Statistics
| Branch: | Revision:

root / cpu-all.h @ e1c5a2b3

History | View | Annotate | Download (28.5 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
19
 */
20
#ifndef CPU_ALL_H
21
#define CPU_ALL_H
22

    
23
#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24
#define WORDS_ALIGNED
25
#endif
26

    
27
/* some important defines:
28
 *
29
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30
 * memory accesses.
31
 *
32
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33
 * otherwise little endian.
34
 *
35
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36
 *
37
 * TARGET_WORDS_BIGENDIAN : same for target cpu
38
 */
39

    
40
#include "bswap.h"
41
#include "softfloat.h"
42

    
43
#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44
#define BSWAP_NEEDED
45
#endif
46

    
47
#ifdef BSWAP_NEEDED
48

    
49
static inline uint16_t tswap16(uint16_t s)
50
{
51
    return bswap16(s);
52
}
53

    
54
static inline uint32_t tswap32(uint32_t s)
55
{
56
    return bswap32(s);
57
}
58

    
59
static inline uint64_t tswap64(uint64_t s)
60
{
61
    return bswap64(s);
62
}
63

    
64
static inline void tswap16s(uint16_t *s)
65
{
66
    *s = bswap16(*s);
67
}
68

    
69
static inline void tswap32s(uint32_t *s)
70
{
71
    *s = bswap32(*s);
72
}
73

    
74
static inline void tswap64s(uint64_t *s)
75
{
76
    *s = bswap64(*s);
77
}
78

    
79
#else
80

    
81
static inline uint16_t tswap16(uint16_t s)
82
{
83
    return s;
84
}
85

    
86
static inline uint32_t tswap32(uint32_t s)
87
{
88
    return s;
89
}
90

    
91
static inline uint64_t tswap64(uint64_t s)
92
{
93
    return s;
94
}
95

    
96
static inline void tswap16s(uint16_t *s)
97
{
98
}
99

    
100
static inline void tswap32s(uint32_t *s)
101
{
102
}
103

    
104
static inline void tswap64s(uint64_t *s)
105
{
106
}
107

    
108
#endif
109

    
110
#if TARGET_LONG_SIZE == 4
111
#define tswapl(s) tswap32(s)
112
#define tswapls(s) tswap32s((uint32_t *)(s))
113
#define bswaptls(s) bswap32s(s)
114
#else
115
#define tswapl(s) tswap64(s)
116
#define tswapls(s) tswap64s((uint64_t *)(s))
117
#define bswaptls(s) bswap64s(s)
118
#endif
119

    
120
typedef union {
121
    float32 f;
122
    uint32_t l;
123
} CPU_FloatU;
124

    
125
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
126
   endian ! */
127
typedef union {
128
    float64 d;
129
#if defined(WORDS_BIGENDIAN) \
130
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
131
    struct {
132
        uint32_t upper;
133
        uint32_t lower;
134
    } l;
135
#else
136
    struct {
137
        uint32_t lower;
138
        uint32_t upper;
139
    } l;
140
#endif
141
    uint64_t ll;
142
} CPU_DoubleU;
143

    
144
#ifdef TARGET_SPARC
145
typedef union {
146
    float128 q;
147
#if defined(WORDS_BIGENDIAN) \
148
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149
    struct {
150
        uint32_t upmost;
151
        uint32_t upper;
152
        uint32_t lower;
153
        uint32_t lowest;
154
    } l;
155
    struct {
156
        uint64_t upper;
157
        uint64_t lower;
158
    } ll;
159
#else
160
    struct {
161
        uint32_t lowest;
162
        uint32_t lower;
163
        uint32_t upper;
164
        uint32_t upmost;
165
    } l;
166
    struct {
167
        uint64_t lower;
168
        uint64_t upper;
169
    } ll;
170
#endif
171
} CPU_QuadU;
172
#endif
173

