalid PT_INTERP entry";
1800
                goto exit_errmsg;
1801
            }
1802
            *pinterp_name = interp_name;
1803
        }
1804
    }
1805

    
1806
    if (info->end_data == 0) {
1807
        info->start_data = info->end_code;
1808
        info->end_data = info->end_code;
1809
        info->brk = info->end_code;
1810
    }
1811

    
1812
    if (qemu_log_enabled()) {
1813
        load_symbols(ehdr, image_fd, load_bias);
1814
    }
1815

    
1816
    close(image_fd);
1817
    return;
1818

    
1819
 exit_read:
1820
    if (retval >= 0) {
1821
        errmsg = "Incomplete read of file header";
1822
        goto exit_errmsg;
1823
    }
1824
 exit_perror:
1825
    errmsg = strerror(errno);
1826
 exit_errmsg:
1827
    fprintf(stderr, "%s: %s\n", image_name, errmsg);
1828
    exit(-1);
1829
}
1830

    
1831
static void load_elf_interp(const char *filename, struct image_info *info,
1832
                            char bprm_buf[BPRM_BUF_SIZE])
1833
{
1834
    int fd, retval;
1835

    
1836
    fd = open(path(filename), O_RDONLY);
1837
    if (fd < 0) {
1838
        goto exit_perror;
1839
    }
1840

    
1841
    retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1842
    if (retval < 0) {
1843
        goto exit_perror;
1844
    }
1845
    if (retval < BPRM_BUF_SIZE) {
1846
        memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1847
    }
1848

    
1849
    load_elf_image(filename, fd, info, NULL, bprm_buf);
1850
    return;
1851

    
1852
 exit_perror:
1853
    fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1854
    exit(-1);
1855
}
1856

    
1857
static int symfind(const void *s0, const void *s1)
1858
{
1859
    target_ulong addr = *(target_ulong *)s0;
1860
    struct elf_sym *sym = (struct elf_sym *)s1;
1861
    int result = 0;
1862
    if (addr < sym->st_value) {
1863
        result = -1;
1864
    } else if (addr >= sym->st_value + sym->st_size) {
1865
        result = 1;
1866
    }
1867
    return result;
1868
}
1869

    
1870
static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1871
{
1872
#if ELF_CLASS == ELFCLASS32
1873
    struct elf_sym *syms = s->disas_symtab.elf32;
1874
#else
1875
    struct elf_sym *syms = s->disas_symtab.elf64;
1876
#endif
1877

    
1878
    // binary search
1879
    struct elf_sym *sym;
1880

    
1881
    sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
1882
    if (sym != NULL) {
1883
        return s->disas_strtab + sym->st_name;
1884
    }
1885

    
1886
    return "";
1887
}
1888

    
1889
/* FIXME: This should use elf_ops.h  */
1890
static int symcmp(const void *s0, const void *s1)
1891
{
1892
    struct elf_sym *sym0 = (struct elf_sym *)s0;
1893
    struct elf_sym *sym1 = (struct elf_sym *)s1;
1894
    return (sym0->st_value < sym1->st_value)
1895
        ? -1
1896
        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1897
}
1898

    
1899
/* Best attempt to load symbols from this ELF object. */
1900
static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
1901
{
1902
    int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1903
    struct elf_shdr *shdr;
1904
    char *strings = NULL;
1905
    struct syminfo *s = NULL;
1906
    struct elf_sym *new_syms, *syms = NULL;
1907

    
1908
    shnum = hdr->e_shnum;
1909
    i = shnum * sizeof(struct elf_shdr);
1910
    shdr = (struct elf_shdr *)alloca(i);
1911
    if (pread(fd, shdr, i, hdr->e_shoff) != i) {
1912
        return;
1913
    }
1914

    
1915
    bswap_shdr(shdr, shnum);
1916
    for (i = 0; i < shnum; ++i) {
1917
        if (shdr[i].sh_type == SHT_SYMTAB) {
1918
            sym_idx = i;
1919
            str_idx = shdr[i].sh_link;
1920
            goto found;
1921
        }
1922
    }
1923

    
1924
    /* There will be no symbol table if the file was stripped.  */
1925
    return;
1926

    
1927
 found:
1928
    /* Now know where the strtab and symtab are.  Snarf them.  */
1929
    s = malloc(sizeof(*s));
1930
    if (!s) {
1931
        goto give_up;
1932
    }
1933

    
1934
    i = shdr[str_idx].sh_size;
1935
    s->disas_strtab = strings = malloc(i);
1936
    if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
1937
        goto give_up;
1938
    }
1939

    
1940
    i = shdr[sym_idx].sh_size;
1941
    syms = malloc(i);
1942
    if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
1943
        goto give_up;
1944
    }
1945

