Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ dff38e7b

History | View | Annotate | Download (12.8 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdlib.h>
25
#include <stdio.h>
26
#include <stdarg.h>
27
#include <string.h>
28
#include <getopt.h>
29
#include <inttypes.h>
30
#include <unistd.h>
31
#include <sys/mman.h>
32
#include <fcntl.h>
33
#include <signal.h>
34
#include <time.h>
35
#include <sys/time.h>
36
#include <malloc.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <errno.h>
40
#include <sys/wait.h>
41
#include <netinet/in.h>
42

    
43
#include "cpu.h"
44
#include "vl.h"
45

    
46
//#define DEBUG_CMOS
47

    
48
#define RTC_SECONDS             0
49
#define RTC_SECONDS_ALARM       1
50
#define RTC_MINUTES             2
51
#define RTC_MINUTES_ALARM       3
52
#define RTC_HOURS               4
53
#define RTC_HOURS_ALARM         5
54
#define RTC_ALARM_DONT_CARE    0xC0
55

    
56
#define RTC_DAY_OF_WEEK         6
57
#define RTC_DAY_OF_MONTH        7
58
#define RTC_MONTH               8
59
#define RTC_YEAR                9
60

    
61
#define RTC_REG_A               10
62
#define RTC_REG_B               11
63
#define RTC_REG_C               12
64
#define RTC_REG_D               13
65

    
66
#define REG_A_UIP 0x80
67

    
68
#define REG_B_SET 0x80
69
#define REG_B_PIE 0x40
70
#define REG_B_AIE 0x20
71
#define REG_B_UIE 0x10
72

    
73
struct RTCState {
74
    uint8_t cmos_data[128];
75
    uint8_t cmos_index;
76
    int current_time; /* in seconds */
77
    int irq;
78
    uint8_t buf_data[10]; /* buffered data */
79
    /* periodic timer */
80
    QEMUTimer *periodic_timer;
81
    int64_t next_periodic_time;
82
    /* second update */
83
    int64_t next_second_time;
84
    QEMUTimer *second_timer;
85
    QEMUTimer *second_timer2;
86
};
87

    
88
static void rtc_set_time(RTCState *s);
89
static void rtc_set_date_buf(RTCState *s, const struct tm *tm);
90
static void rtc_copy_date(RTCState *s);
91

    
92
static void rtc_timer_update(RTCState *s, int64_t current_time)
93
{
94
    int period_code, period;
95
    int64_t cur_clock, next_irq_clock;
96

    
97
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
98
    if (period_code != 0 && 
99
        (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
100
        if (period_code <= 2)
101
            period_code += 7;
102
        /* period in 32 Khz cycles */
103
        period = 1 << (period_code - 1);
104
        /* compute 32 khz clock */
105
        cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
106
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
107
        s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
108
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
109
    } else {
110
        qemu_del_timer(s->periodic_timer);
111
    }
112
}
113

    
114
static void rtc_periodic_timer(void *opaque)
115
{
116
    RTCState *s = opaque;
117

    
118
    rtc_timer_update(s, s->next_periodic_time);
119
    s->cmos_data[RTC_REG_C] |= 0xc0;
120
    pic_set_irq(s->irq, 1);
121
}
122

    
123
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
124
{
125
    RTCState *s = opaque;
126

    
127
    if ((addr & 1) == 0) {
128
        s->cmos_index = data & 0x7f;
129
    } else {
130
#ifdef DEBUG_CMOS
131
        printf("cmos: write index=0x%02x val=0x%02x\n",
132
               s->cmos_index, data);
133
#endif        
134
        switch(s->cmos_index) {
135
        case RTC_SECONDS_ALARM:
136
        case RTC_MINUTES_ALARM:
137
        case RTC_HOURS_ALARM:
138
            /* XXX: not supported */
139
            s->cmos_data[s->cmos_index] = data;
140
            break;
141
        case RTC_SECONDS:
142
        case RTC_MINUTES:
143
        case RTC_HOURS:
144
        case RTC_DAY_OF_WEEK:
145
        case RTC_DAY_OF_MONTH:
146
        case RTC_MONTH:
147
        case RTC_YEAR:
148
            s->cmos_data[s->cmos_index] = data;
149
            /* if in set mode, do not update the time */
150
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
151
                rtc_set_time(s);
152
            }
153
            break;
154
        case RTC_REG_A:
155
            /* UIP bit is read only */
156
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
157
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
158
            rtc_timer_update(s, qemu_get_clock(vm_clock));
159
            break;
160
        case RTC_REG_B:
161
            if (data & REG_B_SET) {
162
                /* set mode: reset UIP mode */
163
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
164
                data &= ~REG_B_UIE;
165
            } else {
166
                /* if disabling set mode, update the time */
167
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
168
                    rtc_set_time(s);
169
                }
170
            }
171
            s->cmos_data[RTC_REG_B] = data;
172
            rtc_timer_update(s, qemu_get_clock(vm_clock));
173
            break;
174
        case RTC_REG_C:
175
        case RTC_REG_D:
176
            /* cannot write to them */
177
            break;
178
        default:
179
            s->cmos_data[s->cmos_index] = data;
180
            break;
181
        }
182
    }
183
}
184

