Statistics
| Branch: | Revision:

root / cpu-exec.c @ dee96f6c

History | View | Annotate | Download (51 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 *
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
void cpu_loop_exit(void)
44
{
45
    /* NOTE: the register at this point must be saved by hand because
46
       longjmp restore them */
47
    regs_to_env();
48
    longjmp(env->jmp_env, 1);
49
}
50

    
51
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52
#define reg_T2
53
#endif
54

    
55
/* exit the current TB from a signal handler. The host registers are
56
   restored in a state compatible with the CPU emulator
57
 */
58
void cpu_resume_from_signal(CPUState *env1, void *puc)
59
{
60
#if !defined(CONFIG_SOFTMMU)
61
    struct ucontext *uc = puc;
62
#endif
63

    
64
    env = env1;
65

    
66
    /* XXX: restore cpu registers saved in host registers */
67

    
68
#if !defined(CONFIG_SOFTMMU)
69
    if (puc) {
70
        /* XXX: use siglongjmp ? */
71
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72
    }
73
#endif
74
    longjmp(env->jmp_env, 1);
75
}
76

    
77

    
78
static TranslationBlock *tb_find_slow(target_ulong pc,
79
                                      target_ulong cs_base,
80
                                      uint64_t flags)
81
{
82
    TranslationBlock *tb, **ptb1;
83
    int code_gen_size;
84
    unsigned int h;
85
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86
    uint8_t *tc_ptr;
87

    
88
    spin_lock(&tb_lock);
89

    
90
    tb_invalidated_flag = 0;
91

    
92
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93

    
94
    /* find translated block using physical mappings */
95
    phys_pc = get_phys_addr_code(env, pc);
96
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
97
    phys_page2 = -1;
98
    h = tb_phys_hash_func(phys_pc);
99
    ptb1 = &tb_phys_hash[h];
100
    for(;;) {
101
        tb = *ptb1;
102
        if (!tb)
103
            goto not_found;
104
        if (tb->pc == pc &&
105
            tb->page_addr[0] == phys_page1 &&
106
            tb->cs_base == cs_base &&
107
            tb->flags == flags) {
108
            /* check next page if needed */
109
            if (tb->page_addr[1] != -1) {
110
                virt_page2 = (pc & TARGET_PAGE_MASK) +
111
                    TARGET_PAGE_SIZE;
112
                phys_page2 = get_phys_addr_code(env, virt_page2);
113
                if (tb->page_addr[1] == phys_page2)
114
                    goto found;
115
            } else {
116
                goto found;
117
            }
118
        }
119
        ptb1 = &tb->phys_hash_next;
120
    }
121
 not_found:
122
    /* if no translated code available, then translate it now */
123
    tb = tb_alloc(pc);
124
    if (!tb) {
125
        /* flush must be done */
126
        tb_flush(env);
127
        /* cannot fail at this point */
128
        tb = tb_alloc(pc);
129
        /* don't forget to invalidate previous TB info */
130
        tb_invalidated_flag = 1;
131
    }
132
    tc_ptr = code_gen_ptr;
133
    tb->tc_ptr = tc_ptr;
134
    tb->cs_base = cs_base;
135
    tb->flags = flags;
136
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138

    
139
    /* check next page if needed */
140
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141
    phys_page2 = -1;
142
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143
        phys_page2 = get_phys_addr_code(env, virt_page2);
144
    }
145
    tb_link_phys(tb, phys_pc, phys_page2);
146

    
147
 found:
148
    /* we add the TB in the virtual pc hash table */
149
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150
    spin_unlock(&tb_lock);
151
    return tb;
152
}
153

    
154
static inline TranslationBlock *tb_find_fast(void)
155
{
156
    TranslationBlock *tb;
157
    target_ulong cs_base, pc;
158
    uint64_t flags;
159

    
160
    /* we record a subset of the CPU state. It will
161
       always be the same before a given translated block
162
       is executed. */
163
#if defined(TARGET_I386)
164
    flags = env->hflags;
165
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166
    flags |= env->intercept;
167
    cs_base = env->segs[R_CS].base;
168
    pc = cs_base + env->eip;
169
#elif defined(TARGET_ARM)
170
    flags = env->thumb | (env->vfp.vec_len << 1)
171
            | (env->vfp.vec_stride << 4);
172
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
173
        flags |= (1 << 6);
174
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
175
        flags |= (1 << 7);
176
    cs_base = 0;
177
    pc = env->regs[15];
178
#elif defined(TARGET_SPARC)
179
#ifdef TARGET_SPARC64
180
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
181
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
182
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
183
#else
184
    // FPU enable . MMU Boot . MMU enabled . MMU no-fault . Supervisor
185
    flags = (env->psref << 4) | (((env->mmuregs[0] & MMU_BM) >> 14) << 3)
186
        | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
187
        | env->psrs;
188
#endif
189
    cs_base = env->npc;
190
    pc = env->pc;
191
#elif defined(TARGET_PPC)
192
    flags = env->hflags;
193
    cs_base = 0;
194
    pc = env->nip;
195
#elif defined(TARGET_MIPS)
196
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
197
    cs_base = 0;
198
    pc = env->PC[env->current_tc];
199
#elif defined(TARGET_M68K)
200
    flags = (env->fpcr & M68K_FPCR_PREC)  /* Bit  6 */
201
            | (env->sr & SR_S)            /* Bit  13 */
202
            | ((env->macsr >> 4) & 0xf);  /* Bits 0-3 */
203
    cs_base = 0;
204
    pc = env->pc;
205
#elif defined(TARGET_SH4)
206
    flags = env->sr & (SR_MD | SR_RB);
207
    cs_base = 0;         /* XXXXX */
208
    pc = env->pc;
209
#elif defined(TARGET_ALPHA)
210
    flags = env->ps;
211
    cs_base = 0;
212
    pc = env->pc;
213
#else
214
#error unsupported CPU
215
#endif
216
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
217
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
218
                         tb->flags != flags, 0)) {
219
        tb = tb_find_slow(pc, cs_base, flags);
220
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
221
           doing it in tb_find_slow */
222
        if (tb_invalidated_flag) {
223
            /* as some TB could have been invalidated because
224
               of memory exceptions while generating the code, we
225
               must recompute the hash index here */
226
            T0 = 0;
227
        }
228
    }
229
    return tb;
230
}
231

