Statistics
| Branch: | Revision:

root / hw / etraxfs_timer.c @ dfb021bc

History | View | Annotate | Download (7.4 kB)

1
/*
2
 * QEMU ETRAX Timers
3
 *
4
 * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdio.h>
25
#include <sys/time.h>
26
#include "hw.h"
27
#include "sysemu.h"
28
#include "qemu-timer.h"
29

    
30
#define D(x)
31

    
32
#define RW_TMR0_DIV   0x00
33
#define R_TMR0_DATA   0x04
34
#define RW_TMR0_CTRL  0x08
35
#define RW_TMR1_DIV   0x10
36
#define R_TMR1_DATA   0x14
37
#define RW_TMR1_CTRL  0x18
38
#define R_TIME        0x38
39
#define RW_WD_CTRL    0x40
40
#define R_WD_STAT     0x44
41
#define RW_INTR_MASK  0x48
42
#define RW_ACK_INTR   0x4c
43
#define R_INTR        0x50
44
#define R_MASKED_INTR 0x54
45

    
46
struct fs_timer_t {
47
        CPUState *env;
48
        qemu_irq *irq;
49
        qemu_irq *nmi;
50

    
51
        QEMUBH *bh_t0;
52
        QEMUBH *bh_t1;
53
        QEMUBH *bh_wd;
54
        ptimer_state *ptimer_t0;
55
        ptimer_state *ptimer_t1;
56
        ptimer_state *ptimer_wd;
57
        struct timeval last;
58

    
59
        int wd_hits;
60

    
61
        /* Control registers.  */
62
        uint32_t rw_tmr0_div;
63
        uint32_t r_tmr0_data;
64
        uint32_t rw_tmr0_ctrl;
65

    
66
        uint32_t rw_tmr1_div;
67
        uint32_t r_tmr1_data;
68
        uint32_t rw_tmr1_ctrl;
69

    
70
        uint32_t rw_wd_ctrl;
71

    
72
        uint32_t rw_intr_mask;
73
        uint32_t rw_ack_intr;
74
        uint32_t r_intr;
75
        uint32_t r_masked_intr;
76
};
77

    
78
static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
79
{
80
        struct fs_timer_t *t = opaque;
81
        uint32_t r = 0;
82

    
83
        switch (addr) {
84
        case R_TMR0_DATA:
85
                r = ptimer_get_count(t->ptimer_t0);
86
                break;
87
        case R_TMR1_DATA:
88
                r = ptimer_get_count(t->ptimer_t1);
89
                break;
90
        case R_TIME:
91
                r = qemu_get_clock(vm_clock) / 10;
92
                break;
93
        case RW_INTR_MASK:
94
                r = t->rw_intr_mask;
95
                break;
96
        case R_MASKED_INTR:
97
                r = t->r_intr & t->rw_intr_mask;
98
                break;
99
        default:
100
                D(printf ("%s %x\n", __func__, addr));
101
                break;
102
        }
103
        return r;
104
}
105

    
106
#define TIMER_SLOWDOWN 1
107
static void update_ctrl(struct fs_timer_t *t, int tnum)
108
{
109
        unsigned int op;
110
        unsigned int freq;
111
        unsigned int freq_hz;
112
        unsigned int div;
113
        uint32_t ctrl;
114

    
115
        ptimer_state *timer;
116

    
117
        if (tnum == 0) {
118
                ctrl = t->rw_tmr0_ctrl;
119
                div = t->rw_tmr0_div;
120
                timer = t->ptimer_t0;
121
        } else {
122
                ctrl = t->rw_tmr1_ctrl;
123
                div = t->rw_tmr1_div;
124
                timer = t->ptimer_t1;
125
        }
126

    
127

    
128
        op = ctrl & 3;
129
        freq = ctrl >> 2;
130
        freq_hz = 32000000;
131

    
132
        switch (freq)
133
        {
134
        case 0:
135
        case 1:
136
                D(printf ("extern or disabled timer clock?\n"));
137
                break;
138
        case 4: freq_hz =  29493000; break;
139
        case 5: freq_hz =  32000000; break;
140
        case 6: freq_hz =  32768000; break;
141
        case 7: freq_hz = 100000000; break;
142
        default:
143
                abort();
144
                break;
145
        }
146

    
147
        D(printf ("freq_hz=%d div=%d\n", freq_hz, div));
148
        div = div * TIMER_SLOWDOWN;
149
        div /= 1000;
150
        freq_hz /= 1000;
151
        ptimer_set_freq(timer, freq_hz);
152
        ptimer_set_limit(timer, div, 0);
153

    
154
        switch (op)
155
        {
156
                case 0:
157
                        /* Load.  */
158
                        ptimer_set_limit(timer, div, 1);
159
                        break;
160
                case 1:
161
                        /* Hold.  */
162
                        ptimer_stop(timer);
163
                        break;
164
                case 2:
165
                        /* Run.  */
166
                        ptimer_run(timer, 0);
167
                        break;
168
                default:
169
                        abort();
170
                        break;
171
        }
172
}
173

    
174
static void timer_update_irq(struct fs_timer_t *t)
175
{
176
        t->r_intr &= ~(t->rw_ack_intr);
177
        t->r_masked_intr = t->r_intr & t->rw_intr_mask;
178

    
179
        D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr));
180
        if (t->r_masked_intr)
181
                qemu_irq_raise(t->irq[0]);
182
        else
183
                qemu_irq_lower(t->irq[0]);
184
}
185

    
186
static void timer0_hit(void *opaque)
187
{
188
        struct fs_timer_t *t = opaque;
189
        t->r_intr |= 1;
190
        timer_update_irq(t);
191
}
192

