Statistics
| Branch: | Revision:

root / cpu-all.h @ e120d449

History | View | Annotate | Download (15.2 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ALL_H
20
#define CPU_ALL_H
21

    
22
#include "qemu-common.h"
23
#include "qemu-tls.h"
24
#include "cpu-common.h"
25

    
26
/* some important defines:
27
 *
28
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
29
 * memory accesses.
30
 *
31
 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32
 * otherwise little endian.
33
 *
34
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35
 *
36
 * TARGET_WORDS_BIGENDIAN : same for target cpu
37
 */
38

    
39
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
40
#define BSWAP_NEEDED
41
#endif
42

    
43
#ifdef BSWAP_NEEDED
44

    
45
static inline uint16_t tswap16(uint16_t s)
46
{
47
    return bswap16(s);
48
}
49

    
50
static inline uint32_t tswap32(uint32_t s)
51
{
52
    return bswap32(s);
53
}
54

    
55
static inline uint64_t tswap64(uint64_t s)
56
{
57
    return bswap64(s);
58
}
59

    
60
static inline void tswap16s(uint16_t *s)
61
{
62
    *s = bswap16(*s);
63
}
64

    
65
static inline void tswap32s(uint32_t *s)
66
{
67
    *s = bswap32(*s);
68
}
69

    
70
static inline void tswap64s(uint64_t *s)
71
{
72
    *s = bswap64(*s);
73
}
74

    
75
#else
76

    
77
static inline uint16_t tswap16(uint16_t s)
78
{
79
    return s;
80
}
81

    
82
static inline uint32_t tswap32(uint32_t s)
83
{
84
    return s;
85
}
86

    
87
static inline uint64_t tswap64(uint64_t s)
88
{
89
    return s;
90
}
91

    
92
static inline void tswap16s(uint16_t *s)
93
{
94
}
95

    
96
static inline void tswap32s(uint32_t *s)
97
{
98
}
99

    
100
static inline void tswap64s(uint64_t *s)
101
{
102
}
103

    
104
#endif
105

    
106
#if TARGET_LONG_SIZE == 4
107
#define tswapl(s) tswap32(s)
108
#define tswapls(s) tswap32s((uint32_t *)(s))
109
#define bswaptls(s) bswap32s(s)
110
#else
111
#define tswapl(s) tswap64(s)
112
#define tswapls(s) tswap64s((uint64_t *)(s))
113
#define bswaptls(s) bswap64s(s)
114
#endif
115

    
116
/* CPU memory access without any memory or io remapping */
117

    
118
/*
119
 * the generic syntax for the memory accesses is:
120
 *
121
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
122
 *
123
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
124
 *
125
 * type is:
126
 * (empty): integer access
127
 *   f    : float access
128
 *
129
 * sign is:
130
 * (empty): for floats or 32 bit size
131
 *   u    : unsigned
132
 *   s    : signed
133
 *
134
 * size is:
135
 *   b: 8 bits
136
 *   w: 16 bits
137
 *   l: 32 bits
138
 *   q: 64 bits
139
 *
140
 * endian is:
141
 * (empty): target cpu endianness or 8 bit access
142
 *   r    : reversed target cpu endianness (not implemented yet)
143
 *   be   : big endian (not implemented yet)
144
 *   le   : little endian (not implemented yet)
145
 *
146
 * access_type is:
147
 *   raw    : host memory access
148
 *   user   : user mode access using soft MMU
149
 *   kernel : kernel mode access using soft MMU
150
 */
151

    
152
/* target-endianness CPU memory access functions */
153
#if defined(TARGET_WORDS_BIGENDIAN)
154
#define lduw_p(p) lduw_be_p(p)
155
#define ldsw_p(p) ldsw_be_p(p)
156
#define ldl_p(p) ldl_be_p(p)
157
#define ldq_p(p) ldq_be_p(p)
158
#define ldfl_p(p) ldfl_be_p(p)
159
#define ldfq_p(p) ldfq_be_p(p)
160
#define stw_p(p, v) stw_be_p(p, v)
161
#define stl_p(p, v) stl_be_p(p, v)
162
#define stq_p(p, v) stq_be_p(p, v)
163
#define stfl_p(p, v) stfl_be_p(p, v)
164
#define stfq_p(p, v) stfq_be_p(p, v)
165
#else
166
#define lduw_p(p) lduw_le_p(p)
167
#define ldsw_p(p) ldsw_le_p(p)
168
#define ldl_p(p) ldl_le_p(p)
169
#define ldq_p(p) ldq_le_p(p)
170
#define ldfl_p(p) ldfl_le_p(p)
171
#define ldfq_p(p) ldfq_le_p(p)
172
#define stw_p(p, v) stw_le_p(p, v)
173
#define stl_p(p, v) stl_le_p(p, v)
174
#define stq_p(p, v) stq_le_p(p, v)
175
#define stfl_p(p, v) stfl_le_p(p, v)
176
#define stfq_p(p, v) stfq_le_p(p, v)
177
#endif
178