    
1946
    nsyms = i / sizeof(struct elf_sym);
1947
    for (i = 0; i < nsyms; ) {
1948
        bswap_sym(syms + i);
1949
        /* Throw away entries which we do not need.  */
1950
        if (syms[i].st_shndx == SHN_UNDEF
1951
            || syms[i].st_shndx >= SHN_LORESERVE
1952
            || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1953
            if (i < --nsyms) {
1954
                syms[i] = syms[nsyms];
1955
            }
1956
        } else {
1957
#if defined(TARGET_ARM) || defined (TARGET_MIPS)
1958
            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
1959
            syms[i].st_value &= ~(target_ulong)1;
1960
#endif
1961
            syms[i].st_value += load_bias;
1962
            i++;
1963
        }
1964
    }
1965

    
1966
    /* No "useful" symbol.  */
1967
    if (nsyms == 0) {
1968
        goto give_up;
1969
    }
1970

    
1971
    /* Attempt to free the storage associated with the local symbols
1972
       that we threw away.  Whether or not this has any effect on the
1973
       memory allocation depends on the malloc implementation and how
1974
       many symbols we managed to discard.  */
1975
    new_syms = realloc(syms, nsyms * sizeof(*syms));
1976
    if (new_syms == NULL) {
1977
        goto give_up;
1978
    }
1979
    syms = new_syms;
1980

    
1981
    qsort(syms, nsyms, sizeof(*syms), symcmp);
1982

    
1983
    s->disas_num_syms = nsyms;
1984
#if ELF_CLASS == ELFCLASS32
1985
    s->disas_symtab.elf32 = syms;
1986
#else
1987
    s->disas_symtab.elf64 = syms;
1988
#endif
1989
    s->lookup_symbol = lookup_symbolxx;
1990
    s->next = syminfos;
1991
    syminfos = s;
1992

    
1993
    return;
1994

    
1995
give_up:
1996
    free(s);
1997
    free(strings);
1998
    free(syms);
1999
}
2000

    
2001
int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2002
{
2003
    struct image_info interp_info;
2004
    struct elfhdr elf_ex;
2005
    char *elf_interpreter = NULL;
2006

    
2007
    info->start_mmap = (abi_ulong)ELF_START_MMAP;
2008
    info->mmap = 0;
2009
    info->rss = 0;
2010

    
2011
    load_elf_image(bprm->filename, bprm->fd, info,
2012
                   &elf_interpreter, bprm->buf);
2013

    
2014
    /* ??? We need a copy of the elf header for passing to create_elf_tables.
2015
       If we do nothing, we'll have overwritten this when we re-use bprm->buf
2016
       when we load the interpreter.  */
2017
    elf_ex = *(struct elfhdr *)bprm->buf;
2018

    
2019
    bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2020
    bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2021
    bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2022
    if (!bprm->p) {
2023
        fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2024
        exit(-1);
2025
    }
2026

    
2027
    /* Do this so that we can load the interpreter, if need be.  We will
2028
       change some of these later */
2029
    bprm->p = setup_arg_pages(bprm->p, bprm, info);
2030

    
2031
    if (elf_interpreter) {
2032
        load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2033

    
2034
        /* If the program interpreter is one of these two, then assume
2035
           an iBCS2 image.  Otherwise assume a native linux image.  */
2036

    
2037
        if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2038
            || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2039
            info->personality = PER_SVR4;
2040

    
2041
            /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2042
               and some applications "depend" upon this behavior.  Since
2043
               we do not have the power to recompile these, we emulate
2044
               the SVr4 behavior.  Sigh.  */
2045
            target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2046
                        MAP_FIXED | MAP_PRIVATE, -1, 0);
2047
        }
2048
    }
2049

    
2050
    bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2051
                                info, (elf_interpreter ? &interp_info : NULL));
2052
    info->start_stack = bprm->p;
2053

    
2054
    /* If we have an interpreter, set that as the program's entry point.
2055
       Copy the load_bias as well, to help PPC64 interpret the entry
2056
       point as a function descriptor.  Do this after creating elf tables
2057
       so that we copy the original program entry point into the AUXV.  */
2058
    if (elf_interpreter) {
2059
        info->load_bias = interp_info.load_bias;
2060
        info->entry = interp_info.entry;
2061
        free(elf_interpreter);
2062
    }
2063

    
2064
#ifdef USE_ELF_CORE_DUMP
2065
    bprm->core_dump = &elf_core_dump;
2066
#endif
2067