    
174
/* CPU memory access without any memory or io remapping */
175

    
176
/*
177
 * the generic syntax for the memory accesses is:
178
 *
179
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
180
 *
181
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
182
 *
183
 * type is:
184
 * (empty): integer access
185
 *   f    : float access
186
 *
187
 * sign is:
188
 * (empty): for floats or 32 bit size
189
 *   u    : unsigned
190
 *   s    : signed
191
 *
192
 * size is:
193
 *   b: 8 bits
194
 *   w: 16 bits
195
 *   l: 32 bits
196
 *   q: 64 bits
197
 *
198
 * endian is:
199
 * (empty): target cpu endianness or 8 bit access
200
 *   r    : reversed target cpu endianness (not implemented yet)
201
 *   be   : big endian (not implemented yet)
202
 *   le   : little endian (not implemented yet)
203
 *
204
 * access_type is:
205
 *   raw    : host memory access
206
 *   user   : user mode access using soft MMU
207
 *   kernel : kernel mode access using soft MMU
208
 */
209
static inline int ldub_p(const void *ptr)
210
{
211
    return *(uint8_t *)ptr;
212
}
213

    
214
static inline int ldsb_p(const void *ptr)
215
{
216
    return *(int8_t *)ptr;
217
}
218

    
219
static inline void stb_p(void *ptr, int v)
220
{
221
    *(uint8_t *)ptr = v;
222
}
223

    
224
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225
   kernel handles unaligned load/stores may give better results, but
226
   it is a system wide setting : bad */
227
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
228

    
229
/* conservative code for little endian unaligned accesses */
230
static inline int lduw_le_p(const void *ptr)
231
{
232
#ifdef __powerpc__
233
    int val;
234
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
235
    return val;
236
#else
237
    const uint8_t *p = ptr;
238
    return p[0] | (p[1] << 8);
239
#endif
240
}
241

    
242
static inline int ldsw_le_p(const void *ptr)
243
{
244
#ifdef __powerpc__
245
    int val;
246
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
247
    return (int16_t)val;
248
#else
249
    const uint8_t *p = ptr;
250
    return (int16_t)(p[0] | (p[1] << 8));
251
#endif
252
}
253

    
254
static inline int ldl_le_p(const void *ptr)
255
{
256
#ifdef __powerpc__
257
    int val;
258
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
259
    return val;
260
#else
261
    const uint8_t *p = ptr;
262
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
263
#endif
264
}
265

    
266
static inline uint64_t ldq_le_p(const void *ptr)
267
{
268
    const uint8_t *p = ptr;
269
    uint32_t v1, v2;
270
    v1 = ldl_le_p(p);
271
    v2 = ldl_le_p(p + 4);
272
    return v1 | ((uint64_t)v2 << 32);
273
}
274

    
275
static inline void stw_le_p(void *ptr, int v)
276
{
277
#ifdef __powerpc__
278
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
279
#else
280
    uint8_t *p = ptr;
281
    p[0] = v;
282
    p[1] = v >> 8;
283
#endif
284
}
285

    
286
static inline void stl_le_p(void *ptr, int v)
287
{
288
#ifdef __powerpc__
289
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
290
#else
291
    uint8_t *p = ptr;
292
    p[0] = v;
293
    p[1] = v >> 8;
294
    p[2] = v >> 16;
295
    p[3] = v >> 24;
296
#endif
297
}
298

    
299
static inline void stq_le_p(void *ptr, uint64_t v)
300
{
301
    uint8_t *p = ptr;
302
    stl_le_p(p, (uint32_t)v);
303
    stl_le_p(p + 4, v >> 32);
304
}
305

    
306
/* float access */
307

    
308
static inline float32 ldfl_le_p(const void *ptr)
309
{
310
    union {
311
        float32 f;
312
        uint32_t i;
313
    } u;
314
    u.i = ldl_le_p(ptr);
315
    return u.f;
316
}
317

    
318
static inline void stfl_le_p(void *ptr, float32 v)
319
{
320
    union {
321
        float32 f;
322
        uint32_t i;
323
    } u;
324
    u.f = v;
325
    stl_le_p(ptr, u.i);
326
}
327

    
328
static inline float64 ldfq_le_p(const void *ptr)
329
{
330
    CPU_DoubleU u;
331
    u.l.lower = ldl_le_p(ptr);
332
    u.l.upper = ldl_le_p(ptr + 4);
333
    return u.d;
334
}
335

    
336
static inline void stfq_le_p(void *ptr, float64 v)
337
{
338
    CPU_DoubleU u;
339
    u.d = v;
340
    stl_le_p(ptr, u.l.lower);
341
    stl_le_p(ptr + 4, u.l.upper);
342
}
343

    
344
#else
345

    
346
static inline int lduw_le_p(const void *ptr)
347
{
348
    return *(uint16_t *)ptr;
349
}
350