    
232

    
233
/* main execution loop */
234

    
235
int cpu_exec(CPUState *env1)
236
{
237
#define DECLARE_HOST_REGS 1
238
#include "hostregs_helper.h"
239
#if defined(TARGET_SPARC)
240
#if defined(reg_REGWPTR)
241
    uint32_t *saved_regwptr;
242
#endif
243
#endif
244
#if defined(__sparc__) && !defined(HOST_SOLARIS)
245
    int saved_i7;
246
    target_ulong tmp_T0;
247
#endif
248
    int ret, interrupt_request;
249
    void (*gen_func)(void);
250
    TranslationBlock *tb;
251
    uint8_t *tc_ptr;
252

    
253
    if (cpu_halted(env1) == EXCP_HALTED)
254
        return EXCP_HALTED;
255

    
256
    cpu_single_env = env1;
257

    
258
    /* first we save global registers */
259
#define SAVE_HOST_REGS 1
260
#include "hostregs_helper.h"
261
    env = env1;
262
#if defined(__sparc__) && !defined(HOST_SOLARIS)
263
    /* we also save i7 because longjmp may not restore it */
264
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
265
#endif
266

    
267
    env_to_regs();
268
#if defined(TARGET_I386)
269
    /* put eflags in CPU temporary format */
270
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
271
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
272
    CC_OP = CC_OP_EFLAGS;
273
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
274
#elif defined(TARGET_SPARC)
275
#if defined(reg_REGWPTR)
276
    saved_regwptr = REGWPTR;
277
#endif
278
#elif defined(TARGET_M68K)
279
    env->cc_op = CC_OP_FLAGS;
280
    env->cc_dest = env->sr & 0xf;
281
    env->cc_x = (env->sr >> 4) & 1;
282
#elif defined(TARGET_ALPHA)
283
#elif defined(TARGET_ARM)
284
#elif defined(TARGET_PPC)
285
#elif defined(TARGET_MIPS)
286
#elif defined(TARGET_SH4)
287
    /* XXXXX */
288
#else
289
#error unsupported target CPU
290
#endif
291
    env->exception_index = -1;
292

    
293
    /* prepare setjmp context for exception handling */
294
    for(;;) {
295
        if (setjmp(env->jmp_env) == 0) {
296
            env->current_tb = NULL;
297
            /* if an exception is pending, we execute it here */
298
            if (env->exception_index >= 0) {
299
                if (env->exception_index >= EXCP_INTERRUPT) {
300
                    /* exit request from the cpu execution loop */
301
                    ret = env->exception_index;
302
                    break;
303
                } else if (env->user_mode_only) {
304
                    /* if user mode only, we simulate a fake exception
305
                       which will be handled outside the cpu execution
306
                       loop */
307
#if defined(TARGET_I386)
308
                    do_interrupt_user(env->exception_index,
309
                                      env->exception_is_int,
310
                                      env->error_code,
311
                                      env->exception_next_eip);
312
#endif
313
                    ret = env->exception_index;
314
                    break;
315
                } else {
316
#if defined(TARGET_I386)
317
                    /* simulate a real cpu exception. On i386, it can
318
                       trigger new exceptions, but we do not handle
319
                       double or triple faults yet. */
320
                    do_interrupt(env->exception_index,
321
                                 env->exception_is_int,
322
                                 env->error_code,
323
                                 env->exception_next_eip, 0);
324
                    /* successfully delivered */
325
                    env->old_exception = -1;
326
#elif defined(TARGET_PPC)
327
                    do_interrupt(env);
328
#elif defined(TARGET_MIPS)
329
                    do_interrupt(env);
330
#elif defined(TARGET_SPARC)
331
                    do_interrupt(env->exception_index);
332
#elif defined(TARGET_ARM)
333
                    do_interrupt(env);
334
#elif defined(TARGET_SH4)
335
                    do_interrupt(env);
336
#elif defined(TARGET_ALPHA)
337
                    do_interrupt(env);
338
#elif defined(TARGET_M68K)
339
                    do_interrupt(0);
340
#endif
341
                }
342
                env->exception_index = -1;
343
            }
344
#ifdef USE_KQEMU
345
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
346
                int ret;
347
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
348
                ret = kqemu_cpu_exec(env);
349
                /* put eflags in CPU temporary format */
350
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
351
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
352
                CC_OP = CC_OP_EFLAGS;
353
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
354
                if (ret == 1) {
355
                    /* exception */
356
                    longjmp(env->jmp_env, 1);
357
                } else if (ret == 2) {
358
                    /* softmmu execution needed */
359
                } else {
360
                    if (env->interrupt_request != 0) {
361
                        /* hardware interrupt will be executed just after */
362
                    } else {
363
                        /* otherwise, we restart */
364
                        longjmp(env->jmp_env, 1);
365
                    }
366
                }
367
            }
368
#endif
369