    
2068
    return 0;
2069
}
2070

    
2071
#ifdef USE_ELF_CORE_DUMP
2072
/*
2073
 * Definitions to generate Intel SVR4-like core files.
2074
 * These mostly have the same names as the SVR4 types with "target_elf_"
2075
 * tacked on the front to prevent clashes with linux definitions,
2076
 * and the typedef forms have been avoided.  This is mostly like
2077
 * the SVR4 structure, but more Linuxy, with things that Linux does
2078
 * not support and which gdb doesn't really use excluded.
2079
 *
2080
 * Fields we don't dump (their contents is zero) in linux-user qemu
2081
 * are marked with XXX.
2082
 *
2083
 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2084
 *
2085
 * Porting ELF coredump for target is (quite) simple process.  First you
2086
 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2087
 * the target resides):
2088
 *
2089
 * #define USE_ELF_CORE_DUMP
2090
 *
2091
 * Next you define type of register set used for dumping.  ELF specification
2092
 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2093
 *
2094
 * typedef <target_regtype> target_elf_greg_t;
2095
 * #define ELF_NREG <number of registers>
2096
 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2097
 *
2098
 * Last step is to implement target specific function that copies registers
2099
 * from given cpu into just specified register set.  Prototype is:
2100
 *
2101
 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2102
 *                                const CPUArchState *env);
2103
 *
2104
 * Parameters:
2105
 *     regs - copy register values into here (allocated and zeroed by caller)
2106
 *     env - copy registers from here
2107
 *
2108
 * Example for ARM target is provided in this file.
2109
 */
2110

    
2111
/* An ELF note in memory */
2112
struct memelfnote {
2113
    const char *name;
2114
    size_t     namesz;
2115
    size_t     namesz_rounded;
2116
    int        type;
2117
    size_t     datasz;
2118
    size_t     datasz_rounded;
2119
    void       *data;
2120
    size_t     notesz;
2121
};
2122

    
2123
struct target_elf_siginfo {
2124
    abi_int    si_signo; /* signal number */
2125
    abi_int    si_code;  /* extra code */
2126
    abi_int    si_errno; /* errno */
2127
};
2128

    
2129
struct target_elf_prstatus {
2130
    struct target_elf_siginfo pr_info;      /* Info associated with signal */
2131
    abi_short          pr_cursig;    /* Current signal */
2132
    abi_ulong          pr_sigpend;   /* XXX */
2133
    abi_ulong          pr_sighold;   /* XXX */
2134
    target_pid_t       pr_pid;
2135
    target_pid_t       pr_ppid;
2136
    target_pid_t       pr_pgrp;
2137
    target_pid_t       pr_sid;
2138
    struct target_timeval pr_utime;  /* XXX User time */
2139
    struct target_timeval pr_stime;  /* XXX System time */
2140
    struct target_timeval pr_cutime; /* XXX Cumulative user time */
2141
    struct target_timeval pr_cstime; /* XXX Cumulative system time */
2142
    target_elf_gregset_t      pr_reg;       /* GP registers */
2143
    abi_int            pr_fpvalid;   /* XXX */
2144
};
2145

    
2146
#define ELF_PRARGSZ     (80) /* Number of chars for args */
2147

    
2148
struct target_elf_prpsinfo {
2149
    char         pr_state;       /* numeric process state */
2150
    char         pr_sname;       /* char for pr_state */
2151
    char         pr_zomb;        /* zombie */
2152
    char         pr_nice;        /* nice val */
2153
    abi_ulong    pr_flag;        /* flags */
2154
    target_uid_t pr_uid;
2155
    target_gid_t pr_gid;
2156
    target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2157
    /* Lots missing */
2158
    char    pr_fname[16];           /* filename of executable */
2159
    char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2160
};
2161

    
2162
/* Here is the structure in which status of each thread is captured. */
2163
struct elf_thread_status {
2164
    QTAILQ_ENTRY(elf_thread_status)  ets_link;
2165
    struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2166
#if 0
2167
    elf_fpregset_t fpu;             /* NT_PRFPREG */
2168
    struct task_struct *thread;
2169
    elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2170
#endif
2171
    struct memelfnote notes[1];
2172
    int num_notes;
2173
};
2174

    
2175
struct elf_note_info {
2176
    struct memelfnote   *notes;
2177
    struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2178
    struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2179

    
2180
    QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2181
#if 0
2182
    /*
2183
     * Current version of ELF coredump doesn't support
2184
     * dumping fp regs etc.
2185
     */
2186
    elf_fpregset_t *fpu;
2187
    elf_fpxregset_t *xfpu;
2188
    int thread_status_size;
2189
#endif
2190
    int notes_size;
2191
    int numnote;
2192
};
2193

    
2194
struct vm_area_struct {
2195
    abi_ulong   vma_start;  /* start vaddr of memory region */
2196
    abi_ulong   vma_end;    /* end vaddr of memory region */
2197
    abi_ulong   vma_flags;  /* protection etc. flags for the region */
2198
    QTAILQ_ENTRY(vm_area_struct) vma_link;
2199
};
2200

    
2201
struct mm_struct {
2202
    QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2203
    int mm_count;           /* number of mappings */
2204
};
2205