    
351
static inline int ldsw_le_p(const void *ptr)
352
{
353
    return *(int16_t *)ptr;
354
}
355

    
356
static inline int ldl_le_p(const void *ptr)
357
{
358
    return *(uint32_t *)ptr;
359
}
360

    
361
static inline uint64_t ldq_le_p(const void *ptr)
362
{
363
    return *(uint64_t *)ptr;
364
}
365

    
366
static inline void stw_le_p(void *ptr, int v)
367
{
368
    *(uint16_t *)ptr = v;
369
}
370

    
371
static inline void stl_le_p(void *ptr, int v)
372
{
373
    *(uint32_t *)ptr = v;
374
}
375

    
376
static inline void stq_le_p(void *ptr, uint64_t v)
377
{
378
    *(uint64_t *)ptr = v;
379
}
380

    
381
/* float access */
382

    
383
static inline float32 ldfl_le_p(const void *ptr)
384
{
385
    return *(float32 *)ptr;
386
}
387

    
388
static inline float64 ldfq_le_p(const void *ptr)
389
{
390
    return *(float64 *)ptr;
391
}
392

    
393
static inline void stfl_le_p(void *ptr, float32 v)
394
{
395
    *(float32 *)ptr = v;
396
}
397

    
398
static inline void stfq_le_p(void *ptr, float64 v)
399
{
400
    *(float64 *)ptr = v;
401
}
402
#endif
403

    
404
#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
405

    
406
static inline int lduw_be_p(const void *ptr)
407
{
408
#if defined(__i386__)
409
    int val;
410
    asm volatile ("movzwl %1, %0\n"
411
                  "xchgb %b0, %h0\n"
412
                  : "=q" (val)
413
                  : "m" (*(uint16_t *)ptr));
414
    return val;
415
#else
416
    const uint8_t *b = ptr;
417
    return ((b[0] << 8) | b[1]);
418
#endif
419
}
420

    
421
static inline int ldsw_be_p(const void *ptr)
422
{
423
#if defined(__i386__)
424
    int val;
425
    asm volatile ("movzwl %1, %0\n"
426
                  "xchgb %b0, %h0\n"
427
                  : "=q" (val)
428
                  : "m" (*(uint16_t *)ptr));
429
    return (int16_t)val;
430
#else
431
    const uint8_t *b = ptr;
432
    return (int16_t)((b[0] << 8) | b[1]);
433
#endif
434
}
435

    
436
static inline int ldl_be_p(const void *ptr)
437
{
438
#if defined(__i386__) || defined(__x86_64__)
439
    int val;
440
    asm volatile ("movl %1, %0\n"
441
                  "bswap %0\n"
442
                  : "=r" (val)
443
                  : "m" (*(uint32_t *)ptr));
444
    return val;
445
#else
446
    const uint8_t *b = ptr;
447
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
448
#endif
449
}
450

    
451
static inline uint64_t ldq_be_p(const void *ptr)
452
{
453
    uint32_t a,b;
454
    a = ldl_be_p(ptr);
455
    b = ldl_be_p((uint8_t *)ptr + 4);
456
    return (((uint64_t)a<<32)|b);
457
}
458

    
459
static inline void stw_be_p(void *ptr, int v)
460
{
461
#if defined(__i386__)
462
    asm volatile ("xchgb %b0, %h0\n"
463
                  "movw %w0, %1\n"
464
                  : "=q" (v)
465
                  : "m" (*(uint16_t *)ptr), "0" (v));
466
#else
467
    uint8_t *d = (uint8_t *) ptr;
468
    d[0] = v >> 8;
469
    d[1] = v;
470
#endif
471
}
472

    
473
static inline void stl_be_p(void *ptr, int v)
474
{
475
#if defined(__i386__) || defined(__x86_64__)
476
    asm volatile ("bswap %0\n"
477
                  "movl %0, %1\n"
478
                  : "=r" (v)
479
                  : "m" (*(uint32_t *)ptr), "0" (v));
480
#else
481
    uint8_t *d = (uint8_t *) ptr;
482
    d[0] = v >> 24;
483
    d[1] = v >> 16;
484
    d[2] = v >> 8;
485
    d[3] = v;
486
#endif
487
}
488

    
489
static inline void stq_be_p(void *ptr, uint64_t v)
490
{
491
    stl_be_p(ptr, v >> 32);
492
    stl_be_p((uint8_t *)ptr + 4, v);
493
}
494