    
370
            T0 = 0; /* force lookup of first TB */
371
            for(;;) {
372
#if defined(__sparc__) && !defined(HOST_SOLARIS)
373
                /* g1 can be modified by some libc? functions */
374
                tmp_T0 = T0;
375
#endif
376
                interrupt_request = env->interrupt_request;
377
                if (__builtin_expect(interrupt_request, 0)
378
#if defined(TARGET_I386)
379
                        && env->hflags & HF_GIF_MASK
380
#endif
381
                                ) {
382
                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
383
                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
384
                        env->exception_index = EXCP_DEBUG;
385
                        cpu_loop_exit();
386
                    }
387
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
388
    defined(TARGET_PPC) || defined(TARGET_ALPHA)
389
                    if (interrupt_request & CPU_INTERRUPT_HALT) {
390
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
391
                        env->halted = 1;
392
                        env->exception_index = EXCP_HLT;
393
                        cpu_loop_exit();
394
                    }
395
#endif
396
#if defined(TARGET_I386)
397
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
398
                        !(env->hflags & HF_SMM_MASK)) {
399
                        svm_check_intercept(SVM_EXIT_SMI);
400
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
401
                        do_smm_enter();
402
#if defined(__sparc__) && !defined(HOST_SOLARIS)
403
                        tmp_T0 = 0;
404
#else
405
                        T0 = 0;
406
#endif
407
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
408
                        (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
409
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
410
                        int intno;
411
                        svm_check_intercept(SVM_EXIT_INTR);
412
                        env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
413
                        intno = cpu_get_pic_interrupt(env);
414
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
415
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
416
                        }
417
                        do_interrupt(intno, 0, 0, 0, 1);
418
                        /* ensure that no TB jump will be modified as
419
                           the program flow was changed */
420
#if defined(__sparc__) && !defined(HOST_SOLARIS)
421
                        tmp_T0 = 0;
422
#else
423
                        T0 = 0;
424
#endif
425
#if !defined(CONFIG_USER_ONLY)
426
                    } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
427
                        (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
428
                         int intno;
429
                         /* FIXME: this should respect TPR */
430
                         env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
431
                         svm_check_intercept(SVM_EXIT_VINTR);
432
                         intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
433
                         if (loglevel & CPU_LOG_TB_IN_ASM)
434
                             fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
435
                         do_interrupt(intno, 0, 0, -1, 1);
436
                         stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
437
                                  ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
438
#if defined(__sparc__) && !defined(HOST_SOLARIS)
439
                         tmp_T0 = 0;
440
#else
441
                         T0 = 0;
442
#endif
443
#endif
444
                    }
445
#elif defined(TARGET_PPC)
446
#if 0
447
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
448
                        cpu_ppc_reset(env);
449
                    }
450
#endif
451
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
452
                        ppc_hw_interrupt(env);
453
                        if (env->pending_interrupts == 0)
454
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
455
#if defined(__sparc__) && !defined(HOST_SOLARIS)
456
                        tmp_T0 = 0;
457
#else
458
                        T0 = 0;
459
#endif
460
                    }
461
#elif defined(TARGET_MIPS)
462
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
463
                        (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
464
                        (env->CP0_Status & (1 << CP0St_IE)) &&
465
                        !(env->CP0_Status & (1 << CP0St_EXL)) &&
466
                        !(env->CP0_Status & (1 << CP0St_ERL)) &&
467
                        !(env->hflags & MIPS_HFLAG_DM)) {
468
                        /* Raise it */
469
                        env->exception_index = EXCP_EXT_INTERRUPT;
470
                        env->error_code = 0;
471
                        do_interrupt(env);
472
#if defined(__sparc__) && !defined(HOST_SOLARIS)
473
                        tmp_T0 = 0;
474
#else
475
                        T0 = 0;
476
#endif
477
                    }
478
#elif defined(TARGET_SPARC)
479
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
480
                        (env->psret != 0)) {
481
                        int pil = env->interrupt_index & 15;
482
                        int type = env->interrupt_index & 0xf0;
483