    
2206
static struct mm_struct *vma_init(void);
2207
static void vma_delete(struct mm_struct *);
2208
static int vma_add_mapping(struct mm_struct *, abi_ulong,
2209
                           abi_ulong, abi_ulong);
2210
static int vma_get_mapping_count(const struct mm_struct *);
2211
static struct vm_area_struct *vma_first(const struct mm_struct *);
2212
static struct vm_area_struct *vma_next(struct vm_area_struct *);
2213
static abi_ulong vma_dump_size(const struct vm_area_struct *);
2214
static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2215
                      unsigned long flags);
2216

    
2217
static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2218
static void fill_note(struct memelfnote *, const char *, int,
2219
                      unsigned int, void *);
2220
static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2221
static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2222
static void fill_auxv_note(struct memelfnote *, const TaskState *);
2223
static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2224
static size_t note_size(const struct memelfnote *);
2225
static void free_note_info(struct elf_note_info *);
2226
static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2227
static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2228
static int core_dump_filename(const TaskState *, char *, size_t);
2229

    
2230
static int dump_write(int, const void *, size_t);
2231
static int write_note(struct memelfnote *, int);
2232
static int write_note_info(struct elf_note_info *, int);
2233

    
2234
#ifdef BSWAP_NEEDED
2235
static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2236
{
2237
    prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2238
    prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2239
    prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2240
    prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2241
    prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2242
    prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2243
    prstatus->pr_pid = tswap32(prstatus->pr_pid);
2244
    prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2245
    prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2246
    prstatus->pr_sid = tswap32(prstatus->pr_sid);
2247
    /* cpu times are not filled, so we skip them */
2248
    /* regs should be in correct format already */
2249
    prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2250
}
2251

    
2252
static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2253
{
2254
    psinfo->pr_flag = tswapal(psinfo->pr_flag);
2255
    psinfo->pr_uid = tswap16(psinfo->pr_uid);
2256
    psinfo->pr_gid = tswap16(psinfo->pr_gid);
2257
    psinfo->pr_pid = tswap32(psinfo->pr_pid);
2258
    psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2259
    psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2260
    psinfo->pr_sid = tswap32(psinfo->pr_sid);
2261
}
2262

    
2263
static void bswap_note(struct elf_note *en)
2264
{
2265
    bswap32s(&en->n_namesz);
2266
    bswap32s(&en->n_descsz);
2267
    bswap32s(&en->n_type);
2268
}
2269
#else
2270
static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2271
static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2272
static inline void bswap_note(struct elf_note *en) { }
2273
#endif /* BSWAP_NEEDED */
2274

    
2275
/*
2276
 * Minimal support for linux memory regions.  These are needed
2277
 * when we are finding out what memory exactly belongs to
2278
 * emulated process.  No locks needed here, as long as
2279
 * thread that received the signal is stopped.
2280
 */
2281

    
2282
static struct mm_struct *vma_init(void)
2283
{
2284
    struct mm_struct *mm;
2285

    
2286
    if ((mm = g_malloc(sizeof (*mm))) == NULL)
2287
        return (NULL);
2288

    
2289
    mm->mm_count = 0;
2290
    QTAILQ_INIT(&mm->mm_mmap);
2291

    
2292
    return (mm);
2293
}
2294

    
2295
static void vma_delete(struct mm_struct *mm)
2296
{
2297
    struct vm_area_struct *vma;
2298

    
2299
    while ((vma = vma_first(mm)) != NULL) {
2300
        QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2301
        g_free(vma);
2302
    }
2303
    g_free(mm);
2304
}
2305

    
2306
static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2307
                           abi_ulong end, abi_ulong flags)
2308
{
2309
    struct vm_area_struct *vma;
2310

    
2311
    if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2312
        return (-1);
2313

    
2314
    vma->vma_start = start;
2315
    vma->vma_end = end;
2316
    vma->vma_flags = flags;
2317

    
2318
    QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2319
    mm->mm_count++;
2320

    
2321
    return (0);
2322
}
2323

    
2324
static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2325
{
2326
    return (QTAILQ_FIRST(&mm->mm_mmap));
2327
}
2328

    
2329
static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2330
{
2331
    return (QTAILQ_NEXT(vma, vma_link));
2332
}
2333

    
2334
static int vma_get_mapping_count(const struct mm_struct *mm)
2335
{
2336
    return (mm->mm_count);
2337
}
2338

    
2339
/*
2340
 * Calculate file (dump) size of given memory region.
2341
 */
2342
static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2343
{
2344
    /* if we cannot even read the first page, skip it */
2345
    if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2346
        return (0);
2347

    
2348
    /*
2349
     * Usually we don't dump executable pages as they contain
2350
     * non-writable code that debugger can read directly from
2351
     * target library etc.  However, thread stacks are marked
2352
     * also executable so we read in first page of given region
2353
     * and check whether it contains elf header.  If there is
2354
     * no elf header, we dump it.
2355
     */
2356
    if (vma->vma_flags & PROT_EXEC) {
2357
        char page[TARGET_PAGE_SIZE];
2358