    
185
static inline int to_bcd(RTCState *s, int a)
186
{
187
    if (s->cmos_data[RTC_REG_B] & 0x04) {
188
        return a;
189
    } else {
190
        return ((a / 10) << 4) | (a % 10);
191
    }
192
}
193

    
194
static inline int from_bcd(RTCState *s, int a)
195
{
196
    if (s->cmos_data[RTC_REG_B] & 0x04) {
197
        return a;
198
    } else {
199
        return ((a >> 4) * 10) + (a & 0x0f);
200
    }
201
}
202

    
203
static void rtc_set_time(RTCState *s)
204
{
205
    struct tm tm1, *tm = &tm1;
206

    
207
    tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
208
    tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
209
    tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS]);
210
    tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
211
    tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
212
    tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
213
    tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
214

    
215
    /* update internal state */
216
    s->buf_data[RTC_SECONDS] = s->cmos_data[RTC_SECONDS];
217
    s->buf_data[RTC_MINUTES] = s->cmos_data[RTC_MINUTES];
218
    s->buf_data[RTC_HOURS] = s->cmos_data[RTC_HOURS];
219
    s->buf_data[RTC_DAY_OF_WEEK] = s->cmos_data[RTC_DAY_OF_WEEK];
220
    s->buf_data[RTC_DAY_OF_MONTH] = s->cmos_data[RTC_DAY_OF_MONTH];
221
    s->buf_data[RTC_MONTH] = s->cmos_data[RTC_MONTH];
222
    s->buf_data[RTC_YEAR] = s->cmos_data[RTC_YEAR];
223
    s->current_time = mktime(tm);
224
}
225

    
226
static void rtc_update_second(void *opaque)
227
{
228
    RTCState *s = opaque;
229

    
230
    /* if the oscillator is not in normal operation, we do not update */
231
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
232
        s->next_second_time += ticks_per_sec;
233
        qemu_mod_timer(s->second_timer, s->next_second_time);
234
    } else {
235
        s->current_time++;
236
        
237
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
238
            /* update in progress bit */
239
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
240
        }
241
        qemu_mod_timer(s->second_timer2, 
242
                       s->next_second_time + (ticks_per_sec * 99) / 100);
243
    }
244
}
245

    
246
static void rtc_update_second2(void *opaque)
247
{
248
    RTCState *s = opaque;
249
    time_t ti;
250

    
251
    ti = s->current_time;
252
    rtc_set_date_buf(s, gmtime(&ti));
253

    
254
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
255
        rtc_copy_date(s);
256
    }
257

    
258
    /* check alarm */
259
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
260
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
261
             s->cmos_data[RTC_SECONDS_ALARM] == s->buf_data[RTC_SECONDS]) &&
262
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
263
             s->cmos_data[RTC_MINUTES_ALARM] == s->buf_data[RTC_MINUTES]) &&
264
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
265
             s->cmos_data[RTC_HOURS_ALARM] == s->buf_data[RTC_HOURS])) {
266

    
267
            s->cmos_data[RTC_REG_C] |= 0xa0; 
268
            pic_set_irq(s->irq, 1);
269
        }
270
    }
271

    
272
    /* update ended interrupt */
273
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
274
        s->cmos_data[RTC_REG_C] |= 0x90; 
275
        pic_set_irq(s->irq, 1);
276
    }
277

    
278
    /* clear update in progress bit */
279
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
280

    
281
    s->next_second_time += ticks_per_sec;
282
    qemu_mod_timer(s->second_timer, s->next_second_time);
283
}
284

    
285
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
286
{
287
    RTCState *s = opaque;
288
    int ret;
289
    if ((addr & 1) == 0) {
290
        return 0xff;
291
    } else {
292
        switch(s->cmos_index) {
293
        case RTC_SECONDS:
294
        case RTC_MINUTES:
295
        case RTC_HOURS:
296
        case RTC_DAY_OF_WEEK:
297
        case RTC_DAY_OF_MONTH:
298
        case RTC_MONTH:
299
        case RTC_YEAR:
300
            ret = s->cmos_data[s->cmos_index];
301
            break;
302
        case RTC_REG_A:
303
            ret = s->cmos_data[s->cmos_index];
304
            break;
305
        case RTC_REG_C:
306
            ret = s->cmos_data[s->cmos_index];
307
            pic_set_irq(s->irq, 0);
308
            s->cmos_data[RTC_REG_C] = 0x00; 
309
            break;
310
        default:
311
            ret = s->cmos_data[s->cmos_index];
312
            break;
313
        }
314
#ifdef DEBUG_CMOS
315
        printf("cmos: read index=0x%02x val=0x%02x\n",
316
               s->cmos_index, ret);
317
#endif
318
        return ret;
319
    }
320
}
321