    
495
/* float access */
496

    
497
static inline float32 ldfl_be_p(const void *ptr)
498
{
499
    union {
500
        float32 f;
501
        uint32_t i;
502
    } u;
503
    u.i = ldl_be_p(ptr);
504
    return u.f;
505
}
506

    
507
static inline void stfl_be_p(void *ptr, float32 v)
508
{
509
    union {
510
        float32 f;
511
        uint32_t i;
512
    } u;
513
    u.f = v;
514
    stl_be_p(ptr, u.i);
515
}
516

    
517
static inline float64 ldfq_be_p(const void *ptr)
518
{
519
    CPU_DoubleU u;
520
    u.l.upper = ldl_be_p(ptr);
521
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
522
    return u.d;
523
}
524

    
525
static inline void stfq_be_p(void *ptr, float64 v)
526
{
527
    CPU_DoubleU u;
528
    u.d = v;
529
    stl_be_p(ptr, u.l.upper);
530
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
531
}
532

    
533
#else
534

    
535
static inline int lduw_be_p(const void *ptr)
536
{
537
    return *(uint16_t *)ptr;
538
}
539

    
540
static inline int ldsw_be_p(const void *ptr)
541
{
542
    return *(int16_t *)ptr;
543
}
544

    
545
static inline int ldl_be_p(const void *ptr)
546
{
547
    return *(uint32_t *)ptr;
548
}
549

    
550
static inline uint64_t ldq_be_p(const void *ptr)
551
{
552
    return *(uint64_t *)ptr;
553
}
554

    
555
static inline void stw_be_p(void *ptr, int v)
556
{
557
    *(uint16_t *)ptr = v;
558
}
559

    
560
static inline void stl_be_p(void *ptr, int v)
561
{
562
    *(uint32_t *)ptr = v;
563
}
564

    
565
static inline void stq_be_p(void *ptr, uint64_t v)
566
{
567
    *(uint64_t *)ptr = v;
568
}
569

    
570
/* float access */
571

    
572
static inline float32 ldfl_be_p(const void *ptr)
573
{
574
    return *(float32 *)ptr;
575
}
576

    
577
static inline float64 ldfq_be_p(const void *ptr)
578
{
579
    return *(float64 *)ptr;
580
}
581

    
582
static inline void stfl_be_p(void *ptr, float32 v)
583
{
584
    *(float32 *)ptr = v;
585
}
586

    
587
static inline void stfq_be_p(void *ptr, float64 v)
588
{
589
    *(float64 *)ptr = v;
590
}
591

    
592
#endif
593

    
594
/* target CPU memory access functions */
595
#if defined(TARGET_WORDS_BIGENDIAN)
596
#define lduw_p(p) lduw_be_p(p)
597
#define ldsw_p(p) ldsw_be_p(p)
598
#define ldl_p(p) ldl_be_p(p)
599
#define ldq_p(p) ldq_be_p(p)
600
#define ldfl_p(p) ldfl_be_p(p)
601
#define ldfq_p(p) ldfq_be_p(p)
602
#define stw_p(p, v) stw_be_p(p, v)
603
#define stl_p(p, v) stl_be_p(p, v)
604
#define stq_p(p, v) stq_be_p(p, v)
605
#define stfl_p(p, v) stfl_be_p(p, v)
606
#define stfq_p(p, v) stfq_be_p(p, v)
607
#else
608
#define lduw_p(p) lduw_le_p(p)
609
#define ldsw_p(p) ldsw_le_p(p)
610
#define ldl_p(p) ldl_le_p(p)
611
#define ldq_p(p) ldq_le_p(p)
612
#define ldfl_p(p) ldfl_le_p(p)
613
#define ldfq_p(p) ldfq_le_p(p)
614
#define stw_p(p, v) stw_le_p(p, v)
615
#define stl_p(p, v) stl_le_p(p, v)
616
#define stq_p(p, v) stq_le_p(p, v)
617
#define stfl_p(p, v) stfl_le_p(p, v)
618
#define stfq_p(p, v) stfq_le_p(p, v)
619
#endif
620

    
621
/* MMU memory access macros */
622

    
623
#if defined(CONFIG_USER_ONLY)
624
#include <assert.h>
625
#include "qemu-types.h"
626

