Statistics
| Branch: | Revision:

root / block / qcow2-cluster.c @ dc7588c1

History | View | Annotate | Download (43.2 kB)

1
/*
2
 * Block driver for the QCOW version 2 format
3
 *
4
 * Copyright (c) 2004-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <zlib.h>
26

    
27
#include "qemu-common.h"
28
#include "block/block_int.h"
29
#include "block/qcow2.h"
30
#include "trace.h"
31

    
32
int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
33
{
34
    BDRVQcowState *s = bs->opaque;
35
    int new_l1_size, new_l1_size2, ret, i;
36
    uint64_t *new_l1_table;
37
    int64_t new_l1_table_offset;
38
    uint8_t data[12];
39

    
40
    if (min_size <= s->l1_size)
41
        return 0;
42

    
43
    if (exact_size) {
44
        new_l1_size = min_size;
45
    } else {
46
        /* Bump size up to reduce the number of times we have to grow */
47
        new_l1_size = s->l1_size;
48
        if (new_l1_size == 0) {
49
            new_l1_size = 1;
50
        }
51
        while (min_size > new_l1_size) {
52
            new_l1_size = (new_l1_size * 3 + 1) / 2;
53
        }
54
    }
55

    
56
#ifdef DEBUG_ALLOC2
57
    fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
58
#endif
59

    
60
    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
61
    new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
62
    memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63

    
64
    /* write new table (align to cluster) */
65
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
66
    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
67
    if (new_l1_table_offset < 0) {
68
        g_free(new_l1_table);
69
        return new_l1_table_offset;
70
    }
71

    
72
    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73
    if (ret < 0) {
74
        goto fail;
75
    }
76

    
77
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
78
    for(i = 0; i < s->l1_size; i++)
79
        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
80
    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81
    if (ret < 0)
82
        goto fail;
83
    for(i = 0; i < s->l1_size; i++)
84
        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85

    
86
    /* set new table */
87
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
88
    cpu_to_be32w((uint32_t*)data, new_l1_size);
89
    cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
90
    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91
    if (ret < 0) {
92
        goto fail;
93
    }
94
    g_free(s->l1_table);
95
    qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
96
    s->l1_table_offset = new_l1_table_offset;
97
    s->l1_table = new_l1_table;
98
    s->l1_size = new_l1_size;
99
    return 0;
100
 fail:
101
    g_free(new_l1_table);
102
    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
103
    return ret;
104
}
105

    
106
/*
107
 * l2_load
108
 *
109
 * Loads a L2 table into memory. If the table is in the cache, the cache
110
 * is used; otherwise the L2 table is loaded from the image file.
111
 *
112
 * Returns a pointer to the L2 table on success, or NULL if the read from
113
 * the image file failed.
114
 */
115

    
116
static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117
    uint64_t **l2_table)
118
{
119
    BDRVQcowState *s = bs->opaque;
120
    int ret;
121

    
122
    ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
123

    
124
    return ret;
125
}
126

    
127
/*
128
 * Writes one sector of the L1 table to the disk (can't update single entries
129
 * and we really don't want bdrv_pread to perform a read-modify-write)
130
 */
131
#define L1_ENTRIES_PER_SECTOR (512 / 8)
132
static int write_l1_entry(BlockDriverState *bs, int l1_index)
133
{
134
    BDRVQcowState *s = bs->opaque;
135
    uint64_t buf[L1_ENTRIES_PER_SECTOR];
136
    int l1_start_index;
137
    int i, ret;
138

    
139
    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140
    for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141
        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142
    }
143

    
144
    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
145
    ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
146
        buf, sizeof(buf));
147
    if (ret < 0) {
148
        return ret;
149
    }
150

    
151
    return 0;
152
}
153

    
154
/*
155
 * l2_allocate
156
 *
157
 * Allocate a new l2 entry in the file. If l1_index points to an already
158
 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159
 * table) copy the contents of the old L2 table into the newly allocated one.
160
 * Otherwise the new table is initialized with zeros.
161
 *
162
 */
163

    
164
static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
165
{
166
    BDRVQcowState *s = bs->opaque;
167
    uint64_t old_l2_offset;
168
    uint64_t *l2_table;
169
    int64_t l2_offset;
170
    int ret;
171

    
172
    old_l2_offset = s->l1_table[l1_index];
173

    
174
    trace_qcow2_l2_allocate(bs, l1_index);
175

    
176
    /* allocate a new l2 entry */
177

    
178
    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
179
    if (l2_offset < 0) {
180
        return l2_offset;
181
    }
182

    
183
    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184
    if (ret < 0) {
185
        goto fail;
186
    }
187

    
188
    /* allocate a new entry in the l2 cache */
189

    
190
    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
191
    ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192
    if (ret < 0) {
193
        return ret;
194
    }
195

    
196
    l2_table = *table;
197

    
198
    if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
199
        /* if there was no old l2 table, clear the new table */
200
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201
    } else {
202
        uint64_t* old_table;
203

    
204
        /* if there was an old l2 table, read it from the disk */
205
        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
206
        ret = qcow2_cache_get(bs, s->l2_table_cache,
207
            old_l2_offset & L1E_OFFSET_MASK,
208
            (void**) &old_table);
209
        if (ret < 0) {
210
            goto fail;
211
        }
212

    
213
        memcpy(l2_table, old_table, s->cluster_size);
214

    
215
        ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
216
        if (ret < 0) {
217
            goto fail;
218
        }
219
    }
220

    
221
    /* write the l2 table to the file */
222
    BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
223