    
484
                        if (((type == TT_EXTINT) &&
485
                             (pil == 15 || pil > env->psrpil)) ||
486
                            type != TT_EXTINT) {
487
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
488
                            do_interrupt(env->interrupt_index);
489
                            env->interrupt_index = 0;
490
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
491
                            cpu_check_irqs(env);
492
#endif
493
#if defined(__sparc__) && !defined(HOST_SOLARIS)
494
                            tmp_T0 = 0;
495
#else
496
                            T0 = 0;
497
#endif
498
                        }
499
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
500
                        //do_interrupt(0, 0, 0, 0, 0);
501
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
502
                    }
503
#elif defined(TARGET_ARM)
504
                    if (interrupt_request & CPU_INTERRUPT_FIQ
505
                        && !(env->uncached_cpsr & CPSR_F)) {
506
                        env->exception_index = EXCP_FIQ;
507
                        do_interrupt(env);
508
                    }
509
                    if (interrupt_request & CPU_INTERRUPT_HARD
510
                        && !(env->uncached_cpsr & CPSR_I)) {
511
                        env->exception_index = EXCP_IRQ;
512
                        do_interrupt(env);
513
                    }
514
#elif defined(TARGET_SH4)
515
                    /* XXXXX */
516
#elif defined(TARGET_ALPHA)
517
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
518
                        do_interrupt(env);
519
                    }
520
#elif defined(TARGET_M68K)
521
                    if (interrupt_request & CPU_INTERRUPT_HARD
522
                        && ((env->sr & SR_I) >> SR_I_SHIFT)
523
                            < env->pending_level) {
524
                        /* Real hardware gets the interrupt vector via an
525
                           IACK cycle at this point.  Current emulated
526
                           hardware doesn't rely on this, so we
527
                           provide/save the vector when the interrupt is
528
                           first signalled.  */
529
                        env->exception_index = env->pending_vector;
530
                        do_interrupt(1);
531
                    }
532
#endif
533
                   /* Don't use the cached interupt_request value,
534
                      do_interrupt may have updated the EXITTB flag. */
535
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
536
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
537
                        /* ensure that no TB jump will be modified as
538
                           the program flow was changed */
539
#if defined(__sparc__) && !defined(HOST_SOLARIS)
540
                        tmp_T0 = 0;
541
#else
542
                        T0 = 0;
543
#endif
544
                    }
545
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
546
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
547
                        env->exception_index = EXCP_INTERRUPT;
548
                        cpu_loop_exit();
549
                    }
550
                }
551
#ifdef DEBUG_EXEC
552
                if ((loglevel & CPU_LOG_TB_CPU)) {
553
                    /* restore flags in standard format */
554
                    regs_to_env();
555
#if defined(TARGET_I386)
556
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
557
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
558
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
559
#elif defined(TARGET_ARM)
560
                    cpu_dump_state(env, logfile, fprintf, 0);
561
#elif defined(TARGET_SPARC)
562
                    REGWPTR = env->regbase + (env->cwp * 16);
563
                    env->regwptr = REGWPTR;
564
                    cpu_dump_state(env, logfile, fprintf, 0);
565
#elif defined(TARGET_PPC)
566
                    cpu_dump_state(env, logfile, fprintf, 0);
567
#elif defined(TARGET_M68K)
568
                    cpu_m68k_flush_flags(env, env->cc_op);
569
                    env->cc_op = CC_OP_FLAGS;
570
                    env->sr = (env->sr & 0xffe0)
571
                              | env->cc_dest | (env->cc_x << 4);
572
                    cpu_dump_state(env, logfile, fprintf, 0);
573
#elif defined(TARGET_MIPS)
574
                    cpu_dump_state(env, logfile, fprintf, 0);
575
#elif defined(TARGET_SH4)
576
                    cpu_dump_state(env, logfile, fprintf, 0);
577
#elif defined(TARGET_ALPHA)
578
                    cpu_dump_state(env, logfile, fprintf, 0);
579
#else
580
#error unsupported target CPU
581
#endif
582
                }
583
#endif
584
                tb = tb_find_fast();
585
#ifdef DEBUG_EXEC
586
                if ((loglevel & CPU_LOG_EXEC)) {
587
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
588
                            (long)tb->tc_ptr, tb->pc,
589
                            lookup_symbol(tb->pc));
590
                }
591
#endif
592
#if defined(__sparc__) && !defined(HOST_SOLARIS)
593
                T0 = tmp_T0;
594
#endif
595
                /* see if we can patch the calling TB. When the TB
596
                   spans two pages, we cannot safely do a direct
597
                   jump. */
598
                {
599
                    if (T0 != 0 &&
600
#if USE_KQEMU
601
                        (env->kqemu_enabled != 2) &&
602
#endif
603
                        tb->page_addr[1] == -1
604
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
605
                    && (tb->cflags & CF_CODE_COPY) ==
606
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
607
#endif
608
                    ) {
609
                    spin_lock(&tb_lock);
610
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
611
#if defined(USE_CODE_COPY)
612
                    /* propagates the FP use info */
613
                    ((TranslationBlock *)(T0 & ~3))->cflags |=
614
                        (tb->cflags & CF_FP_USED);
615
#endif
616
                    spin_unlock(&tb_lock);
617
                }
618
                }
619
                tc_ptr = tb->tc_ptr;
620
                env->current_tb = tb;
621
                /* execute the generated code */
622
                gen_func = (void *)tc_ptr;
623
#if defined(__sparc__)
624
                __asm__ __volatile__("call        %0\n\t"
625
                                     "mov        %%o7,%%i0"
626
                                     : /* no outputs */
627
                                     : "r" (gen_func)
628
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
629
                                       "o0", "o1", "o2", "o3", "o4", "o5",
630
                                       "l0", "l1", "l2", "l3", "l4", "l5",
631
                                       "l6", "l7");
632
#elif defined(__arm__)
633
                asm volatile ("mov pc, %0\n\t"
634
                              ".global exec_loop\n\t"
635
                              "exec_loop:\n\t"
636
                              : /* no outputs */
637
                              : "r" (gen_func)
638
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
639
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
640
{
641
    if (!(tb->cflags & CF_CODE_COPY)) {
642
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
643
            save_native_fp_state(env);
644
        }
645
        gen_func();
646
    } else {
647
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
648
            restore_native_fp_state(env);
649
        }
650
        /* we work with native eflags */
651
        CC_SRC = cc_table[CC_OP].compute_all();
652
        CC_OP = CC_OP_EFLAGS;
653
        asm(".globl exec_loop\n"
654
            "\n"
655
            "debug1:\n"
656
            "    pushl %%ebp\n"
657
            "    fs movl %10, %9\n"
658
            "    fs movl %11, %%eax\n"
659
            "    andl $0x400, %%eax\n"
660
            "    fs orl %8, %%eax\n"
661
            "    pushl %%eax\n"
662
            "    popf\n"
663
            "    fs movl %%esp, %12\n"
664
            "    fs movl %0, %%eax\n"
665
            "    fs movl %1, %%ecx\n"
666
            "    fs movl %2, %%edx\n"
667
            "    fs movl %3, %%ebx\n"
668
            "    fs movl %4, %%esp\n"
669
            "    fs movl %5, %%ebp\n"
670
            "    fs movl %6, %%esi\n"
671
            "    fs movl %7, %%edi\n"
672
            "    fs jmp *%9\n"
673
            "exec_loop:\n"
674
            "    fs movl %%esp, %4\n"
675
            "    fs movl %12, %%esp\n"
676
            "    fs movl %%eax, %0\n"
677
            "    fs movl %%ecx, %1\n"
678
            "    fs movl %%edx, %2\n"
679
            "    fs movl %%ebx, %3\n"
680
            "    fs movl %%ebp, %5\n"
681
            "    fs movl %%esi, %6\n"
682
            "    fs movl %%edi, %7\n"
683
            "    pushf\n"
684
            "    popl %%eax\n"
685
            "    movl %%eax, %%ecx\n"
686
            "    andl $0x400, %%ecx\n"
687
            "    shrl $9, %%ecx\n"
688
            "    andl $0x8d5, %%eax\n"
689
            "    fs movl %%eax, %8\n"
690
            "    movl $1, %%eax\n"
691
            "    subl %%ecx, %%eax\n"
692
            "    fs movl %%eax, %11\n"
693
            "    fs movl %9, %%ebx\n" /* get T0 value */
694
            "    popl %%ebp\n"
695
            :
696
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
697
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
698
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
699
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
700
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
701
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
702
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
703
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
704
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
705
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
706
            "a" (gen_func),
707
            "m" (*(uint8_t *)offsetof(CPUState, df)),
708
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
709
            : "%ecx", "%edx"
710
            );
711
    }
712
}
713
#elif defined(__ia64)
714
                struct fptr {
715
                        void *ip;
716
                        void *gp;
717
                } fp;
718

    
719
                fp.ip = tc_ptr;
720
                fp.gp = code_gen_buffer + 2 * (1 << 20);
721
                (*(void (*)(void)) &fp)();
722
#else
723
                gen_func();
724
#endif
725
                env->current_tb = NULL;
726
                /* reset soft MMU for next block (it can currently
727
                   only be set by a memory fault) */
728
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
729
                if (env->hflags & HF_SOFTMMU_MASK) {
730
                    env->hflags &= ~HF_SOFTMMU_MASK;
731
                    /* do not allow linking to another block */
732
                    T0 = 0;
733
                }
734
#endif
735
#if defined(USE_KQEMU)
736
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
737
                if (kqemu_is_ok(env) &&
738
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
739
                    cpu_loop_exit();
740
                }
741
#endif
742
            } /* for(;;) */
743
        } else {
744
            env_to_regs();
745
        }
746
    } /* for(;;) */
747