    
627
/* On some host systems the guest address space is reserved on the host.
628
 * This allows the guest address space to be offset to a convenient location.
629
 */
630
//#define GUEST_BASE 0x20000000
631
#define GUEST_BASE 0
632

    
633
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
634
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
635
#define h2g(x) ({ \
636
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
637
    /* Check if given address fits target address space */ \
638
    assert(__ret == (abi_ulong)__ret); \
639
    (abi_ulong)__ret; \
640
})
641
#define h2g_valid(x) ({ \
642
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
643
    (__guest == (abi_ulong)__guest); \
644
})
645

    
646
#define saddr(x) g2h(x)
647
#define laddr(x) g2h(x)
648

    
649
#else /* !CONFIG_USER_ONLY */
650
/* NOTE: we use double casts if pointers and target_ulong have
651
   different sizes */
652
#define saddr(x) (uint8_t *)(long)(x)
653
#define laddr(x) (uint8_t *)(long)(x)
654
#endif
655

    
656
#define ldub_raw(p) ldub_p(laddr((p)))
657
#define ldsb_raw(p) ldsb_p(laddr((p)))
658
#define lduw_raw(p) lduw_p(laddr((p)))
659
#define ldsw_raw(p) ldsw_p(laddr((p)))
660
#define ldl_raw(p) ldl_p(laddr((p)))
661
#define ldq_raw(p) ldq_p(laddr((p)))
662
#define ldfl_raw(p) ldfl_p(laddr((p)))
663
#define ldfq_raw(p) ldfq_p(laddr((p)))
664
#define stb_raw(p, v) stb_p(saddr((p)), v)
665
#define stw_raw(p, v) stw_p(saddr((p)), v)
666
#define stl_raw(p, v) stl_p(saddr((p)), v)
667
#define stq_raw(p, v) stq_p(saddr((p)), v)
668
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
669
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
670

    
671

    
672
#if defined(CONFIG_USER_ONLY)
673

    
674
/* if user mode, no other memory access functions */
675
#define ldub(p) ldub_raw(p)
676
#define ldsb(p) ldsb_raw(p)
677
#define lduw(p) lduw_raw(p)
678
#define ldsw(p) ldsw_raw(p)
679
#define ldl(p) ldl_raw(p)
680
#define ldq(p) ldq_raw(p)
681
#define ldfl(p) ldfl_raw(p)
682
#define ldfq(p) ldfq_raw(p)
683
#define stb(p, v) stb_raw(p, v)
684
#define stw(p, v) stw_raw(p, v)
685
#define stl(p, v) stl_raw(p, v)
686
#define stq(p, v) stq_raw(p, v)
687
#define stfl(p, v) stfl_raw(p, v)
688
#define stfq(p, v) stfq_raw(p, v)
689

    
690
#define ldub_code(p) ldub_raw(p)
691
#define ldsb_code(p) ldsb_raw(p)
692
#define lduw_code(p) lduw_raw(p)
693
#define ldsw_code(p) ldsw_raw(p)
694
#define ldl_code(p) ldl_raw(p)
695
#define ldq_code(p) ldq_raw(p)
696

    
697
#define ldub_kernel(p) ldub_raw(p)
698
#define ldsb_kernel(p) ldsb_raw(p)
699
#define lduw_kernel(p) lduw_raw(p)
700
#define ldsw_kernel(p) ldsw_raw(p)
701
#define ldl_kernel(p) ldl_raw(p)
702
#define ldq_kernel(p) ldq_raw(p)
703
#define ldfl_kernel(p) ldfl_raw(p)
704
#define ldfq_kernel(p) ldfq_raw(p)
705
#define stb_kernel(p, v) stb_raw(p, v)
706
#define stw_kernel(p, v) stw_raw(p, v)
707
#define stl_kernel(p, v) stl_raw(p, v)
708
#define stq_kernel(p, v) stq_raw(p, v)
709
#define stfl_kernel(p, v) stfl_raw(p, v)
710
#define stfq_kernel(p, vt) stfq_raw(p, v)
711

    
712
#endif /* defined(CONFIG_USER_ONLY) */
713

    
714
/* page related stuff */
715

    
716
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
717
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
718
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
719

    
720
/* ??? These should be the larger of unsigned long and target_ulong.  */
721
extern unsigned long qemu_real_host_page_size;
722
extern unsigned long qemu_host_page_bits;
723
extern unsigned long qemu_host_page_size;
724
extern unsigned long qemu_host_page_mask;
725