    
224
    trace_qcow2_l2_allocate_write_l2(bs, l1_index);
225
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
226
    ret = qcow2_cache_flush(bs, s->l2_table_cache);
227
    if (ret < 0) {
228
        goto fail;
229
    }
230

    
231
    /* update the L1 entry */
232
    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
233
    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
234
    ret = write_l1_entry(bs, l1_index);
235
    if (ret < 0) {
236
        goto fail;
237
    }
238

    
239
    *table = l2_table;
240
    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
241
    return 0;
242

    
243
fail:
244
    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
245
    qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
246
    s->l1_table[l1_index] = old_l2_offset;
247
    return ret;
248
}
249

    
250
/*
251
 * Checks how many clusters in a given L2 table are contiguous in the image
252
 * file. As soon as one of the flags in the bitmask stop_flags changes compared
253
 * to the first cluster, the search is stopped and the cluster is not counted
254
 * as contiguous. (This allows it, for example, to stop at the first compressed
255
 * cluster which may require a different handling)
256
 */
257
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
258
        uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
259
{
260
    int i;
261
    uint64_t mask = stop_flags | L2E_OFFSET_MASK;
262
    uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
263

    
264
    if (!offset)
265
        return 0;
266

    
267
    for (i = start; i < start + nb_clusters; i++) {
268
        uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
269
        if (offset + (uint64_t) i * cluster_size != l2_entry) {
270
            break;
271
        }
272
    }
273

    
274
        return (i - start);
275
}
276

    
277
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
278
{
279
    int i;
280

    
281
    for (i = 0; i < nb_clusters; i++) {
282
        int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
283

    
284
        if (type != QCOW2_CLUSTER_UNALLOCATED) {
285
            break;
286
        }
287
    }
288

    
289
    return i;
290
}
291

    
292
/* The crypt function is compatible with the linux cryptoloop
293
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
294
   supported */
295
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
296
                           uint8_t *out_buf, const uint8_t *in_buf,
297
                           int nb_sectors, int enc,
298
                           const AES_KEY *key)
299
{
300
    union {
301
        uint64_t ll[2];
302
        uint8_t b[16];
303
    } ivec;
304
    int i;
305

    
306
    for(i = 0; i < nb_sectors; i++) {
307
        ivec.ll[0] = cpu_to_le64(sector_num);
308
        ivec.ll[1] = 0;
309
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
310
                        ivec.b, enc);
311
        sector_num++;
312
        in_buf += 512;
313
        out_buf += 512;
314
    }
315
}
316

    
317
static int coroutine_fn copy_sectors(BlockDriverState *bs,
318
                                     uint64_t start_sect,
319
                                     uint64_t cluster_offset,
320
                                     int n_start, int n_end)
321
{
322
    BDRVQcowState *s = bs->opaque;
323
    QEMUIOVector qiov;
324
    struct iovec iov;
325
    int n, ret;
326

    
327
    /*
328
     * If this is the last cluster and it is only partially used, we must only
329
     * copy until the end of the image, or bdrv_check_request will fail for the
330
     * bdrv_read/write calls below.
331
     */
332
    if (start_sect + n_end > bs->total_sectors) {
333
        n_end = bs->total_sectors - start_sect;
334
    }
335

    
336
    n = n_end - n_start;
337
    if (n <= 0) {
338
        return 0;
339
    }
340

    
341
    iov.iov_len = n * BDRV_SECTOR_SIZE;
342
    iov.iov_base = qemu_blockalign(bs, iov.iov_len);
343

    
344
    qemu_iovec_init_external(&qiov, &iov, 1);
345

    
346
    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
347

    
348
    /* Call .bdrv_co_readv() directly instead of using the public block-layer
349
     * interface.  This avoids double I/O throttling and request tracking,
350
     * which can lead to deadlock when block layer copy-on-read is enabled.
351
     */
352
    ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
353
    if (ret < 0) {
354
        goto out;
355
    }
356

    
357
    if (s->crypt_method) {
358
        qcow2_encrypt_sectors(s, start_sect + n_start,
359
                        iov.iov_base, iov.iov_base, n, 1,
360
                        &s->aes_encrypt_key);
361
    }
362

    
363
    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
364
    ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
365
    if (ret < 0) {
366
        goto out;
367
    }
368

    
369
    ret = 0;
370
out:
371
    qemu_vfree(iov.iov_base);
372
    return ret;
373
}
374

    
375

    
376
/*
377
 * get_cluster_offset
378
 *
379
 * For a given offset of the disk image, find the cluster offset in
380
 * qcow2 file. The offset is stored in *cluster_offset.
381
 *
382
 * on entry, *num is the number of contiguous sectors we'd like to
383
 * access following offset.
384
 *
385
 * on exit, *num is the number of contiguous sectors we can read.
386
 *
387
 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
388
 * cases.
389
 */
390
int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
391
    int *num, uint64_t *cluster_offset)
392
{
393
    BDRVQcowState *s = bs->opaque;
394
    unsigned int l1_index, l2_index;
395
    uint64_t l2_offset, *l2_table;
396
    int l1_bits, c;
397
    unsigned int index_in_cluster, nb_clusters;
398
    uint64_t nb_available, nb_needed;
399
    int ret;
400

    
401
    index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
402
    nb_needed = *num + index_in_cluster;
403

    
404
    l1_bits = s->l2_bits + s->cluster_bits;
405

    
406
    /* compute how many bytes there are between the offset and
407
     * the end of the l1 entry
408
     */
409