    
748

    
749
#if defined(TARGET_I386)
750
#if defined(USE_CODE_COPY)
751
    if (env->native_fp_regs) {
752
        save_native_fp_state(env);
753
    }
754
#endif
755
    /* restore flags in standard format */
756
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
757
#elif defined(TARGET_ARM)
758
    /* XXX: Save/restore host fpu exception state?.  */
759
#elif defined(TARGET_SPARC)
760
#if defined(reg_REGWPTR)
761
    REGWPTR = saved_regwptr;
762
#endif
763
#elif defined(TARGET_PPC)
764
#elif defined(TARGET_M68K)
765
    cpu_m68k_flush_flags(env, env->cc_op);
766
    env->cc_op = CC_OP_FLAGS;
767
    env->sr = (env->sr & 0xffe0)
768
              | env->cc_dest | (env->cc_x << 4);
769
#elif defined(TARGET_MIPS)
770
#elif defined(TARGET_SH4)
771
#elif defined(TARGET_ALPHA)
772
    /* XXXXX */
773
#else
774
#error unsupported target CPU
775
#endif
776

    
777
    /* restore global registers */
778
#if defined(__sparc__) && !defined(HOST_SOLARIS)
779
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
780
#endif
781
#include "hostregs_helper.h"
782

    
783
    /* fail safe : never use cpu_single_env outside cpu_exec() */
784
    cpu_single_env = NULL;
785
    return ret;
786
}
787

    
788
/* must only be called from the generated code as an exception can be
789
   generated */
790
void tb_invalidate_page_range(target_ulong start, target_ulong end)
791
{
792
    /* XXX: cannot enable it yet because it yields to MMU exception
793
       where NIP != read address on PowerPC */
794
#if 0
795
    target_ulong phys_addr;
796
    phys_addr = get_phys_addr_code(env, start);
797
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
798
#endif
799
}
800

    
801
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
802

    
803
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
804
{
805
    CPUX86State *saved_env;
806

    
807
    saved_env = env;
808
    env = s;
809
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
810
        selector &= 0xffff;
811
        cpu_x86_load_seg_cache(env, seg_reg, selector,
812
                               (selector << 4), 0xffff, 0);
813
    } else {
814
        load_seg(seg_reg, selector);
815
    }
816
    env = saved_env;
817
}
818

    
819
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
820
{
821
    CPUX86State *saved_env;
822

    
823
    saved_env = env;
824
    env = s;
825

    
826
    helper_fsave((target_ulong)ptr, data32);
827

    
828
    env = saved_env;
829
}
830

    
831
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
832
{
833
    CPUX86State *saved_env;
834

    
835
    saved_env = env;
836
    env = s;
837

    
838
    helper_frstor((target_ulong)ptr, data32);
839

    
840
    env = saved_env;
841
}
842

    
843
#endif /* TARGET_I386 */
844

    
845
#if !defined(CONFIG_SOFTMMU)
846

    
847
#if defined(TARGET_I386)
848

    
849
/* 'pc' is the host PC at which the exception was raised. 'address' is
850
   the effective address of the memory exception. 'is_write' is 1 if a
851
   write caused the exception and otherwise 0'. 'old_set' is the
852
   signal set which should be restored */
853
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
854
                                    int is_write, sigset_t *old_set,
855
                                    void *puc)
856
{
857
    TranslationBlock *tb;
858
    int ret;
859

    
860
    if (cpu_single_env)
861
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
862
#if defined(DEBUG_SIGNAL)
863
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
864
                pc, address, is_write, *(unsigned long *)old_set);
865
#endif
866
    /* XXX: locking issue */
867
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
868
        return 1;
869
    }
870

    
871
    /* see if it is an MMU fault */
872
    ret = cpu_x86_handle_mmu_fault(env, address, is_write,
873
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
874
    if (ret < 0)
875
        return 0; /* not an MMU fault */
876
    if (ret == 0)
877
        return 1; /* the MMU fault was handled without causing real CPU fault */
878
    /* now we have a real cpu fault */
879
    tb = tb_find_pc(pc);
880
    if (tb) {
881
        /* the PC is inside the translated code. It means that we have
882
           a virtual CPU fault */
883
        cpu_restore_state(tb, env, pc, puc);
884
    }
885
    if (ret == 1) {
886
#if 0
887
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
888
               env->eip, env->cr[2], env->error_code);
889
#endif
890
        /* we restore the process signal mask as the sigreturn should
891
           do it (XXX: use sigsetjmp) */
892
        sigprocmask(SIG_SETMASK, old_set, NULL);
893
        raise_exception_err(env->exception_index, env->error_code);
894
    } else {
895
        /* activate soft MMU for this block */
896
        env->hflags |= HF_SOFTMMU_MASK;
897
        cpu_resume_from_signal(env, puc);
898
    }
899
    /* never comes here */
900
    return 1;
901
}
902

    
903
#elif defined(TARGET_ARM)
904
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
905
                                    int is_write, sigset_t *old_set,
906
                                    void *puc)
907
{
908
    TranslationBlock *tb;
909
    int ret;
910

    
911
    if (cpu_single_env)
912
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
913
#if defined(DEBUG_SIGNAL)
914
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
915
           pc, address, is_write, *(unsigned long *)old_set);
916
#endif
917
    /* XXX: locking issue */
918
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
919
        return 1;
920
    }
921
    /* see if it is an MMU fault */
922
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
923
    if (ret < 0)
924
        return 0; /* not an MMU fault */
925
    if (ret == 0)
926
        return 1; /* the MMU fault was handled without causing real CPU fault */
927
    /* now we have a real cpu fault */
928
    tb = tb_find_pc(pc);
929
    if (tb) {
930
        /* the PC is inside the translated code. It means that we have
931
           a virtual CPU fault */
932
        cpu_restore_state(tb, env, pc, puc);
933
    }
934
    /* we restore the process signal mask as the sigreturn should
935
       do it (XXX: use sigsetjmp) */
936
    sigprocmask(SIG_SETMASK, old_set, NULL);
937
    cpu_loop_exit();
938
}
939
#elif defined(TARGET_SPARC)
940
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
941
                                    int is_write, sigset_t *old_set,
942
                                    void *puc)
943
{
944
    TranslationBlock *tb;
945
    int ret;
946