    
2359
        copy_from_user(page, vma->vma_start, sizeof (page));
2360
        if ((page[EI_MAG0] == ELFMAG0) &&
2361
            (page[EI_MAG1] == ELFMAG1) &&
2362
            (page[EI_MAG2] == ELFMAG2) &&
2363
            (page[EI_MAG3] == ELFMAG3)) {
2364
            /*
2365
             * Mappings are possibly from ELF binary.  Don't dump
2366
             * them.
2367
             */
2368
            return (0);
2369
        }
2370
    }
2371

    
2372
    return (vma->vma_end - vma->vma_start);
2373
}
2374

    
2375
static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2376
                      unsigned long flags)
2377
{
2378
    struct mm_struct *mm = (struct mm_struct *)priv;
2379

    
2380
    vma_add_mapping(mm, start, end, flags);
2381
    return (0);
2382
}
2383

    
2384
static void fill_note(struct memelfnote *note, const char *name, int type,
2385
                      unsigned int sz, void *data)
2386
{
2387
    unsigned int namesz;
2388

    
2389
    namesz = strlen(name) + 1;
2390
    note->name = name;
2391
    note->namesz = namesz;
2392
    note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2393
    note->type = type;
2394
    note->datasz = sz;
2395
    note->datasz_rounded = roundup(sz, sizeof (int32_t));
2396

    
2397
    note->data = data;
2398

    
2399
    /*
2400
     * We calculate rounded up note size here as specified by
2401
     * ELF document.
2402
     */
2403
    note->notesz = sizeof (struct elf_note) +
2404
        note->namesz_rounded + note->datasz_rounded;
2405
}
2406

    
2407
static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2408
                            uint32_t flags)
2409
{
2410
    (void) memset(elf, 0, sizeof(*elf));
2411

    
2412
    (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2413
    elf->e_ident[EI_CLASS] = ELF_CLASS;
2414
    elf->e_ident[EI_DATA] = ELF_DATA;
2415
    elf->e_ident[EI_VERSION] = EV_CURRENT;
2416
    elf->e_ident[EI_OSABI] = ELF_OSABI;
2417

    
2418
    elf->e_type = ET_CORE;
2419
    elf->e_machine = machine;
2420
    elf->e_version = EV_CURRENT;
2421
    elf->e_phoff = sizeof(struct elfhdr);
2422
    elf->e_flags = flags;
2423
    elf->e_ehsize = sizeof(struct elfhdr);
2424
    elf->e_phentsize = sizeof(struct elf_phdr);
2425
    elf->e_phnum = segs;
2426

    
2427
    bswap_ehdr(elf);
2428
}
2429

    
2430
static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2431
{
2432
    phdr->p_type = PT_NOTE;
2433
    phdr->p_offset = offset;
2434
    phdr->p_vaddr = 0;
2435
    phdr->p_paddr = 0;
2436
    phdr->p_filesz = sz;
2437
    phdr->p_memsz = 0;
2438
    phdr->p_flags = 0;
2439
    phdr->p_align = 0;
2440

    
2441
    bswap_phdr(phdr, 1);
2442
}
2443

    
2444
static size_t note_size(const struct memelfnote *note)
2445
{
2446
    return (note->notesz);
2447
}
2448

    
2449
static void fill_prstatus(struct target_elf_prstatus *prstatus,
2450
                          const TaskState *ts, int signr)
2451
{
2452
    (void) memset(prstatus, 0, sizeof (*prstatus));
2453
    prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2454
    prstatus->pr_pid = ts->ts_tid;
2455
    prstatus->pr_ppid = getppid();
2456
    prstatus->pr_pgrp = getpgrp();
2457
    prstatus->pr_sid = getsid(0);
2458

    
2459
    bswap_prstatus(prstatus);
2460
}
2461

    
2462
static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2463
{
2464
    char *base_filename;
2465
    unsigned int i, len;
2466

    
2467
    (void) memset(psinfo, 0, sizeof (*psinfo));
2468

    
2469
    len = ts->info->arg_end - ts->info->arg_start;
2470
    if (len >= ELF_PRARGSZ)
2471
        len = ELF_PRARGSZ - 1;
2472
    if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2473
        return -EFAULT;
2474
    for (i = 0; i < len; i++)
2475
        if (psinfo->pr_psargs[i] == 0)
2476
            psinfo->pr_psargs[i] = ' ';
2477
    psinfo->pr_psargs[len] = 0;
2478

    
2479
    psinfo->pr_pid = getpid();
2480
    psinfo->pr_ppid = getppid();
2481
    psinfo->pr_pgrp = getpgrp();
2482
    psinfo->pr_sid = getsid(0);
2483
    psinfo->pr_uid = getuid();
2484
    psinfo->pr_gid = getgid();
2485