    
410
    nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
411

    
412
    /* compute the number of available sectors */
413

    
414
    nb_available = (nb_available >> 9) + index_in_cluster;
415

    
416
    if (nb_needed > nb_available) {
417
        nb_needed = nb_available;
418
    }
419

    
420
    *cluster_offset = 0;
421

    
422
    /* seek the the l2 offset in the l1 table */
423

    
424
    l1_index = offset >> l1_bits;
425
    if (l1_index >= s->l1_size) {
426
        ret = QCOW2_CLUSTER_UNALLOCATED;
427
        goto out;
428
    }
429

    
430
    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
431
    if (!l2_offset) {
432
        ret = QCOW2_CLUSTER_UNALLOCATED;
433
        goto out;
434
    }
435

    
436
    /* load the l2 table in memory */
437

    
438
    ret = l2_load(bs, l2_offset, &l2_table);
439
    if (ret < 0) {
440
        return ret;
441
    }
442

    
443
    /* find the cluster offset for the given disk offset */
444

    
445
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
446
    *cluster_offset = be64_to_cpu(l2_table[l2_index]);
447
    nb_clusters = size_to_clusters(s, nb_needed << 9);
448

    
449
    ret = qcow2_get_cluster_type(*cluster_offset);
450
    switch (ret) {
451
    case QCOW2_CLUSTER_COMPRESSED:
452
        /* Compressed clusters can only be processed one by one */
453
        c = 1;
454
        *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
455
        break;
456
    case QCOW2_CLUSTER_ZERO:
457
        if (s->qcow_version < 3) {
458
            return -EIO;
459
        }
460
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
461
                &l2_table[l2_index], 0,
462
                QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
463
        *cluster_offset = 0;
464
        break;
465
    case QCOW2_CLUSTER_UNALLOCATED:
466
        /* how many empty clusters ? */
467
        c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
468
        *cluster_offset = 0;
469
        break;
470
    case QCOW2_CLUSTER_NORMAL:
471
        /* how many allocated clusters ? */
472
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
473
                &l2_table[l2_index], 0,
474
                QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
475
        *cluster_offset &= L2E_OFFSET_MASK;
476
        break;
477
    default:
478
        abort();
479
    }
480

    
481
    qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
482

    
483
    nb_available = (c * s->cluster_sectors);
484

    
485
out:
486
    if (nb_available > nb_needed)
487
        nb_available = nb_needed;
488

    
489
    *num = nb_available - index_in_cluster;
490

    
491
    return ret;
492
}
493

    
494
/*
495
 * get_cluster_table
496
 *
497
 * for a given disk offset, load (and allocate if needed)
498
 * the l2 table.
499
 *
500
 * the l2 table offset in the qcow2 file and the cluster index
501
 * in the l2 table are given to the caller.
502
 *
503
 * Returns 0 on success, -errno in failure case
504
 */
505
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
506
                             uint64_t **new_l2_table,
507
                             int *new_l2_index)
508
{
509
    BDRVQcowState *s = bs->opaque;
510
    unsigned int l1_index, l2_index;
511
    uint64_t l2_offset;
512
    uint64_t *l2_table = NULL;
513
    int ret;
514

    
515
    /* seek the the l2 offset in the l1 table */
516

    
517
    l1_index = offset >> (s->l2_bits + s->cluster_bits);
518
    if (l1_index >= s->l1_size) {
519
        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
520
        if (ret < 0) {
521
            return ret;
522
        }
523
    }
524

    
525
    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
526

    
527
    /* seek the l2 table of the given l2 offset */
528

    
529
    if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
530
        /* load the l2 table in memory */
531
        ret = l2_load(bs, l2_offset, &l2_table);
532
        if (ret < 0) {
533
            return ret;
534
        }
535
    } else {
536
        /* First allocate a new L2 table (and do COW if needed) */
537
        ret = l2_allocate(bs, l1_index, &l2_table);
538
        if (ret < 0) {
539
            return ret;
540
        }
541

    
542
        /* Then decrease the refcount of the old table */
543
        if (l2_offset) {
544
            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
545
        }
546
    }
547

    
548
    /* find the cluster offset for the given disk offset */
549

    
550
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
551

    
552
    *new_l2_table = l2_table;
553
    *new_l2_index = l2_index;
554

    
555
    return 0;
556
}
557

    
558
/*
559
 * alloc_compressed_cluster_offset
560
 *
561
 * For a given offset of the disk image, return cluster offset in
562
 * qcow2 file.
563
 *
564
 * If the offset is not found, allocate a new compressed cluster.
565
 *
566
 * Return the cluster offset if successful,
567
 * Return 0, otherwise.
568
 *
569
 */
570

    
571
uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
572
                                               uint64_t offset,
573
                                               int compressed_size)
574
{
575
    BDRVQcowState *s = bs->opaque;
576
    int l2_index, ret;
577
    uint64_t *l2_table;
578
    int64_t cluster_offset;
579
    int nb_csectors;
580

    
581
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
582
    if (ret < 0) {
583
        return 0;
584
    }
585

    
586
    /* Compression can't overwrite anything. Fail if the cluster was already
587
     * allocated. */
588
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
589
    if (cluster_offset & L2E_OFFSET_MASK) {
590
        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
591
        return 0;
592
    }
593

    
594
    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
595
    if (cluster_offset < 0) {
596
        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
597
        return 0;
598
    }
599

    
600
    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
601
                  (cluster_offset >> 9);
602