    
726
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
727

    
728
/* same as PROT_xxx */
729
#define PAGE_READ      0x0001
730
#define PAGE_WRITE     0x0002
731
#define PAGE_EXEC      0x0004
732
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
733
#define PAGE_VALID     0x0008
734
/* original state of the write flag (used when tracking self-modifying
735
   code */
736
#define PAGE_WRITE_ORG 0x0010
737
#define PAGE_RESERVED  0x0020
738

    
739
void page_dump(FILE *f);
740
int page_get_flags(target_ulong address);
741
void page_set_flags(target_ulong start, target_ulong end, int flags);
742
int page_check_range(target_ulong start, target_ulong len, int flags);
743

    
744
void cpu_exec_init_all(unsigned long tb_size);
745
CPUState *cpu_copy(CPUState *env);
746

    
747
void cpu_dump_state(CPUState *env, FILE *f,
748
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
749
                    int flags);
750
void cpu_dump_statistics (CPUState *env, FILE *f,
751
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
752
                          int flags);
753

    
754
void cpu_abort(CPUState *env, const char *fmt, ...)
755
    __attribute__ ((__format__ (__printf__, 2, 3)))
756
    __attribute__ ((__noreturn__));
757
extern CPUState *first_cpu;
758
extern CPUState *cpu_single_env;
759
extern int64_t qemu_icount;
760
extern int use_icount;
761

    
762
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
763
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
764
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
765
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
766
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
767
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
768
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
769
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
770
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
771
#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
772

    
773
void cpu_interrupt(CPUState *s, int mask);
774
void cpu_reset_interrupt(CPUState *env, int mask);
775

    
776
/* Breakpoint/watchpoint flags */
777
#define BP_MEM_READ           0x01
778
#define BP_MEM_WRITE          0x02
779
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
780
#define BP_STOP_BEFORE_ACCESS 0x04
781
#define BP_WATCHPOINT_HIT     0x08
782
#define BP_GDB                0x10
783
#define BP_CPU                0x20
784

    
785
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
786
                          CPUBreakpoint **breakpoint);
787
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
788
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
789
void cpu_breakpoint_remove_all(CPUState *env, int mask);
790
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
791
                          int flags, CPUWatchpoint **watchpoint);
792
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
793
                          target_ulong len, int flags);
794
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
795
void cpu_watchpoint_remove_all(CPUState *env, int mask);
796

    
797
#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
798
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
799
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
800

    
801
void cpu_single_step(CPUState *env, int enabled);
802
void cpu_reset(CPUState *s);
803

    
804
/* Return the physical page corresponding to a virtual one. Use it
805
   only for debugging because no protection checks are done. Return -1
806
   if no page found. */
807
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
808

    
809
#define CPU_LOG_TB_OUT_ASM (1 << 0)
810
#define CPU_LOG_TB_IN_ASM  (1 << 1)
811
#define CPU_LOG_TB_OP      (1 << 2)
812
#define CPU_LOG_TB_OP_OPT  (1 << 3)
813
#define CPU_LOG_INT        (1 << 4)
814
#define CPU_LOG_EXEC       (1 << 5)
815
#define CPU_LOG_PCALL      (1 << 6)
816
#define CPU_LOG_IOPORT     (1 << 7)
817
#define CPU_LOG_TB_CPU     (1 << 8)
818

    
819
/* define log items */
820
typedef struct CPULogItem {
821
    int mask;
822
    const char *name;
823
    const char *help;
824
} CPULogItem;
825

    
826
extern const CPULogItem cpu_log_items[];
827

    
828
void cpu_set_log(int log_flags);
829
void cpu_set_log_filename(const char *filename);
830
int cpu_str_to_log_mask(const char *str);
831

    
832
/* IO ports API */
833

    
834
/* NOTE: as these functions may be even used when there is an isa
835
   brige on non x86 targets, we always defined them */
836
#ifndef NO_CPU_IO_DEFS
837
void cpu_outb(CPUState *env, int addr, int val);
838
void cpu_outw(CPUState *env, int addr, int val);
839
void cpu_outl(CPUState *env, int addr, int val);
840
int cpu_inb(CPUState *env, int addr);
841
int cpu_inw(CPUState *env, int addr);
842
int cpu_inl(CPUState *env, int addr);
843
#endif
844