    
2486
    base_filename = g_path_get_basename(ts->bprm->filename);
2487
    /*
2488
     * Using strncpy here is fine: at max-length,
2489
     * this field is not NUL-terminated.
2490
     */
2491
    (void) strncpy(psinfo->pr_fname, base_filename,
2492
                   sizeof(psinfo->pr_fname));
2493

    
2494
    g_free(base_filename);
2495
    bswap_psinfo(psinfo);
2496
    return (0);
2497
}
2498

    
2499
static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2500
{
2501
    elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2502
    elf_addr_t orig_auxv = auxv;
2503
    void *ptr;
2504
    int len = ts->info->auxv_len;
2505

    
2506
    /*
2507
     * Auxiliary vector is stored in target process stack.  It contains
2508
     * {type, value} pairs that we need to dump into note.  This is not
2509
     * strictly necessary but we do it here for sake of completeness.
2510
     */
2511

    
2512
    /* read in whole auxv vector and copy it to memelfnote */
2513
    ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2514
    if (ptr != NULL) {
2515
        fill_note(note, "CORE", NT_AUXV, len, ptr);
2516
        unlock_user(ptr, auxv, len);
2517
    }
2518
}
2519

    
2520
/*
2521
 * Constructs name of coredump file.  We have following convention
2522
 * for the name:
2523
 *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2524
 *
2525
 * Returns 0 in case of success, -1 otherwise (errno is set).
2526
 */
2527
static int core_dump_filename(const TaskState *ts, char *buf,
2528
                              size_t bufsize)
2529
{
2530
    char timestamp[64];
2531
    char *filename = NULL;
2532
    char *base_filename = NULL;
2533
    struct timeval tv;
2534
    struct tm tm;
2535

    
2536
    assert(bufsize >= PATH_MAX);
2537

    
2538
    if (gettimeofday(&tv, NULL) < 0) {
2539
        (void) fprintf(stderr, "unable to get current timestamp: %s",
2540
                       strerror(errno));
2541
        return (-1);
2542
    }
2543

    
2544
    filename = strdup(ts->bprm->filename);
2545
    base_filename = strdup(basename(filename));
2546
    (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2547
                    localtime_r(&tv.tv_sec, &tm));
2548
    (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2549
                    base_filename, timestamp, (int)getpid());
2550
    free(base_filename);
2551
    free(filename);
2552

    
2553
    return (0);
2554
}
2555

    
2556
static int dump_write(int fd, const void *ptr, size_t size)
2557
{
2558
    const char *bufp = (const char *)ptr;
2559
    ssize_t bytes_written, bytes_left;
2560
    struct rlimit dumpsize;
2561
    off_t pos;
2562

    
2563
    bytes_written = 0;
2564
    getrlimit(RLIMIT_CORE, &dumpsize);
2565
    if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2566
        if (errno == ESPIPE) { /* not a seekable stream */
2567
            bytes_left = size;
2568
        } else {
2569
            return pos;
2570
        }
2571
    } else {
2572
        if (dumpsize.rlim_cur <= pos) {
2573
            return -1;
2574
        } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2575
            bytes_left = size;
2576
        } else {
2577
            size_t limit_left=dumpsize.rlim_cur - pos;
2578
            bytes_left = limit_left >= size ? size : limit_left ;
2579
        }
2580
    }
2581

    
2582
    /*
2583
     * In normal conditions, single write(2) should do but
2584
     * in case of socket etc. this mechanism is more portable.
2585
     */
2586
    do {
2587
        bytes_written = write(fd, bufp, bytes_left);
2588
        if (bytes_written < 0) {
2589
            if (errno == EINTR)
2590
                continue;
2591
            return (-1);
2592
        } else if (bytes_written == 0) { /* eof */
2593
            return (-1);
2594
        }
2595
        bufp += bytes_written;
2596
        bytes_left -= bytes_written;
2597
    } while (bytes_left > 0);
2598

    
2599
    return (0);
2600
}
2601

    
2602
static int write_note(struct memelfnote *men, int fd)
2603
{
2604
    struct elf_note en;
2605

    
2606
    en.n_namesz = men->namesz;
2607
    en.n_type = men->type;
2608
    en.n_descsz = men->datasz;
2609

    
2610
    bswap_note(&en);
2611

    
2612
    if (dump_write(fd, &en, sizeof(en)) != 0)
2613
        return (-1);
2614
    if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2615
        return (-1);
2616
    if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2617
        return (-1);
2618

    
2619
    return (0);
2620
}
2621

    
2622
static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2623
{
2624
    TaskState *ts = (TaskState *)env->opaque;
2625
    struct elf_thread_status *ets;
2626

    
2627
    ets = g_malloc0(sizeof (*ets));
2628
    ets->num_notes = 1; /* only prstatus is dumped */
2629
    fill_prstatus(&ets->prstatus, ts, 0);
2630
    elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2631
    fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2632
              &ets->prstatus);
2633