    
603
    cluster_offset |= QCOW_OFLAG_COMPRESSED |
604
                      ((uint64_t)nb_csectors << s->csize_shift);
605

    
606
    /* update L2 table */
607

    
608
    /* compressed clusters never have the copied flag */
609

    
610
    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
611
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
612
    l2_table[l2_index] = cpu_to_be64(cluster_offset);
613
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
614
    if (ret < 0) {
615
        return 0;
616
    }
617

    
618
    return cluster_offset;
619
}
620

    
621
static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
622
{
623
    BDRVQcowState *s = bs->opaque;
624
    int ret;
625

    
626
    if (r->nb_sectors == 0) {
627
        return 0;
628
    }
629

    
630
    qemu_co_mutex_unlock(&s->lock);
631
    ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
632
                       r->offset / BDRV_SECTOR_SIZE,
633
                       r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
634
    qemu_co_mutex_lock(&s->lock);
635

    
636
    if (ret < 0) {
637
        return ret;
638
    }
639

    
640
    /*
641
     * Before we update the L2 table to actually point to the new cluster, we
642
     * need to be sure that the refcounts have been increased and COW was
643
     * handled.
644
     */
645
    qcow2_cache_depends_on_flush(s->l2_table_cache);
646

    
647
    return 0;
648
}
649

    
650
int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
651
{
652
    BDRVQcowState *s = bs->opaque;
653
    int i, j = 0, l2_index, ret;
654
    uint64_t *old_cluster, *l2_table;
655
    uint64_t cluster_offset = m->alloc_offset;
656

    
657
    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
658
    assert(m->nb_clusters > 0);
659

    
660
    old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
661

    
662
    /* copy content of unmodified sectors */
663
    ret = perform_cow(bs, m, &m->cow_start);
664
    if (ret < 0) {
665
        goto err;
666
    }
667

    
668
    ret = perform_cow(bs, m, &m->cow_end);
669
    if (ret < 0) {
670
        goto err;
671
    }
672

    
673
    /* Update L2 table. */
674
    if (s->use_lazy_refcounts) {
675
        qcow2_mark_dirty(bs);
676
    }
677
    if (qcow2_need_accurate_refcounts(s)) {
678
        qcow2_cache_set_dependency(bs, s->l2_table_cache,
679
                                   s->refcount_block_cache);
680
    }
681

    
682
    ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
683
    if (ret < 0) {
684
        goto err;
685
    }
686
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
687

    
688
    for (i = 0; i < m->nb_clusters; i++) {
689
        /* if two concurrent writes happen to the same unallocated cluster
690
         * each write allocates separate cluster and writes data concurrently.
691
         * The first one to complete updates l2 table with pointer to its
692
         * cluster the second one has to do RMW (which is done above by
693
         * copy_sectors()), update l2 table with its cluster pointer and free
694
         * old cluster. This is what this loop does */
695
        if(l2_table[l2_index + i] != 0)
696
            old_cluster[j++] = l2_table[l2_index + i];
697

    
698
        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
699
                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
700
     }
701

    
702

    
703
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
704
    if (ret < 0) {
705
        goto err;
706
    }
707

    
708
    /*
709
     * If this was a COW, we need to decrease the refcount of the old cluster.
710
     * Also flush bs->file to get the right order for L2 and refcount update.
711
     */
712
    if (j != 0) {
713
        for (i = 0; i < j; i++) {
714
            qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1);
715
        }
716
    }
717

    
718
    ret = 0;
719
err:
720
    g_free(old_cluster);
721
    return ret;
722
 }
723

    
724
/*
725
 * Returns the number of contiguous clusters that can be used for an allocating
726
 * write, but require COW to be performed (this includes yet unallocated space,
727
 * which must copy from the backing file)
728
 */
729
static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
730
    uint64_t *l2_table, int l2_index)
731
{
732
    int i;
733

    
734
    for (i = 0; i < nb_clusters; i++) {
735
        uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
736
        int cluster_type = qcow2_get_cluster_type(l2_entry);
737

    
738
        switch(cluster_type) {
739
        case QCOW2_CLUSTER_NORMAL:
740
            if (l2_entry & QCOW_OFLAG_COPIED) {
741
                goto out;
742
            }
743
            break;
744
        case QCOW2_CLUSTER_UNALLOCATED:
745
        case QCOW2_CLUSTER_COMPRESSED:
746
        case QCOW2_CLUSTER_ZERO:
747
            break;
748
        default:
749
            abort();
750
        }
751
    }
752

    
753
out:
754
    assert(i <= nb_clusters);
755
    return i;
756
}
757

    
758
/*
759
 * Check if there already is an AIO write request in flight which allocates
760
 * the same cluster. In this case we need to wait until the previous
761
 * request has completed and updated the L2 table accordingly.
762
 *
763
 * Returns:
764
 *   0       if there was no dependency. *cur_bytes indicates the number of
765
 *           bytes from guest_offset that can be read before the next
766
 *           dependency must be processed (or the request is complete)
767
 *
768
 *   -EAGAIN if we had to wait for another request, previously gathered
769
 *           information on cluster allocation may be invalid now. The caller
770
 *           must start over anyway, so consider *cur_bytes undefined.
771
 */
772
static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
773
    uint64_t *cur_bytes, QCowL2Meta **m)
774
{
775
    BDRVQcowState *s = bs->opaque;
776
    QCowL2Meta *old_alloc;
777
    uint64_t bytes = *cur_bytes;
778