    
845
/* address in the RAM (different from a physical address) */
846
#ifdef USE_KQEMU
847
typedef uint32_t ram_addr_t;
848
#else
849
typedef unsigned long ram_addr_t;
850
#endif
851

    
852
/* memory API */
853

    
854
extern ram_addr_t phys_ram_size;
855
extern int phys_ram_fd;
856
extern uint8_t *phys_ram_base;
857
extern uint8_t *phys_ram_dirty;
858
extern ram_addr_t ram_size;
859

    
860
/* physical memory access */
861

    
862
/* MMIO pages are identified by a combination of an IO device index and
863
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
864
   so only a limited number of ids are avaiable.  */
865

    
866
#define IO_MEM_SHIFT       3
867
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
868

    
869
#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
870
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
871
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
872
#define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)
873

    
874
/* Acts like a ROM when read and like a device when written.  */
875
#define IO_MEM_ROMD        (1)
876
#define IO_MEM_SUBPAGE     (2)
877
#define IO_MEM_SUBWIDTH    (4)
878

    
879
/* Flags stored in the low bits of the TLB virtual address.  These are
880
   defined so that fast path ram access is all zeros.  */
881
/* Zero if TLB entry is valid.  */
882
#define TLB_INVALID_MASK   (1 << 3)
883
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
884
   contain the page physical address.  */
885
#define TLB_NOTDIRTY    (1 << 4)
886
/* Set if TLB entry is an IO callback.  */
887
#define TLB_MMIO        (1 << 5)
888

    
889
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
890
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
891

    
892
void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
893
                                         ram_addr_t size,
894
                                         ram_addr_t phys_offset,
895
                                         ram_addr_t region_offset);
896
static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
897
                                                ram_addr_t size,
898
                                                ram_addr_t phys_offset)
899
{
900
    cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
901
}
902

    
903
ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
904
ram_addr_t qemu_ram_alloc(ram_addr_t);
905
void qemu_ram_free(ram_addr_t addr);
906
int cpu_register_io_memory(int io_index,
907
                           CPUReadMemoryFunc **mem_read,
908
                           CPUWriteMemoryFunc **mem_write,
909
                           void *opaque);
910
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
911
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
912

    
913
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
914
                            int len, int is_write);
915
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
916
                                            uint8_t *buf, int len)
917
{
918
    cpu_physical_memory_rw(addr, buf, len, 0);
919
}
920
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
921
                                             const uint8_t *buf, int len)
922
{
923
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
924
}
925
uint32_t ldub_phys(target_phys_addr_t addr);
926
uint32_t lduw_phys(target_phys_addr_t addr);
927
uint32_t ldl_phys(target_phys_addr_t addr);
928
uint64_t ldq_phys(target_phys_addr_t addr);
929
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
930
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
931
void stb_phys(target_phys_addr_t addr, uint32_t val);
932
void stw_phys(target_phys_addr_t addr, uint32_t val);
933
void stl_phys(target_phys_addr_t addr, uint32_t val);
934
void stq_phys(target_phys_addr_t addr, uint64_t val);
935

    
936
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
937
                                   const uint8_t *buf, int len);
938
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
939
                        uint8_t *buf, int len, int is_write);
940

    
941
#define VGA_DIRTY_FLAG       0x01
942
#define CODE_DIRTY_FLAG      0x02
943
#define KQEMU_DIRTY_FLAG     0x04
944
#define MIGRATION_DIRTY_FLAG 0x08
945

    
946
/* read dirty bit (return 0 or 1) */
947
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
948
{
949
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
950
}
951

    
952
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
953
                                                int dirty_flags)
954
{
955
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
956
}
957

    
958
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
959
{
960
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
961
}
962

    
963
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
964
                                     int dirty_flags);
965
void cpu_tlb_update_dirty(CPUState *env);
966

    
967
int cpu_physical_memory_set_dirty_tracking(int enable);
968

    
969
int cpu_physical_memory_get_dirty_tracking(void);
970

    
971
void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
972

    
973
void dump_exec_info(FILE *f,
974
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
975

    
976
/* Coalesced MMIO regions are areas where write operations can be reordered.
977
 * This usually implies that write operations are side-effect free.  This allows
978
 * batching which can make a major impact on performance when using
979
 * virtualization.
980
 */
981
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
982

    
983
void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
984

    
985
/*******************************************/
986
/* host CPU ticks (if available) */
987