    
179
/* MMU memory access macros */
180

    
181
#if defined(CONFIG_USER_ONLY)
182
#include <assert.h>
183
#include "qemu-types.h"
184

    
185
/* On some host systems the guest address space is reserved on the host.
186
 * This allows the guest address space to be offset to a convenient location.
187
 */
188
#if defined(CONFIG_USE_GUEST_BASE)
189
extern unsigned long guest_base;
190
extern int have_guest_base;
191
extern unsigned long reserved_va;
192
#define GUEST_BASE guest_base
193
#define RESERVED_VA reserved_va
194
#else
195
#define GUEST_BASE 0ul
196
#define RESERVED_VA 0ul
197
#endif
198

    
199
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
200
#define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
201

    
202
#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
203
#define h2g_valid(x) 1
204
#else
205
#define h2g_valid(x) ({ \
206
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
207
    (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
208
    (!RESERVED_VA || (__guest < RESERVED_VA)); \
209
})
210
#endif
211

    
212
#define h2g(x) ({ \
213
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
214
    /* Check if given address fits target address space */ \
215
    assert(h2g_valid(x)); \
216
    (abi_ulong)__ret; \
217
})
218

    
219
#define saddr(x) g2h(x)
220
#define laddr(x) g2h(x)
221

    
222
#else /* !CONFIG_USER_ONLY */
223
/* NOTE: we use double casts if pointers and target_ulong have
224
   different sizes */
225
#define saddr(x) (uint8_t *)(intptr_t)(x)
226
#define laddr(x) (uint8_t *)(intptr_t)(x)
227
#endif
228

    
229
#define ldub_raw(p) ldub_p(laddr((p)))
230
#define ldsb_raw(p) ldsb_p(laddr((p)))
231
#define lduw_raw(p) lduw_p(laddr((p)))
232
#define ldsw_raw(p) ldsw_p(laddr((p)))
233
#define ldl_raw(p) ldl_p(laddr((p)))
234
#define ldq_raw(p) ldq_p(laddr((p)))
235
#define ldfl_raw(p) ldfl_p(laddr((p)))
236
#define ldfq_raw(p) ldfq_p(laddr((p)))
237
#define stb_raw(p, v) stb_p(saddr((p)), v)
238
#define stw_raw(p, v) stw_p(saddr((p)), v)
239
#define stl_raw(p, v) stl_p(saddr((p)), v)
240
#define stq_raw(p, v) stq_p(saddr((p)), v)
241
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
242
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
243

    
244

    
245
#if defined(CONFIG_USER_ONLY)
246

    
247
/* if user mode, no other memory access functions */
248
#define ldub(p) ldub_raw(p)
249
#define ldsb(p) ldsb_raw(p)
250
#define lduw(p) lduw_raw(p)
251
#define ldsw(p) ldsw_raw(p)
252
#define ldl(p) ldl_raw(p)
253
#define ldq(p) ldq_raw(p)
254
#define ldfl(p) ldfl_raw(p)
255
#define ldfq(p) ldfq_raw(p)
256
#define stb(p, v) stb_raw(p, v)
257
#define stw(p, v) stw_raw(p, v)
258
#define stl(p, v) stl_raw(p, v)
259
#define stq(p, v) stq_raw(p, v)
260
#define stfl(p, v) stfl_raw(p, v)
261
#define stfq(p, v) stfq_raw(p, v)
262

    
263
#ifndef CONFIG_TCG_PASS_AREG0
264
#define ldub_code(p) ldub_raw(p)
265
#define ldsb_code(p) ldsb_raw(p)
266
#define lduw_code(p) lduw_raw(p)
267
#define ldsw_code(p) ldsw_raw(p)
268
#define ldl_code(p) ldl_raw(p)
269
#define ldq_code(p) ldq_raw(p)
270
#else
271
#define cpu_ldub_code(env1, p) ldub_raw(p)
272
#define cpu_ldsb_code(env1, p) ldsb_raw(p)
273
#define cpu_lduw_code(env1, p) lduw_raw(p)
274
#define cpu_ldsw_code(env1, p) ldsw_raw(p)
275
#define cpu_ldl_code(env1, p) ldl_raw(p)
276
#define cpu_ldq_code(env1, p) ldq_raw(p)
277
#endif
278