    
779
    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
780

    
781
        uint64_t start = guest_offset;
782
        uint64_t end = start + bytes;
783
        uint64_t old_start = l2meta_cow_start(old_alloc);
784
        uint64_t old_end = l2meta_cow_end(old_alloc);
785

    
786
        if (end <= old_start || start >= old_end) {
787
            /* No intersection */
788
        } else {
789
            if (start < old_start) {
790
                /* Stop at the start of a running allocation */
791
                bytes = old_start - start;
792
            } else {
793
                bytes = 0;
794
            }
795

    
796
            /* Stop if already an l2meta exists. After yielding, it wouldn't
797
             * be valid any more, so we'd have to clean up the old L2Metas
798
             * and deal with requests depending on them before starting to
799
             * gather new ones. Not worth the trouble. */
800
            if (bytes == 0 && *m) {
801
                *cur_bytes = 0;
802
                return 0;
803
            }
804

    
805
            if (bytes == 0) {
806
                /* Wait for the dependency to complete. We need to recheck
807
                 * the free/allocated clusters when we continue. */
808
                qemu_co_mutex_unlock(&s->lock);
809
                qemu_co_queue_wait(&old_alloc->dependent_requests);
810
                qemu_co_mutex_lock(&s->lock);
811
                return -EAGAIN;
812
            }
813
        }
814
    }
815

    
816
    /* Make sure that existing clusters and new allocations are only used up to
817
     * the next dependency if we shortened the request above */
818
    *cur_bytes = bytes;
819

    
820
    return 0;
821
}
822

    
823
/*
824
 * Checks how many already allocated clusters that don't require a copy on
825
 * write there are at the given guest_offset (up to *bytes). If
826
 * *host_offset is not zero, only physically contiguous clusters beginning at
827
 * this host offset are counted.
828
 *
829
 * Note that guest_offset may not be cluster aligned. In this case, the
830
 * returned *host_offset points to exact byte referenced by guest_offset and
831
 * therefore isn't cluster aligned as well.
832
 *
833
 * Returns:
834
 *   0:     if no allocated clusters are available at the given offset.
835
 *          *bytes is normally unchanged. It is set to 0 if the cluster
836
 *          is allocated and doesn't need COW, but doesn't have the right
837
 *          physical offset.
838
 *
839
 *   1:     if allocated clusters that don't require a COW are available at
840
 *          the requested offset. *bytes may have decreased and describes
841
 *          the length of the area that can be written to.
842
 *
843
 *  -errno: in error cases
844
 */
845
static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
846
    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
847
{
848
    BDRVQcowState *s = bs->opaque;
849
    int l2_index;
850
    uint64_t cluster_offset;
851
    uint64_t *l2_table;
852
    unsigned int nb_clusters;
853
    unsigned int keep_clusters;
854
    int ret, pret;
855

    
856
    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
857
                              *bytes);
858

    
859
    assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
860
                                == offset_into_cluster(s, *host_offset));
861

    
862
    /*
863
     * Calculate the number of clusters to look for. We stop at L2 table
864
     * boundaries to keep things simple.
865
     */
866
    nb_clusters =
867
        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
868

    
869
    l2_index = offset_to_l2_index(s, guest_offset);
870
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
871

    
872
    /* Find L2 entry for the first involved cluster */
873
    ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
874
    if (ret < 0) {
875
        return ret;
876
    }
877

    
878
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
879

    
880
    /* Check how many clusters are already allocated and don't need COW */
881
    if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
882
        && (cluster_offset & QCOW_OFLAG_COPIED))
883
    {
884
        /* If a specific host_offset is required, check it */
885
        bool offset_matches =
886
            (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
887

    
888
        if (*host_offset != 0 && !offset_matches) {
889
            *bytes = 0;
890
            ret = 0;
891
            goto out;
892
        }
893

    
894
        /* We keep all QCOW_OFLAG_COPIED clusters */
895
        keep_clusters =
896
            count_contiguous_clusters(nb_clusters, s->cluster_size,
897
                                      &l2_table[l2_index], 0,
898
                                      QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
899
        assert(keep_clusters <= nb_clusters);
900

    
901
        *bytes = MIN(*bytes,
902
                 keep_clusters * s->cluster_size
903
                 - offset_into_cluster(s, guest_offset));
904

    
905
        ret = 1;
906
    } else {
907
        ret = 0;
908
    }
909

    
910
    /* Cleanup */
911
out:
912
    pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
913
    if (pret < 0) {
914
        return pret;
915
    }
916

    
917
    /* Only return a host offset if we actually made progress. Otherwise we
918
     * would make requirements for handle_alloc() that it can't fulfill */
919
    if (ret) {
920
        *host_offset = (cluster_offset & L2E_OFFSET_MASK)
921
                     + offset_into_cluster(s, guest_offset);
922
    }
923

    
924
    return ret;
925
}
926

    
927
/*
928
 * Allocates new clusters for the given guest_offset.
929
 *
930
 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
931
 * contain the number of clusters that have been allocated and are contiguous
932
 * in the image file.
933
 *
934
 * If *host_offset is non-zero, it specifies the offset in the image file at
935
 * which the new clusters must start. *nb_clusters can be 0 on return in this
936
 * case if the cluster at host_offset is already in use. If *host_offset is
937
 * zero, the clusters can be allocated anywhere in the image file.
938
 *
939
 * *host_offset is updated to contain the offset into the image file at which
940
 * the first allocated cluster starts.
941
 *
942
 * Return 0 on success and -errno in error cases. -EAGAIN means that the
943
 * function has been waiting for another request and the allocation must be
944
 * restarted, but the whole request should not be failed.
945
 */
946
static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
947
    uint64_t *host_offset, unsigned int *nb_clusters)
948
{
949
    BDRVQcowState *s = bs->opaque;
950