    
2634
    QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2635

    
2636
    info->notes_size += note_size(&ets->notes[0]);
2637
}
2638

    
2639
static int fill_note_info(struct elf_note_info *info,
2640
                          long signr, const CPUArchState *env)
2641
{
2642
#define NUMNOTES 3
2643
    CPUState *cpu = NULL;
2644
    TaskState *ts = (TaskState *)env->opaque;
2645
    int i;
2646

    
2647
    (void) memset(info, 0, sizeof (*info));
2648

    
2649
    QTAILQ_INIT(&info->thread_list);
2650

    
2651
    info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2652
    if (info->notes == NULL)
2653
        return (-ENOMEM);
2654
    info->prstatus = g_malloc0(sizeof (*info->prstatus));
2655
    if (info->prstatus == NULL)
2656
        return (-ENOMEM);
2657
    info->psinfo = g_malloc0(sizeof (*info->psinfo));
2658
    if (info->prstatus == NULL)
2659
        return (-ENOMEM);
2660

    
2661
    /*
2662
     * First fill in status (and registers) of current thread
2663
     * including process info & aux vector.
2664
     */
2665
    fill_prstatus(info->prstatus, ts, signr);
2666
    elf_core_copy_regs(&info->prstatus->pr_reg, env);
2667
    fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2668
              sizeof (*info->prstatus), info->prstatus);
2669
    fill_psinfo(info->psinfo, ts);
2670
    fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2671
              sizeof (*info->psinfo), info->psinfo);
2672
    fill_auxv_note(&info->notes[2], ts);
2673
    info->numnote = 3;
2674

    
2675
    info->notes_size = 0;
2676
    for (i = 0; i < info->numnote; i++)
2677
        info->notes_size += note_size(&info->notes[i]);
2678

    
2679
    /* read and fill status of all threads */
2680
    cpu_list_lock();
2681
    CPU_FOREACH(cpu) {
2682
        if (cpu == thread_cpu) {
2683
            continue;
2684
        }
2685
        fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2686
    }
2687
    cpu_list_unlock();
2688

    
2689
    return (0);
2690
}
2691

    
2692
static void free_note_info(struct elf_note_info *info)
2693
{
2694
    struct elf_thread_status *ets;
2695

    
2696
    while (!QTAILQ_EMPTY(&info->thread_list)) {
2697
        ets = QTAILQ_FIRST(&info->thread_list);
2698
        QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2699
        g_free(ets);
2700
    }
2701

    
2702
    g_free(info->prstatus);
2703
    g_free(info->psinfo);
2704
    g_free(info->notes);
2705
}
2706

    
2707
static int write_note_info(struct elf_note_info *info, int fd)
2708
{
2709
    struct elf_thread_status *ets;
2710
    int i, error = 0;
2711

    
2712
    /* write prstatus, psinfo and auxv for current thread */
2713
    for (i = 0; i < info->numnote; i++)
2714
        if ((error = write_note(&info->notes[i], fd)) != 0)
2715
            return (error);
2716

    
2717
    /* write prstatus for each thread */
2718
    for (ets = info->thread_list.tqh_first; ets != NULL;
2719
         ets = ets->ets_link.tqe_next) {
2720
        if ((error = write_note(&ets->notes[0], fd)) != 0)
2721
            return (error);
2722
    }
2723

    
2724
    return (0);
2725
}
2726

    
2727
/*
2728
 * Write out ELF coredump.
2729
 *
2730
 * See documentation of ELF object file format in:
2731
 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2732
 *
2733
 * Coredump format in linux is following:
2734
 *
2735
 * 0   +----------------------+         \
2736
 *     | ELF header           | ET_CORE  |
2737
 *     +----------------------+          |
2738
 *     | ELF program headers  |          |--- headers
2739
 *     | - NOTE section       |          |
2740
 *     | - PT_LOAD sections   |          |
2741
 *     +----------------------+         /
2742
 *     | NOTEs:               |
2743
 *     | - NT_PRSTATUS        |
2744
 *     | - NT_PRSINFO         |
2745
 *     | - NT_AUXV            |
2746
 *     +----------------------+ <-- aligned to target page
2747
 *     | Process memory dump  |
2748
 *     :                      :
2749
 *     .                      .
2750
 *     :                      :
2751
 *     |                      |
2752
 *     +----------------------+
2753
 *
2754
 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2755
 * NT_PRSINFO  -> struct elf_prpsinfo
2756
 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2757
 *
2758
 * Format follows System V format as close as possible.  Current
2759
 * version limitations are as follows:
2760
 *     - no floating point registers are dumped
2761
 *
2762
 * Function returns 0 in case of success, negative errno otherwise.
2763
 *
2764
 * TODO: make this work also during runtime: it should be
2765
 * possible to force coredump from running process and then
2766
 * continue processing.  For example qemu could set up SIGUSR2
2767
 * handler (provided that target process haven't registered
2768
 * handler for that) that does the dump when signal is received.
2769
 */
2770
static int elf_core_dump(int signr, const CPUArchState *env)
2771
{
2772
    const TaskState *ts = (const TaskState *)env->opaque;
2773
    struct vm_area_struct *vma = NULL;
2774
    char corefile[PATH_MAX];
2775
    struct elf_note_info info;
2776
    struct elfhdr elf;
2777
    struct elf_phdr phdr;
2778
    struct rlimit dumpsize;
2779
    struct mm_struct *mm = NULL;
2780
    off_t offset = 0, data_offset = 0;
2781
    int segs = 0;
2782
    int fd = -1;
2783