    
947
    if (cpu_single_env)
948
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
949
#if defined(DEBUG_SIGNAL)
950
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
951
           pc, address, is_write, *(unsigned long *)old_set);
952
#endif
953
    /* XXX: locking issue */
954
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
955
        return 1;
956
    }
957
    /* see if it is an MMU fault */
958
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
959
    if (ret < 0)
960
        return 0; /* not an MMU fault */
961
    if (ret == 0)
962
        return 1; /* the MMU fault was handled without causing real CPU fault */
963
    /* now we have a real cpu fault */
964
    tb = tb_find_pc(pc);
965
    if (tb) {
966
        /* the PC is inside the translated code. It means that we have
967
           a virtual CPU fault */
968
        cpu_restore_state(tb, env, pc, puc);
969
    }
970
    /* we restore the process signal mask as the sigreturn should
971
       do it (XXX: use sigsetjmp) */
972
    sigprocmask(SIG_SETMASK, old_set, NULL);
973
    cpu_loop_exit();
974
}
975
#elif defined (TARGET_PPC)
976
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
977
                                    int is_write, sigset_t *old_set,
978
                                    void *puc)
979
{
980
    TranslationBlock *tb;
981
    int ret;
982

    
983
    if (cpu_single_env)
984
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
985
#if defined(DEBUG_SIGNAL)
986
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
987
           pc, address, is_write, *(unsigned long *)old_set);
988
#endif
989
    /* XXX: locking issue */
990
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
991
        return 1;
992
    }
993

    
994
    /* see if it is an MMU fault */
995
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
996
    if (ret < 0)
997
        return 0; /* not an MMU fault */
998
    if (ret == 0)
999
        return 1; /* the MMU fault was handled without causing real CPU fault */
1000

    
1001
    /* now we have a real cpu fault */
1002
    tb = tb_find_pc(pc);
1003
    if (tb) {
1004
        /* the PC is inside the translated code. It means that we have
1005
           a virtual CPU fault */
1006
        cpu_restore_state(tb, env, pc, puc);
1007
    }
1008
    if (ret == 1) {
1009
#if 0
1010
        printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1011
               env->nip, env->error_code, tb);
1012
#endif
1013
    /* we restore the process signal mask as the sigreturn should
1014
       do it (XXX: use sigsetjmp) */
1015
        sigprocmask(SIG_SETMASK, old_set, NULL);
1016
        do_raise_exception_err(env->exception_index, env->error_code);
1017
    } else {
1018
        /* activate soft MMU for this block */
1019
        cpu_resume_from_signal(env, puc);
1020
    }
1021
    /* never comes here */
1022
    return 1;
1023
}
1024

    
1025
#elif defined(TARGET_M68K)
1026
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1027
                                    int is_write, sigset_t *old_set,
1028
                                    void *puc)
1029
{
1030
    TranslationBlock *tb;
1031
    int ret;
1032

    
1033
    if (cpu_single_env)
1034
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1035
#if defined(DEBUG_SIGNAL)
1036
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1037
           pc, address, is_write, *(unsigned long *)old_set);
1038
#endif
1039
    /* XXX: locking issue */
1040
    if (is_write && page_unprotect(address, pc, puc)) {
1041
        return 1;
1042
    }
1043
    /* see if it is an MMU fault */
1044
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1045
    if (ret < 0)
1046
        return 0; /* not an MMU fault */
1047
    if (ret == 0)
1048
        return 1; /* the MMU fault was handled without causing real CPU fault */
1049
    /* now we have a real cpu fault */
1050
    tb = tb_find_pc(pc);
1051
    if (tb) {
1052
        /* the PC is inside the translated code. It means that we have
1053
           a virtual CPU fault */
1054
        cpu_restore_state(tb, env, pc, puc);
1055
    }
1056
    /* we restore the process signal mask as the sigreturn should
1057
       do it (XXX: use sigsetjmp) */
1058
    sigprocmask(SIG_SETMASK, old_set, NULL);
1059
    cpu_loop_exit();
1060
    /* never comes here */
1061
    return 1;
1062
}
1063

    
1064
#elif defined (TARGET_MIPS)
1065
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1066
                                    int is_write, sigset_t *old_set,
1067
                                    void *puc)
1068
{
1069
    TranslationBlock *tb;
1070
    int ret;
1071

    
1072
    if (cpu_single_env)
1073
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1074
#if defined(DEBUG_SIGNAL)
1075
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1076
           pc, address, is_write, *(unsigned long *)old_set);
1077
#endif
1078
    /* XXX: locking issue */
1079
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1080
        return 1;
1081
    }
1082

    
1083
    /* see if it is an MMU fault */
1084
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1085
    if (ret < 0)
1086
        return 0; /* not an MMU fault */
1087
    if (ret == 0)
1088
        return 1; /* the MMU fault was handled without causing real CPU fault */
1089

    
1090
    /* now we have a real cpu fault */
1091
    tb = tb_find_pc(pc);
1092
    if (tb) {
1093
        /* the PC is inside the translated code. It means that we have
1094
           a virtual CPU fault */
1095
        cpu_restore_state(tb, env, pc, puc);
1096
    }
1097
    if (ret == 1) {
1098
#if 0
1099
        printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1100
               env->PC, env->error_code, tb);
1101
#endif
1102
    /* we restore the process signal mask as the sigreturn should
1103
       do it (XXX: use sigsetjmp) */
1104
        sigprocmask(SIG_SETMASK, old_set, NULL);
1105
        do_raise_exception_err(env->exception_index, env->error_code);
1106
    } else {
1107
        /* activate soft MMU for this block */
1108
        cpu_resume_from_signal(env, puc);
1109
    }
1110
    /* never comes here */
1111
    return 1;
1112
}
1113

    
1114
#elif defined (TARGET_SH4)
1115
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1116
                                    int is_write, sigset_t *old_set,
1117
                                    void *puc)
1118
{
1119
    TranslationBlock *tb;
1120
    int ret;
1121

    
1122
    if (cpu_single_env)
1123
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1124
#if defined(DEBUG_SIGNAL)
1125
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1126
           pc, address, is_write, *(unsigned long *)old_set);
1127
#endif
1128
    /* XXX: locking issue */
1129
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1130
        return 1;
1131
    }
1132