    
988
#if defined(__powerpc__)
989

    
990
static inline uint32_t get_tbl(void)
991
{
992
    uint32_t tbl;
993
    asm volatile("mftb %0" : "=r" (tbl));
994
    return tbl;
995
}
996

    
997
static inline uint32_t get_tbu(void)
998
{
999
        uint32_t tbl;
1000
        asm volatile("mftbu %0" : "=r" (tbl));
1001
        return tbl;
1002
}
1003

    
1004
static inline int64_t cpu_get_real_ticks(void)
1005
{
1006
    uint32_t l, h, h1;
1007
    /* NOTE: we test if wrapping has occurred */
1008
    do {
1009
        h = get_tbu();
1010
        l = get_tbl();
1011
        h1 = get_tbu();
1012
    } while (h != h1);
1013
    return ((int64_t)h << 32) | l;
1014
}
1015

    
1016
#elif defined(__i386__)
1017

    
1018
static inline int64_t cpu_get_real_ticks(void)
1019
{
1020
    int64_t val;
1021
    asm volatile ("rdtsc" : "=A" (val));
1022
    return val;
1023
}
1024

    
1025
#elif defined(__x86_64__)
1026

    
1027
static inline int64_t cpu_get_real_ticks(void)
1028
{
1029
    uint32_t low,high;
1030
    int64_t val;
1031
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
1032
    val = high;
1033
    val <<= 32;
1034
    val |= low;
1035
    return val;
1036
}
1037

    
1038
#elif defined(__hppa__)
1039

    
1040
static inline int64_t cpu_get_real_ticks(void)
1041
{
1042
    int val;
1043
    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1044
    return val;
1045
}
1046

    
1047
#elif defined(__ia64)
1048

    
1049
static inline int64_t cpu_get_real_ticks(void)
1050
{
1051
        int64_t val;
1052
        asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1053
        return val;
1054
}
1055

    
1056
#elif defined(__s390__)
1057

    
1058
static inline int64_t cpu_get_real_ticks(void)
1059
{
1060
    int64_t val;
1061
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1062
    return val;
1063
}
1064

    
1065
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1066

    
1067
static inline int64_t cpu_get_real_ticks (void)
1068
{
1069
#if     defined(_LP64)
1070
        uint64_t        rval;
1071
        asm volatile("rd %%tick,%0" : "=r"(rval));
1072
        return rval;
1073
#else
1074
        union {
1075
                uint64_t i64;
1076
                struct {
1077
                        uint32_t high;
1078
                        uint32_t low;
1079
                }       i32;
1080
        } rval;
1081
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
1082
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
1083
        return rval.i64;
1084
#endif
1085
}
1086

    
1087
#elif defined(__mips__)
1088

    
1089
static inline int64_t cpu_get_real_ticks(void)
1090
{
1091
#if __mips_isa_rev >= 2
1092
    uint32_t count;
1093
    static uint32_t cyc_per_count = 0;
1094

    
1095
    if (!cyc_per_count)
1096
        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1097

    
1098
    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1099
    return (int64_t)(count * cyc_per_count);
1100
#else
1101
    /* FIXME */
1102
    static int64_t ticks = 0;
1103
    return ticks++;
1104
#endif
1105
}
1106

    
1107
#else
1108
/* The host CPU doesn't have an easily accessible cycle counter.
1109
   Just return a monotonically increasing value.  This will be
1110
   totally wrong, but hopefully better than nothing.  */
1111
static inline int64_t cpu_get_real_ticks (void)
1112
{
1113
    static int64_t ticks = 0;
1114
    return ticks++;
1115
}
1116
#endif
1117

    
1118
/* profiling */
1119
#ifdef CONFIG_PROFILER
1120
static inline int64_t profile_getclock(void)
1121
{
1122
    return cpu_get_real_ticks();
1123
}
1124

    
1125
extern int64_t kqemu_time, kqemu_time_start;
1126
extern int64_t qemu_time, qemu_time_start;
1127
extern int64_t tlb_flush_time;
1128
extern int64_t kqemu_exec_count;
1129
extern int64_t dev_time;
1130
extern int64_t kqemu_ret_int_count;
1131
extern int64_t kqemu_ret_excp_count;
1132
extern int64_t kqemu_ret_intr_count;
1133
#endif
1134

    
1135
#endif /* CPU_ALL_H */