    
2784
    errno = 0;
2785
    getrlimit(RLIMIT_CORE, &dumpsize);
2786
    if (dumpsize.rlim_cur == 0)
2787
        return 0;
2788

    
2789
    if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2790
        return (-errno);
2791

    
2792
    if ((fd = open(corefile, O_WRONLY | O_CREAT,
2793
                   S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2794
        return (-errno);
2795

    
2796
    /*
2797
     * Walk through target process memory mappings and
2798
     * set up structure containing this information.  After
2799
     * this point vma_xxx functions can be used.
2800
     */
2801
    if ((mm = vma_init()) == NULL)
2802
        goto out;
2803

    
2804
    walk_memory_regions(mm, vma_walker);
2805
    segs = vma_get_mapping_count(mm);
2806

    
2807
    /*
2808
     * Construct valid coredump ELF header.  We also
2809
     * add one more segment for notes.
2810
     */
2811
    fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2812
    if (dump_write(fd, &elf, sizeof (elf)) != 0)
2813
        goto out;
2814

    
2815
    /* fill in in-memory version of notes */
2816
    if (fill_note_info(&info, signr, env) < 0)
2817
        goto out;
2818

    
2819
    offset += sizeof (elf);                             /* elf header */
2820
    offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
2821

    
2822
    /* write out notes program header */
2823
    fill_elf_note_phdr(&phdr, info.notes_size, offset);
2824

    
2825
    offset += info.notes_size;
2826
    if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2827
        goto out;
2828

    
2829
    /*
2830
     * ELF specification wants data to start at page boundary so
2831
     * we align it here.
2832
     */
2833
    data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2834

    
2835
    /*
2836
     * Write program headers for memory regions mapped in
2837
     * the target process.
2838
     */
2839
    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2840
        (void) memset(&phdr, 0, sizeof (phdr));
2841

    
2842
        phdr.p_type = PT_LOAD;
2843
        phdr.p_offset = offset;
2844
        phdr.p_vaddr = vma->vma_start;
2845
        phdr.p_paddr = 0;
2846
        phdr.p_filesz = vma_dump_size(vma);
2847
        offset += phdr.p_filesz;
2848
        phdr.p_memsz = vma->vma_end - vma->vma_start;
2849
        phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2850
        if (vma->vma_flags & PROT_WRITE)
2851
            phdr.p_flags |= PF_W;
2852
        if (vma->vma_flags & PROT_EXEC)
2853
            phdr.p_flags |= PF_X;
2854
        phdr.p_align = ELF_EXEC_PAGESIZE;
2855

    
2856
        bswap_phdr(&phdr, 1);
2857
        dump_write(fd, &phdr, sizeof (phdr));
2858
    }
2859

    
2860
    /*
2861
     * Next we write notes just after program headers.  No
2862
     * alignment needed here.
2863
     */
2864
    if (write_note_info(&info, fd) < 0)
2865
        goto out;
2866

    
2867
    /* align data to page boundary */
2868
    if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2869
        goto out;
2870

    
2871
    /*
2872
     * Finally we can dump process memory into corefile as well.
2873
     */
2874
    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2875
        abi_ulong addr;
2876
        abi_ulong end;
2877

    
2878
        end = vma->vma_start + vma_dump_size(vma);
2879

    
2880
        for (addr = vma->vma_start; addr < end;
2881
             addr += TARGET_PAGE_SIZE) {
2882
            char page[TARGET_PAGE_SIZE];
2883
            int error;
2884

    
2885
            /*
2886
             *  Read in page from target process memory and
2887
             *  write it to coredump file.
2888
             */
2889
            error = copy_from_user(page, addr, sizeof (page));
2890
            if (error != 0) {
2891
                (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
2892
                               addr);
2893
                errno = -error;
2894
                goto out;
2895
            }
2896
            if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2897
                goto out;
2898
        }
2899
    }
2900

    
2901
 out:
2902
    free_note_info(&info);
2903
    if (mm != NULL)
2904
        vma_delete(mm);
2905
    (void) close(fd);
2906

    
2907
    if (errno != 0)
2908
        return (-errno);
2909
    return (0);
2910
}
2911
#endif /* USE_ELF_CORE_DUMP */
2912

    
2913
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2914
{
2915
    init_thread(regs, infop);
2916
}