    
1133
    /* see if it is an MMU fault */
1134
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1135
    if (ret < 0)
1136
        return 0; /* not an MMU fault */
1137
    if (ret == 0)
1138
        return 1; /* the MMU fault was handled without causing real CPU fault */
1139

    
1140
    /* now we have a real cpu fault */
1141
    tb = tb_find_pc(pc);
1142
    if (tb) {
1143
        /* the PC is inside the translated code. It means that we have
1144
           a virtual CPU fault */
1145
        cpu_restore_state(tb, env, pc, puc);
1146
    }
1147
#if 0
1148
        printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1149
               env->nip, env->error_code, tb);
1150
#endif
1151
    /* we restore the process signal mask as the sigreturn should
1152
       do it (XXX: use sigsetjmp) */
1153
    sigprocmask(SIG_SETMASK, old_set, NULL);
1154
    cpu_loop_exit();
1155
    /* never comes here */
1156
    return 1;
1157
}
1158

    
1159
#elif defined (TARGET_ALPHA)
1160
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1161
                                    int is_write, sigset_t *old_set,
1162
                                    void *puc)
1163
{
1164
    TranslationBlock *tb;
1165
    int ret;
1166

    
1167
    if (cpu_single_env)
1168
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1169
#if defined(DEBUG_SIGNAL)
1170
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1171
           pc, address, is_write, *(unsigned long *)old_set);
1172
#endif
1173
    /* XXX: locking issue */
1174
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1175
        return 1;
1176
    }
1177

    
1178
    /* see if it is an MMU fault */
1179
    ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1180
    if (ret < 0)
1181
        return 0; /* not an MMU fault */
1182
    if (ret == 0)
1183
        return 1; /* the MMU fault was handled without causing real CPU fault */
1184

    
1185
    /* now we have a real cpu fault */
1186
    tb = tb_find_pc(pc);
1187
    if (tb) {
1188
        /* the PC is inside the translated code. It means that we have
1189
           a virtual CPU fault */
1190
        cpu_restore_state(tb, env, pc, puc);
1191
    }
1192
#if 0
1193
        printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1194
               env->nip, env->error_code, tb);
1195
#endif
1196
    /* we restore the process signal mask as the sigreturn should
1197
       do it (XXX: use sigsetjmp) */
1198
    sigprocmask(SIG_SETMASK, old_set, NULL);
1199
    cpu_loop_exit();
1200
    /* never comes here */
1201
    return 1;
1202
}
1203
#else
1204
#error unsupported target CPU
1205
#endif
1206

    
1207
#if defined(__i386__)
1208

    
1209
#if defined(__APPLE__)
1210
# include <sys/ucontext.h>
1211

    
1212
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1213
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1214
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1215
#else
1216
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1217
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1218
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1219
#endif
1220

    
1221
#if defined(USE_CODE_COPY)
1222
static void cpu_send_trap(unsigned long pc, int trap,
1223
                          struct ucontext *uc)
1224
{
1225
    TranslationBlock *tb;
1226

    
1227
    if (cpu_single_env)
1228
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1229
    /* now we have a real cpu fault */
1230
    tb = tb_find_pc(pc);
1231
    if (tb) {
1232
        /* the PC is inside the translated code. It means that we have
1233
           a virtual CPU fault */
1234
        cpu_restore_state(tb, env, pc, uc);
1235
    }
1236
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1237
    raise_exception_err(trap, env->error_code);
1238
}
1239
#endif
1240

    
1241
int cpu_signal_handler(int host_signum, void *pinfo,
1242
                       void *puc)
1243
{
1244
    siginfo_t *info = pinfo;
1245
    struct ucontext *uc = puc;
1246
    unsigned long pc;
1247
    int trapno;
1248

    
1249
#ifndef REG_EIP
1250
/* for glibc 2.1 */
1251
#define REG_EIP    EIP
1252
#define REG_ERR    ERR
1253
#define REG_TRAPNO TRAPNO
1254
#endif
1255
    pc = EIP_sig(uc);
1256
    trapno = TRAP_sig(uc);
1257
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1258
    if (trapno == 0x00 || trapno == 0x05) {
1259
        /* send division by zero or bound exception */
1260
        cpu_send_trap(pc, trapno, uc);
1261
        return 1;
1262
    } else
1263
#endif
1264
        return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1265
                                 trapno == 0xe ?
1266
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1267
                                 &uc->uc_sigmask, puc);
1268
}
1269

    
1270
#elif defined(__x86_64__)
1271

    
1272
int cpu_signal_handler(int host_signum, void *pinfo,
1273
                       void *puc)
1274
{
1275
    siginfo_t *info = pinfo;
1276
    struct ucontext *uc = puc;
1277
    unsigned long pc;
1278

    
1279
    pc = uc->uc_mcontext.gregs[REG_RIP];
1280
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1281
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1282
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1283
                             &uc->uc_sigmask, puc);
1284
}
1285

    
1286
#elif defined(__powerpc__)
1287

    
1288
/***********************************************************************
1289
 * signal context platform-specific definitions
1290
 * From Wine
1291
 */
1292
#ifdef linux
1293
/* All Registers access - only for local access */
1294
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1295
/* Gpr Registers access  */
1296
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1297
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1298
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1299
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1300
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1301
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1302
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1303
/* Float Registers access  */
1304
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1305
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1306
/* Exception Registers access */
1307
# define DAR_sig(context)                        REG_sig(dar, context)
1308
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1309
# define TRAP_sig(context)                        REG_sig(trap, context)
1310
#endif /* linux */
1311

    
1312
#ifdef __APPLE__
1313
# include <sys/ucontext.h>
1314
typedef struct ucontext SIGCONTEXT;
1315
/* All Registers access - only for local access */
1316
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1317
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1318
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1319
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1320
/* Gpr Registers access */
1321
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1322
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1323
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1324
# define CTR_sig(context)                        REG_sig(ctr, context)
1325
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1326
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1327
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1328
/* Float Registers access */
1329
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1330
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1331
/* Exception Registers access */
1332
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1333
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1334
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1335
#endif /* __APPLE__ */
1336