    
193
static void timer1_hit(void *opaque)
194
{
195
        struct fs_timer_t *t = opaque;
196
        t->r_intr |= 2;
197
        timer_update_irq(t);
198
}
199

    
200
static void watchdog_hit(void *opaque)
201
{
202
        struct fs_timer_t *t = opaque;
203
        if (t->wd_hits == 0) {
204
                /* real hw gives a single tick before reseting but we are
205
                   a bit friendlier to compensate for our slower execution.  */
206
                ptimer_set_count(t->ptimer_wd, 10);
207
                ptimer_run(t->ptimer_wd, 1);
208
                qemu_irq_raise(t->nmi[0]);
209
        }
210
        else
211
                qemu_system_reset_request();
212

    
213
        t->wd_hits++;
214
}
215

    
216
static inline void timer_watchdog_update(struct fs_timer_t *t, uint32_t value)
217
{
218
        unsigned int wd_en = t->rw_wd_ctrl & (1 << 8);
219
        unsigned int wd_key = t->rw_wd_ctrl >> 9;
220
        unsigned int wd_cnt = t->rw_wd_ctrl & 511;
221
        unsigned int new_key = value >> 9 & ((1 << 7) - 1);
222
        unsigned int new_cmd = (value >> 8) & 1;
223

    
224
        /* If the watchdog is enabled, they written key must match the
225
           complement of the previous.  */
226
        wd_key = ~wd_key & ((1 << 7) - 1);
227

    
228
        if (wd_en && wd_key != new_key)
229
                return;
230

    
231
        D(printf("en=%d new_key=%x oldkey=%x cmd=%d cnt=%d\n", 
232
                 wd_en, new_key, wd_key, new_cmd, wd_cnt));
233

    
234
        if (t->wd_hits)
235
                qemu_irq_lower(t->nmi[0]);
236

    
237
        t->wd_hits = 0;
238

    
239
        ptimer_set_freq(t->ptimer_wd, 760);
240
        if (wd_cnt == 0)
241
                wd_cnt = 256;
242
        ptimer_set_count(t->ptimer_wd, wd_cnt);
243
        if (new_cmd)
244
                ptimer_run(t->ptimer_wd, 1);
245
        else
246
                ptimer_stop(t->ptimer_wd);
247

    
248
        t->rw_wd_ctrl = value;
249
}
250

    
251
static void
252
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
253
{
254
        struct fs_timer_t *t = opaque;
255

    
256
        switch (addr)
257
        {
258
                case RW_TMR0_DIV:
259
                        t->rw_tmr0_div = value;
260
                        break;
261
                case RW_TMR0_CTRL:
262
                        D(printf ("RW_TMR0_CTRL=%x\n", value));
263
                        t->rw_tmr0_ctrl = value;
264
                        update_ctrl(t, 0);
265
                        break;
266
                case RW_TMR1_DIV:
267
                        t->rw_tmr1_div = value;
268
                        break;
269
                case RW_TMR1_CTRL:
270
                        D(printf ("RW_TMR1_CTRL=%x\n", value));
271
                        t->rw_tmr1_ctrl = value;
272
                        update_ctrl(t, 1);
273
                        break;
274
                case RW_INTR_MASK:
275
                        D(printf ("RW_INTR_MASK=%x\n", value));
276
                        t->rw_intr_mask = value;
277
                        timer_update_irq(t);
278
                        break;
279
                case RW_WD_CTRL:
280
                        timer_watchdog_update(t, value);
281
                        break;
282
                case RW_ACK_INTR:
283
                        t->rw_ack_intr = value;
284
                        timer_update_irq(t);
285
                        t->rw_ack_intr = 0;
286
                        break;
287
                default:
288
                        printf ("%s " TARGET_FMT_plx " %x\n",
289
                                __func__, addr, value);
290
                        break;
291
        }
292
}
293

    
294
static CPUReadMemoryFunc *timer_read[] = {
295
        NULL, NULL,
296
        &timer_readl,
297
};
298

    
299
static CPUWriteMemoryFunc *timer_write[] = {
300
        NULL, NULL,
301
        &timer_writel,
302
};
303

    
304
static void etraxfs_timer_reset(void *opaque)
305
{
306
        struct fs_timer_t *t = opaque;
307

    
308
        ptimer_stop(t->ptimer_t0);
309
        ptimer_stop(t->ptimer_t1);
310
        ptimer_stop(t->ptimer_wd);
311
        t->rw_wd_ctrl = 0;
312
        t->r_intr = 0;
313
        t->rw_intr_mask = 0;
314
        qemu_irq_lower(t->irq[0]);
315
}
316

    
317
void etraxfs_timer_init(CPUState *env, qemu_irq *irqs, qemu_irq *nmi,
318
                        target_phys_addr_t base)
319
{
320
        static struct fs_timer_t *t;
321
        int timer_regs;
322

    
323
        t = qemu_mallocz(sizeof *t);
324

    
325
        t->bh_t0 = qemu_bh_new(timer0_hit, t);
326
        t->bh_t1 = qemu_bh_new(timer1_hit, t);
327
        t->bh_wd = qemu_bh_new(watchdog_hit, t);
328
        t->ptimer_t0 = ptimer_init(t->bh_t0);
329
        t->ptimer_t1 = ptimer_init(t->bh_t1);
330
        t->ptimer_wd = ptimer_init(t->bh_wd);
331
        t->irq = irqs;
332
        t->nmi = nmi;
333
        t->env = env;
334

    
335
        timer_regs = cpu_register_io_memory(0, timer_read, timer_write, t);
336
        cpu_register_physical_memory (base, 0x5c, timer_regs);
337

    
338
        qemu_register_reset(etraxfs_timer_reset, t);
339
}