    
951
    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
952
                                         *host_offset, *nb_clusters);
953

    
954
    /* Allocate new clusters */
955
    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
956
    if (*host_offset == 0) {
957
        int64_t cluster_offset =
958
            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
959
        if (cluster_offset < 0) {
960
            return cluster_offset;
961
        }
962
        *host_offset = cluster_offset;
963
        return 0;
964
    } else {
965
        int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
966
        if (ret < 0) {
967
            return ret;
968
        }
969
        *nb_clusters = ret;
970
        return 0;
971
    }
972
}
973

    
974
/*
975
 * Allocates new clusters for an area that either is yet unallocated or needs a
976
 * copy on write. If *host_offset is non-zero, clusters are only allocated if
977
 * the new allocation can match the specified host offset.
978
 *
979
 * Note that guest_offset may not be cluster aligned. In this case, the
980
 * returned *host_offset points to exact byte referenced by guest_offset and
981
 * therefore isn't cluster aligned as well.
982
 *
983
 * Returns:
984
 *   0:     if no clusters could be allocated. *bytes is set to 0,
985
 *          *host_offset is left unchanged.
986
 *
987
 *   1:     if new clusters were allocated. *bytes may be decreased if the
988
 *          new allocation doesn't cover all of the requested area.
989
 *          *host_offset is updated to contain the host offset of the first
990
 *          newly allocated cluster.
991
 *
992
 *  -errno: in error cases
993
 */
994
static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
995
    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
996
{
997
    BDRVQcowState *s = bs->opaque;
998
    int l2_index;
999
    uint64_t *l2_table;
1000
    uint64_t entry;
1001
    unsigned int nb_clusters;
1002
    int ret;
1003

    
1004
    uint64_t alloc_cluster_offset;
1005

    
1006
    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1007
                             *bytes);
1008
    assert(*bytes > 0);
1009

    
1010
    /*
1011
     * Calculate the number of clusters to look for. We stop at L2 table
1012
     * boundaries to keep things simple.
1013
     */
1014
    nb_clusters =
1015
        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1016

    
1017
    l2_index = offset_to_l2_index(s, guest_offset);
1018
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1019

    
1020
    /* Find L2 entry for the first involved cluster */
1021
    ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1022
    if (ret < 0) {
1023
        return ret;
1024
    }
1025

    
1026
    entry = be64_to_cpu(l2_table[l2_index]);
1027

    
1028
    /* For the moment, overwrite compressed clusters one by one */
1029
    if (entry & QCOW_OFLAG_COMPRESSED) {
1030
        nb_clusters = 1;
1031
    } else {
1032
        nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1033
    }
1034

    
1035
    /* This function is only called when there were no non-COW clusters, so if
1036
     * we can't find any unallocated or COW clusters either, something is
1037
     * wrong with our code. */
1038
    assert(nb_clusters > 0);
1039

    
1040
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1041
    if (ret < 0) {
1042
        return ret;
1043
    }
1044

    
1045
    /* Allocate, if necessary at a given offset in the image file */
1046
    alloc_cluster_offset = start_of_cluster(s, *host_offset);
1047
    ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1048
                                  &nb_clusters);
1049
    if (ret < 0) {
1050
        goto fail;
1051
    }
1052

    
1053
    /* Can't extend contiguous allocation */
1054
    if (nb_clusters == 0) {
1055
        *bytes = 0;
1056
        return 0;
1057
    }
1058

    
1059
    /*
1060
     * Save info needed for meta data update.
1061
     *
1062
     * requested_sectors: Number of sectors from the start of the first
1063
     * newly allocated cluster to the end of the (possibly shortened
1064
     * before) write request.
1065
     *
1066
     * avail_sectors: Number of sectors from the start of the first
1067
     * newly allocated to the end of the last newly allocated cluster.
1068
     *
1069
     * nb_sectors: The number of sectors from the start of the first
1070
     * newly allocated cluster to the end of the area that the write
1071
     * request actually writes to (excluding COW at the end)
1072
     */
1073
    int requested_sectors =
1074
        (*bytes + offset_into_cluster(s, guest_offset))
1075
        >> BDRV_SECTOR_BITS;
1076
    int avail_sectors = nb_clusters
1077
                        << (s->cluster_bits - BDRV_SECTOR_BITS);
1078
    int alloc_n_start = offset_into_cluster(s, guest_offset)
1079
                        >> BDRV_SECTOR_BITS;
1080
    int nb_sectors = MIN(requested_sectors, avail_sectors);
1081
    QCowL2Meta *old_m = *m;
1082

    
1083
    *m = g_malloc0(sizeof(**m));
1084

    
1085
    **m = (QCowL2Meta) {
1086
        .next           = old_m,
1087

    
1088
        .alloc_offset   = alloc_cluster_offset,
1089
        .offset         = start_of_cluster(s, guest_offset),
1090
        .nb_clusters    = nb_clusters,
1091
        .nb_available   = nb_sectors,
1092

    
1093
        .cow_start = {
1094
            .offset     = 0,
1095
            .nb_sectors = alloc_n_start,
1096
        },
1097
        .cow_end = {
1098
            .offset     = nb_sectors * BDRV_SECTOR_SIZE,
1099
            .nb_sectors = avail_sectors - nb_sectors,
1100
        },
1101
    };
1102
    qemu_co_queue_init(&(*m)->dependent_requests);
1103
    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1104