    
1337
int cpu_signal_handler(int host_signum, void *pinfo,
1338
                       void *puc)
1339
{
1340
    siginfo_t *info = pinfo;
1341
    struct ucontext *uc = puc;
1342
    unsigned long pc;
1343
    int is_write;
1344

    
1345
    pc = IAR_sig(uc);
1346
    is_write = 0;
1347
#if 0
1348
    /* ppc 4xx case */
1349
    if (DSISR_sig(uc) & 0x00800000)
1350
        is_write = 1;
1351
#else
1352
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1353
        is_write = 1;
1354
#endif
1355
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1356
                             is_write, &uc->uc_sigmask, puc);
1357
}
1358

    
1359
#elif defined(__alpha__)
1360

    
1361
int cpu_signal_handler(int host_signum, void *pinfo,
1362
                           void *puc)
1363
{
1364
    siginfo_t *info = pinfo;
1365
    struct ucontext *uc = puc;
1366
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1367
    uint32_t insn = *pc;
1368
    int is_write = 0;
1369

    
1370
    /* XXX: need kernel patch to get write flag faster */
1371
    switch (insn >> 26) {
1372
    case 0x0d: // stw
1373
    case 0x0e: // stb
1374
    case 0x0f: // stq_u
1375
    case 0x24: // stf
1376
    case 0x25: // stg
1377
    case 0x26: // sts
1378
    case 0x27: // stt
1379
    case 0x2c: // stl
1380
    case 0x2d: // stq
1381
    case 0x2e: // stl_c
1382
    case 0x2f: // stq_c
1383
        is_write = 1;
1384
    }
1385

    
1386
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1387
                             is_write, &uc->uc_sigmask, puc);
1388
}
1389
#elif defined(__sparc__)
1390

    
1391
int cpu_signal_handler(int host_signum, void *pinfo,
1392
                       void *puc)
1393
{
1394
    siginfo_t *info = pinfo;
1395
    uint32_t *regs = (uint32_t *)(info + 1);
1396
    void *sigmask = (regs + 20);
1397
    unsigned long pc;
1398
    int is_write;
1399
    uint32_t insn;
1400

    
1401
    /* XXX: is there a standard glibc define ? */
1402
    pc = regs[1];
1403
    /* XXX: need kernel patch to get write flag faster */
1404
    is_write = 0;
1405
    insn = *(uint32_t *)pc;
1406
    if ((insn >> 30) == 3) {
1407
      switch((insn >> 19) & 0x3f) {
1408
      case 0x05: // stb
1409
      case 0x06: // sth
1410
      case 0x04: // st
1411
      case 0x07: // std
1412
      case 0x24: // stf
1413
      case 0x27: // stdf
1414
      case 0x25: // stfsr
1415
        is_write = 1;
1416
        break;
1417
      }
1418
    }
1419
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1420
                             is_write, sigmask, NULL);
1421
}
1422

    
1423
#elif defined(__arm__)
1424

    
1425
int cpu_signal_handler(int host_signum, void *pinfo,
1426
                       void *puc)
1427
{
1428
    siginfo_t *info = pinfo;
1429
    struct ucontext *uc = puc;
1430
    unsigned long pc;
1431
    int is_write;
1432

    
1433
    pc = uc->uc_mcontext.gregs[R15];
1434
    /* XXX: compute is_write */
1435
    is_write = 0;
1436
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1437
                             is_write,
1438
                             &uc->uc_sigmask, puc);
1439
}
1440

    
1441
#elif defined(__mc68000)
1442

    
1443
int cpu_signal_handler(int host_signum, void *pinfo,
1444
                       void *puc)
1445
{
1446
    siginfo_t *info = pinfo;
1447
    struct ucontext *uc = puc;
1448
    unsigned long pc;
1449
    int is_write;
1450

    
1451
    pc = uc->uc_mcontext.gregs[16];
1452
    /* XXX: compute is_write */
1453
    is_write = 0;
1454
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1455
                             is_write,
1456
                             &uc->uc_sigmask, puc);
1457
}
1458

    
1459
#elif defined(__ia64)
1460

    
1461
#ifndef __ISR_VALID
1462
  /* This ought to be in <bits/siginfo.h>... */
1463
# define __ISR_VALID        1
1464
#endif
1465

    
1466
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1467
{
1468
    siginfo_t *info = pinfo;
1469
    struct ucontext *uc = puc;
1470
    unsigned long ip;
1471
    int is_write = 0;
1472

    
1473
    ip = uc->uc_mcontext.sc_ip;
1474
    switch (host_signum) {
1475
      case SIGILL:
1476
      case SIGFPE:
1477
      case SIGSEGV:
1478
      case SIGBUS:
1479
      case SIGTRAP:
1480
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1481
              /* ISR.W (write-access) is bit 33:  */
1482
              is_write = (info->si_isr >> 33) & 1;
1483
          break;
1484

    
1485
      default:
1486
          break;
1487
    }
1488
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1489
                             is_write,
1490
                             &uc->uc_sigmask, puc);
1491
}
1492

    
1493
#elif defined(__s390__)
1494

    
1495
int cpu_signal_handler(int host_signum, void *pinfo,
1496
                       void *puc)
1497
{
1498
    siginfo_t *info = pinfo;
1499
    struct ucontext *uc = puc;
1500
    unsigned long pc;
1501
    int is_write;
1502

    
1503
    pc = uc->uc_mcontext.psw.addr;
1504
    /* XXX: compute is_write */
1505
    is_write = 0;
1506
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1507
                             is_write, &uc->uc_sigmask, puc);
1508
}
1509

    
1510
#elif defined(__mips__)
1511

    
1512
int cpu_signal_handler(int host_signum, void *pinfo,
1513
                       void *puc)
1514
{
1515
    siginfo_t *info = pinfo;
1516
    struct ucontext *uc = puc;
1517
    greg_t pc = uc->uc_mcontext.pc;
1518
    int is_write;
1519

    
1520
    /* XXX: compute is_write */
1521
    is_write = 0;
1522
    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1523
                             is_write, &uc->uc_sigmask, puc);
1524
}
1525

    
1526
#else
1527

    
1528
#error host CPU specific signal handler needed
1529

    
1530
#endif
1531

    
1532
#endif /* !defined(CONFIG_SOFTMMU) */