    
279
#define ldub_kernel(p) ldub_raw(p)
280
#define ldsb_kernel(p) ldsb_raw(p)
281
#define lduw_kernel(p) lduw_raw(p)
282
#define ldsw_kernel(p) ldsw_raw(p)
283
#define ldl_kernel(p) ldl_raw(p)
284
#define ldq_kernel(p) ldq_raw(p)
285
#define ldfl_kernel(p) ldfl_raw(p)
286
#define ldfq_kernel(p) ldfq_raw(p)
287
#define stb_kernel(p, v) stb_raw(p, v)
288
#define stw_kernel(p, v) stw_raw(p, v)
289
#define stl_kernel(p, v) stl_raw(p, v)
290
#define stq_kernel(p, v) stq_raw(p, v)
291
#define stfl_kernel(p, v) stfl_raw(p, v)
292
#define stfq_kernel(p, vt) stfq_raw(p, v)
293

    
294
#endif /* defined(CONFIG_USER_ONLY) */
295

    
296
/* page related stuff */
297

    
298
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
299
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
300
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
301

    
302
/* ??? These should be the larger of uintptr_t and target_ulong.  */
303
extern uintptr_t qemu_real_host_page_size;
304
extern uintptr_t qemu_host_page_size;
305
extern uintptr_t qemu_host_page_mask;
306

    
307
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
308

    
309
/* same as PROT_xxx */
310
#define PAGE_READ      0x0001
311
#define PAGE_WRITE     0x0002
312
#define PAGE_EXEC      0x0004
313
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
314
#define PAGE_VALID     0x0008
315
/* original state of the write flag (used when tracking self-modifying
316
   code */
317
#define PAGE_WRITE_ORG 0x0010
318
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
319
/* FIXME: Code that sets/uses this is broken and needs to go away.  */
320
#define PAGE_RESERVED  0x0020
321
#endif
322

    
323
#if defined(CONFIG_USER_ONLY)
324
void page_dump(FILE *f);
325

    
326
typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
327
                                      abi_ulong, unsigned long);
328
int walk_memory_regions(void *, walk_memory_regions_fn);
329

    
330
int page_get_flags(target_ulong address);
331
void page_set_flags(target_ulong start, target_ulong end, int flags);
332
int page_check_range(target_ulong start, target_ulong len, int flags);
333
#endif
334

    
335
CPUArchState *cpu_copy(CPUArchState *env);
336
CPUArchState *qemu_get_cpu(int cpu);
337

    
338
#define CPU_DUMP_CODE 0x00010000
339

    
340
void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
341
                    int flags);
342
void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
343
                         int flags);
344

    
345
void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
346
    GCC_FMT_ATTR(2, 3);
347
extern CPUArchState *first_cpu;
348
DECLARE_TLS(CPUArchState *,cpu_single_env);
349
#define cpu_single_env tls_var(cpu_single_env)
350

    
351
/* Flags for use in ENV->INTERRUPT_PENDING.
352

353
   The numbers assigned here are non-sequential in order to preserve
354
   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
355
   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
356
   the vmstate dump.  */
357

    
358
/* External hardware interrupt pending.  This is typically used for
359
   interrupts from devices.  */
360
#define CPU_INTERRUPT_HARD        0x0002
361

    
362
/* Exit the current TB.  This is typically used when some system-level device
363
   makes some change to the memory mapping.  E.g. the a20 line change.  */
364
#define CPU_INTERRUPT_EXITTB      0x0004
365

    
366
/* Halt the CPU.  */
367
#define CPU_INTERRUPT_HALT        0x0020
368

    
369
/* Debug event pending.  */
370
#define CPU_INTERRUPT_DEBUG       0x0080
371

    
372
/* Several target-specific external hardware interrupts.  Each target/cpu.h
373
   should define proper names based on these defines.  */
374
#define CPU_INTERRUPT_TGT_EXT_0   0x0008
375
#define CPU_INTERRUPT_TGT_EXT_1   0x0010
376
#define CPU_INTERRUPT_TGT_EXT_2   0x0040
377
#define CPU_INTERRUPT_TGT_EXT_3   0x0200
378
#define CPU_INTERRUPT_TGT_EXT_4   0x1000
379

    
380
/* Several target-specific internal interrupts.  These differ from the
381
   preceding target-specific interrupts in that they are intended to
382
   originate from within the cpu itself, typically in response to some
383
   instruction being executed.  These, therefore, are not masked while
384
   single-stepping within the debugger.  */
385
#define CPU_INTERRUPT_TGT_INT_0   0x0100
386
#define CPU_INTERRUPT_TGT_INT_1   0x0400
387
#define CPU_INTERRUPT_TGT_INT_2   0x0800
388
#define CPU_INTERRUPT_TGT_INT_3   0x2000
389

    
390
/* First unused bit: 0x4000.  */
391

    
392
/* The set of all bits that should be masked when single-stepping.  */
393
#define CPU_INTERRUPT_SSTEP_MASK \
394
    (CPU_INTERRUPT_HARD          \
395
     | CPU_INTERRUPT_TGT_EXT_0   \
396
     | CPU_INTERRUPT_TGT_EXT_1   \
397
     | CPU_INTERRUPT_TGT_EXT_2   \
398
     | CPU_INTERRUPT_TGT_EXT_3   \
399
     | CPU_INTERRUPT_TGT_EXT_4)
400