    
1105
    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1106
    *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1107
                         - offset_into_cluster(s, guest_offset));
1108
    assert(*bytes != 0);
1109

    
1110
    return 1;
1111

    
1112
fail:
1113
    if (*m && (*m)->nb_clusters > 0) {
1114
        QLIST_REMOVE(*m, next_in_flight);
1115
    }
1116
    return ret;
1117
}
1118

    
1119
/*
1120
 * alloc_cluster_offset
1121
 *
1122
 * For a given offset on the virtual disk, find the cluster offset in qcow2
1123
 * file. If the offset is not found, allocate a new cluster.
1124
 *
1125
 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1126
 * other fields in m are meaningless.
1127
 *
1128
 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1129
 * contiguous clusters that have been allocated. In this case, the other
1130
 * fields of m are valid and contain information about the first allocated
1131
 * cluster.
1132
 *
1133
 * If the request conflicts with another write request in flight, the coroutine
1134
 * is queued and will be reentered when the dependency has completed.
1135
 *
1136
 * Return 0 on success and -errno in error cases
1137
 */
1138
int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1139
    int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
1140
{
1141
    BDRVQcowState *s = bs->opaque;
1142
    uint64_t start, remaining;
1143
    uint64_t cluster_offset;
1144
    uint64_t cur_bytes;
1145
    int ret;
1146

    
1147
    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
1148
                                      n_start, n_end);
1149

    
1150
    assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset));
1151
    offset = start_of_cluster(s, offset);
1152

    
1153
again:
1154
    start = offset + (n_start << BDRV_SECTOR_BITS);
1155
    remaining = (n_end - n_start) << BDRV_SECTOR_BITS;
1156
    cluster_offset = 0;
1157
    *host_offset = 0;
1158
    cur_bytes = 0;
1159
    *m = NULL;
1160

    
1161
    while (true) {
1162

    
1163
        if (!*host_offset) {
1164
            *host_offset = start_of_cluster(s, cluster_offset);
1165
        }
1166

    
1167
        assert(remaining >= cur_bytes);
1168

    
1169
        start           += cur_bytes;
1170
        remaining       -= cur_bytes;
1171
        cluster_offset  += cur_bytes;
1172

    
1173
        if (remaining == 0) {
1174
            break;
1175
        }
1176

    
1177
        cur_bytes = remaining;
1178

    
1179
        /*
1180
         * Now start gathering as many contiguous clusters as possible:
1181
         *
1182
         * 1. Check for overlaps with in-flight allocations
1183
         *
1184
         *      a) Overlap not in the first cluster -> shorten this request and
1185
         *         let the caller handle the rest in its next loop iteration.
1186
         *
1187
         *      b) Real overlaps of two requests. Yield and restart the search
1188
         *         for contiguous clusters (the situation could have changed
1189
         *         while we were sleeping)
1190
         *
1191
         *      c) TODO: Request starts in the same cluster as the in-flight
1192
         *         allocation ends. Shorten the COW of the in-fight allocation,
1193
         *         set cluster_offset to write to the same cluster and set up
1194
         *         the right synchronisation between the in-flight request and
1195
         *         the new one.
1196
         */
1197
        ret = handle_dependencies(bs, start, &cur_bytes, m);
1198
        if (ret == -EAGAIN) {
1199
            /* Currently handle_dependencies() doesn't yield if we already had
1200
             * an allocation. If it did, we would have to clean up the L2Meta
1201
             * structs before starting over. */
1202
            assert(*m == NULL);
1203
            goto again;
1204
        } else if (ret < 0) {
1205
            return ret;
1206
        } else if (cur_bytes == 0) {
1207
            break;
1208
        } else {
1209
            /* handle_dependencies() may have decreased cur_bytes (shortened
1210
             * the allocations below) so that the next dependency is processed
1211
             * correctly during the next loop iteration. */
1212
        }
1213

    
1214
        /*
1215
         * 2. Count contiguous COPIED clusters.
1216
         */
1217
        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1218
        if (ret < 0) {
1219
            return ret;
1220
        } else if (ret) {
1221
            continue;
1222
        } else if (cur_bytes == 0) {
1223
            break;
1224
        }
1225

    
1226
        /*
1227
         * 3. If the request still hasn't completed, allocate new clusters,
1228
         *    considering any cluster_offset of steps 1c or 2.
1229
         */
1230
        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1231
        if (ret < 0) {
1232
            return ret;
1233
        } else if (ret) {
1234
            continue;
1235
        } else {
1236
            assert(cur_bytes == 0);
1237
            break;
1238
        }
1239
    }
1240

    
1241
    *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS);
1242
    assert(*num > 0);
1243
    assert(*host_offset != 0);
1244

    
1245
    return 0;
1246
}
1247

    
1248
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1249
                             const uint8_t *buf, int buf_size)
1250
{
1251
    z_stream strm1, *strm = &strm1;
1252
    int ret, out_len;
1253

    
1254
    memset(strm, 0, sizeof(*strm));
1255

    
1256
    strm->next_in = (uint8_t *)buf;
1257
    strm->avail_in = buf_size;
1258
    strm->next_out = out_buf;
1259
    strm->avail_out = out_buf_size;
1260