    
322
static void rtc_set_date_buf(RTCState *s, const struct tm *tm)
323
{
324
    s->buf_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
325
    s->buf_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
326
    if (s->cmos_data[RTC_REG_B] & 0x02) {
327
        /* 24 hour format */
328
        s->buf_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
329
    } else {
330
        /* 12 hour format */
331
        s->buf_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
332
        if (tm->tm_hour >= 12)
333
            s->buf_data[RTC_HOURS] |= 0x80;
334
    }
335
    s->buf_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
336
    s->buf_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
337
    s->buf_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
338
    s->buf_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
339
}
340

    
341
static void rtc_copy_date(RTCState *s)
342
{
343
    s->cmos_data[RTC_SECONDS] = s->buf_data[RTC_SECONDS];
344
    s->cmos_data[RTC_MINUTES] = s->buf_data[RTC_MINUTES];
345
    s->cmos_data[RTC_HOURS] = s->buf_data[RTC_HOURS];
346
    s->cmos_data[RTC_DAY_OF_WEEK] = s->buf_data[RTC_DAY_OF_WEEK];
347
    s->cmos_data[RTC_DAY_OF_MONTH] = s->buf_data[RTC_DAY_OF_MONTH];
348
    s->cmos_data[RTC_MONTH] = s->buf_data[RTC_MONTH];
349
    s->cmos_data[RTC_YEAR] = s->buf_data[RTC_YEAR];
350
}
351

    
352
void rtc_set_memory(RTCState *s, int addr, int val)
353
{
354
    if (addr >= 0 && addr <= 127)
355
        s->cmos_data[addr] = val;
356
}
357

    
358
void rtc_set_date(RTCState *s, const struct tm *tm)
359
{
360
    s->current_time = mktime((struct tm *)tm);
361
    rtc_set_date_buf(s, tm);
362
    rtc_copy_date(s);
363
}
364

    
365
static void rtc_save(QEMUFile *f, void *opaque)
366
{
367
    RTCState *s = opaque;
368

    
369
    qemu_put_buffer(f, s->cmos_data, 128);
370
    qemu_put_8s(f, &s->cmos_index);
371
    qemu_put_be32s(f, &s->current_time);
372
    qemu_put_buffer(f, s->buf_data, 10);
373

    
374
    qemu_put_timer(f, s->periodic_timer);
375
    qemu_put_be64s(f, &s->next_periodic_time);
376

    
377
    qemu_put_be64s(f, &s->next_second_time);
378
    qemu_put_timer(f, s->second_timer);
379
    qemu_put_timer(f, s->second_timer2);
380
}
381

    
382
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
383
{
384
    RTCState *s = opaque;
385

    
386
    if (version_id != 1)
387
        return -EINVAL;
388

    
389
    qemu_get_buffer(f, s->cmos_data, 128);
390
    qemu_get_8s(f, &s->cmos_index);
391
    qemu_get_be32s(f, &s->current_time);
392
    qemu_get_buffer(f, s->buf_data, 10);
393

    
394
    qemu_get_timer(f, s->periodic_timer);
395
    qemu_get_be64s(f, &s->next_periodic_time);
396

    
397
    qemu_get_be64s(f, &s->next_second_time);
398
    qemu_get_timer(f, s->second_timer);
399
    qemu_get_timer(f, s->second_timer2);
400
    return 0;
401
}
402

    
403
RTCState *rtc_init(int base, int irq)
404
{
405
    RTCState *s;
406

    
407
    s = qemu_mallocz(sizeof(RTCState));
408
    if (!s)
409
        return NULL;
410

    
411
    s->irq = irq;
412
    s->cmos_data[RTC_REG_A] = 0x26;
413
    s->cmos_data[RTC_REG_B] = 0x02;
414
    s->cmos_data[RTC_REG_C] = 0x00;
415
    s->cmos_data[RTC_REG_D] = 0x80;
416

    
417
    s->periodic_timer = qemu_new_timer(vm_clock, 
418
                                       rtc_periodic_timer, s);
419
    s->second_timer = qemu_new_timer(vm_clock, 
420
                                     rtc_update_second, s);
421
    s->second_timer2 = qemu_new_timer(vm_clock, 
422
                                      rtc_update_second2, s);
423

    
424
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
425
    qemu_mod_timer(s->second_timer2, s->next_second_time);
426

    
427
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
428
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
429

    
430
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
431
    return s;
432
}
433