    
401
#ifndef CONFIG_USER_ONLY
402
typedef void (*CPUInterruptHandler)(CPUArchState *, int);
403

    
404
extern CPUInterruptHandler cpu_interrupt_handler;
405

    
406
static inline void cpu_interrupt(CPUArchState *s, int mask)
407
{
408
    cpu_interrupt_handler(s, mask);
409
}
410
#else /* USER_ONLY */
411
void cpu_interrupt(CPUArchState *env, int mask);
412
#endif /* USER_ONLY */
413

    
414
void cpu_reset_interrupt(CPUArchState *env, int mask);
415

    
416
void cpu_exit(CPUArchState *s);
417

    
418
bool qemu_cpu_has_work(CPUArchState *env);
419

    
420
/* Breakpoint/watchpoint flags */
421
#define BP_MEM_READ           0x01
422
#define BP_MEM_WRITE          0x02
423
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
424
#define BP_STOP_BEFORE_ACCESS 0x04
425
#define BP_WATCHPOINT_HIT     0x08
426
#define BP_GDB                0x10
427
#define BP_CPU                0x20
428

    
429
int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
430
                          CPUBreakpoint **breakpoint);
431
int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
432
void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
433
void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
434
int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
435
                          int flags, CPUWatchpoint **watchpoint);
436
int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
437
                          target_ulong len, int flags);
438
void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
439
void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
440

    
441
#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
442
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
443
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
444

    
445
void cpu_single_step(CPUArchState *env, int enabled);
446
void cpu_state_reset(CPUArchState *s);
447
int cpu_is_stopped(CPUArchState *env);
448
void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data);
449

    
450
#define CPU_LOG_TB_OUT_ASM (1 << 0)
451
#define CPU_LOG_TB_IN_ASM  (1 << 1)
452
#define CPU_LOG_TB_OP      (1 << 2)
453
#define CPU_LOG_TB_OP_OPT  (1 << 3)
454
#define CPU_LOG_INT        (1 << 4)
455
#define CPU_LOG_EXEC       (1 << 5)
456
#define CPU_LOG_PCALL      (1 << 6)
457
#define CPU_LOG_IOPORT     (1 << 7)
458
#define CPU_LOG_TB_CPU     (1 << 8)
459
#define CPU_LOG_RESET      (1 << 9)
460

    
461
/* define log items */
462
typedef struct CPULogItem {
463
    int mask;
464
    const char *name;
465
    const char *help;
466
} CPULogItem;
467

    
468
extern const CPULogItem cpu_log_items[];
469

    
470
void cpu_set_log(int log_flags);
471
void cpu_set_log_filename(const char *filename);
472
int cpu_str_to_log_mask(const char *str);
473

    
474
#if !defined(CONFIG_USER_ONLY)
475

    
476
/* Return the physical page corresponding to a virtual one. Use it
477
   only for debugging because no protection checks are done. Return -1
478
   if no page found. */
479
target_phys_addr_t cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
480

    
481
/* memory API */
482

    
483
extern int phys_ram_fd;
484
extern ram_addr_t ram_size;
485

    
486
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
487
#define RAM_PREALLOC_MASK   (1 << 0)
488

    
489
typedef struct RAMBlock {
490
    struct MemoryRegion *mr;
491
    uint8_t *host;
492
    ram_addr_t offset;
493
    ram_addr_t length;
494
    uint32_t flags;
495
    char idstr[256];
496
    QLIST_ENTRY(RAMBlock) next;
497
#if defined(__linux__) && !defined(TARGET_S390X)
498
    int fd;
499
#endif
500
} RAMBlock;
501

    
502
typedef struct RAMList {
503
    uint8_t *phys_dirty;
504
    QLIST_HEAD(, RAMBlock) blocks;
505
} RAMList;
506
extern RAMList ram_list;
507

    
508
extern const char *mem_path;
509
extern int mem_prealloc;
510

    
511
/* Flags stored in the low bits of the TLB virtual address.  These are
512
   defined so that fast path ram access is all zeros.  */
513
/* Zero if TLB entry is valid.  */
514
#define TLB_INVALID_MASK   (1 << 3)
515
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
516
   contain the page physical address.  */
517
#define TLB_NOTDIRTY    (1 << 4)
518
/* Set if TLB entry is an IO callback.  */
519
#define TLB_MMIO        (1 << 5)
520

    
521
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
522
#endif /* !CONFIG_USER_ONLY */
523

    
524
int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
525
                        uint8_t *buf, int len, int is_write);
526

    
527
#endif /* CPU_ALL_H */