    
1261
    ret = inflateInit2(strm, -12);
1262
    if (ret != Z_OK)
1263
        return -1;
1264
    ret = inflate(strm, Z_FINISH);
1265
    out_len = strm->next_out - out_buf;
1266
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1267
        out_len != out_buf_size) {
1268
        inflateEnd(strm);
1269
        return -1;
1270
    }
1271
    inflateEnd(strm);
1272
    return 0;
1273
}
1274

    
1275
int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1276
{
1277
    BDRVQcowState *s = bs->opaque;
1278
    int ret, csize, nb_csectors, sector_offset;
1279
    uint64_t coffset;
1280

    
1281
    coffset = cluster_offset & s->cluster_offset_mask;
1282
    if (s->cluster_cache_offset != coffset) {
1283
        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1284
        sector_offset = coffset & 511;
1285
        csize = nb_csectors * 512 - sector_offset;
1286
        BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1287
        ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1288
        if (ret < 0) {
1289
            return ret;
1290
        }
1291
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
1292
                              s->cluster_data + sector_offset, csize) < 0) {
1293
            return -EIO;
1294
        }
1295
        s->cluster_cache_offset = coffset;
1296
    }
1297
    return 0;
1298
}
1299

    
1300
/*
1301
 * This discards as many clusters of nb_clusters as possible at once (i.e.
1302
 * all clusters in the same L2 table) and returns the number of discarded
1303
 * clusters.
1304
 */
1305
static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1306
    unsigned int nb_clusters)
1307
{
1308
    BDRVQcowState *s = bs->opaque;
1309
    uint64_t *l2_table;
1310
    int l2_index;
1311
    int ret;
1312
    int i;
1313

    
1314
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1315
    if (ret < 0) {
1316
        return ret;
1317
    }
1318

    
1319
    /* Limit nb_clusters to one L2 table */
1320
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1321

    
1322
    for (i = 0; i < nb_clusters; i++) {
1323
        uint64_t old_offset;
1324

    
1325
        old_offset = be64_to_cpu(l2_table[l2_index + i]);
1326
        if ((old_offset & L2E_OFFSET_MASK) == 0) {
1327
            continue;
1328
        }
1329

    
1330
        /* First remove L2 entries */
1331
        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1332
        l2_table[l2_index + i] = cpu_to_be64(0);
1333

    
1334
        /* Then decrease the refcount */
1335
        qcow2_free_any_clusters(bs, old_offset, 1);
1336
    }
1337

    
1338
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1339
    if (ret < 0) {
1340
        return ret;
1341
    }
1342

    
1343
    return nb_clusters;
1344
}
1345

    
1346
int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1347
    int nb_sectors)
1348
{
1349
    BDRVQcowState *s = bs->opaque;
1350
    uint64_t end_offset;
1351
    unsigned int nb_clusters;
1352
    int ret;
1353

    
1354
    end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1355

    
1356
    /* Round start up and end down */
1357
    offset = align_offset(offset, s->cluster_size);
1358
    end_offset &= ~(s->cluster_size - 1);
1359

    
1360
    if (offset > end_offset) {
1361
        return 0;
1362
    }
1363

    
1364
    nb_clusters = size_to_clusters(s, end_offset - offset);
1365

    
1366
    /* Each L2 table is handled by its own loop iteration */
1367
    while (nb_clusters > 0) {
1368
        ret = discard_single_l2(bs, offset, nb_clusters);
1369
        if (ret < 0) {
1370
            return ret;
1371
        }
1372

    
1373
        nb_clusters -= ret;
1374
        offset += (ret * s->cluster_size);
1375
    }
1376

    
1377
    return 0;
1378
}
1379

    
1380
/*
1381
 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1382
 * all clusters in the same L2 table) and returns the number of zeroed
1383
 * clusters.
1384
 */
1385
static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1386
    unsigned int nb_clusters)
1387
{
1388
    BDRVQcowState *s = bs->opaque;
1389
    uint64_t *l2_table;
1390
    int l2_index;
1391
    int ret;
1392
    int i;
1393

    
1394
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1395
    if (ret < 0) {
1396
        return ret;
1397
    }
1398

    
1399
    /* Limit nb_clusters to one L2 table */
1400
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1401

    
1402
    for (i = 0; i < nb_clusters; i++) {
1403
        uint64_t old_offset;
1404

    
1405
        old_offset = be64_to_cpu(l2_table[l2_index + i]);
1406

    
1407
        /* Update L2 entries */
1408
        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1409
        if (old_offset & QCOW_OFLAG_COMPRESSED) {
1410
            l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1411
            qcow2_free_any_clusters(bs, old_offset, 1);
1412
        } else {
1413
            l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1414
        }
1415
    }
1416

    
1417
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1418
    if (ret < 0) {
1419
        return ret;
1420
    }
1421

    
1422
    return nb_clusters;
1423
}
1424

    
1425
int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1426
{
1427
    BDRVQcowState *s = bs->opaque;
1428
    unsigned int nb_clusters;
1429
    int ret;
1430

    
1431
    /* The zero flag is only supported by version 3 and newer */
1432
    if (s->qcow_version < 3) {
1433
        return -ENOTSUP;
1434
    }
1435

    
1436
    /* Each L2 table is handled by its own loop iteration */
1437
    nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1438

    
1439
    while (nb_clusters > 0) {
1440
        ret = zero_single_l2(bs, offset, nb_clusters);
1441
        if (ret < 0) {
1442
            return ret;
1443
        }
1444

    
1445
        nb_clusters -= ret;
1446
        offset += (ret * s->cluster_size);
1447
    }
1448

    
1449
    return 0;
1450
}