Statistics
| Branch: | Revision:

root / target-mips / op_helper.c @ e3b60f1d

History | View | Annotate | Download (41.5 kB)

1
/*
2
 *  MIPS emulation helpers for qemu.
3
 * 
4
 *  Copyright (c) 2004-2005 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include <stdlib.h>
21
#include "exec.h"
22

    
23
#define GETPC() (__builtin_return_address(0))
24

    
25
/*****************************************************************************/
26
/* Exceptions processing helpers */
27

    
28
void do_raise_exception_err (uint32_t exception, int error_code)
29
{
30
#if 1
31
    if (logfile && exception < 0x100)
32
        fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
33
#endif
34
    env->exception_index = exception;
35
    env->error_code = error_code;
36
    T0 = 0;
37
    cpu_loop_exit();
38
}
39

    
40
void do_raise_exception (uint32_t exception)
41
{
42
    do_raise_exception_err(exception, 0);
43
}
44

    
45
void do_restore_state (void *pc_ptr)
46
{
47
  TranslationBlock *tb;
48
  unsigned long pc = (unsigned long) pc_ptr;
49

    
50
  tb = tb_find_pc (pc);
51
  cpu_restore_state (tb, env, pc, NULL);
52
}
53

    
54
void do_raise_exception_direct_err (uint32_t exception, int error_code)
55
{
56
    do_restore_state (GETPC ());
57
    do_raise_exception_err (exception, error_code);
58
}
59

    
60
void do_raise_exception_direct (uint32_t exception)
61
{
62
    do_raise_exception_direct_err (exception, 0);
63
}
64

    
65
#define MEMSUFFIX _raw
66
#include "op_helper_mem.c"
67
#undef MEMSUFFIX
68
#if !defined(CONFIG_USER_ONLY)
69
#define MEMSUFFIX _user
70
#include "op_helper_mem.c"
71
#undef MEMSUFFIX
72
#define MEMSUFFIX _kernel
73
#include "op_helper_mem.c"
74
#undef MEMSUFFIX
75
#endif
76

    
77
#ifdef TARGET_MIPS64
78
#if TARGET_LONG_BITS > HOST_LONG_BITS
79
/* Those might call libgcc functions.  */
80
void do_dsll (void)
81
{
82
    T0 = T0 << T1;
83
}
84

    
85
void do_dsll32 (void)
86
{
87
    T0 = T0 << (T1 + 32);
88
}
89

    
90
void do_dsra (void)
91
{
92
    T0 = (int64_t)T0 >> T1;
93
}
94

    
95
void do_dsra32 (void)
96
{
97
    T0 = (int64_t)T0 >> (T1 + 32);
98
}
99

    
100
void do_dsrl (void)
101
{
102
    T0 = T0 >> T1;
103
}
104

    
105
void do_dsrl32 (void)
106
{
107
    T0 = T0 >> (T1 + 32);
108
}
109

    
110
void do_drotr (void)
111
{
112
    target_ulong tmp;
113

    
114
    if (T1) {
115
       tmp = T0 << (0x40 - T1);
116
       T0 = (T0 >> T1) | tmp;
117
    }
118
}
119

    
120
void do_drotr32 (void)
121
{
122
    target_ulong tmp;
123

    
124
    if (T1) {
125
       tmp = T0 << (0x40 - (32 + T1));
126
       T0 = (T0 >> (32 + T1)) | tmp;
127
    }
128
}
129

    
130
void do_dsllv (void)
131
{
132
    T0 = T1 << (T0 & 0x3F);
133
}
134

    
135
void do_dsrav (void)
136
{
137
    T0 = (int64_t)T1 >> (T0 & 0x3F);
138
}
139

    
140
void do_dsrlv (void)
141
{
142
    T0 = T1 >> (T0 & 0x3F);
143
}
144

    
145
void do_drotrv (void)
146
{
147
    target_ulong tmp;
148

    
149
    T0 &= 0x3F;
150
    if (T0) {
151
       tmp = T1 << (0x40 - T0);
152
       T0 = (T1 >> T0) | tmp;
153
    } else
154
       T0 = T1;
155
}
156
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
157
#endif /* TARGET_MIPS64 */
158

    
159
/* 64 bits arithmetic for 32 bits hosts */
160
#if TARGET_LONG_BITS > HOST_LONG_BITS
161
static inline uint64_t get_HILO (void)
162
{
163
    return (env->HI << 32) | (uint32_t)env->LO;
164
}
165

    
166
static inline void set_HILO (uint64_t HILO)
167
{
168
    env->LO = (int32_t)HILO;
169
    env->HI = (int32_t)(HILO >> 32);
170
}
171

    
172
void do_mult (void)
173
{
174
    set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
175
}
176

    
177
void do_multu (void)
178
{
179
    set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
180
}
181

    
182
void do_madd (void)
183
{
184
    int64_t tmp;
185

    
186
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
187
    set_HILO((int64_t)get_HILO() + tmp);
188
}
189

    
190
void do_maddu (void)
191
{
192
    uint64_t tmp;
193

    
194
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
195
    set_HILO(get_HILO() + tmp);
196
}
197

    
198
void do_msub (void)
199
{
200
    int64_t tmp;
201

    
202
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
203
    set_HILO((int64_t)get_HILO() - tmp);
204
}
205

    
206
void do_msubu (void)
207
{
208
    uint64_t tmp;
209

    
210
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
211
    set_HILO(get_HILO() - tmp);
212
}
213
#endif
214

    
215
#if HOST_LONG_BITS < 64
216
void do_div (void)
217
{
218
    /* 64bit datatypes because we may see overflow/underflow. */
219
    if (T1 != 0) {
220
        env->LO = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
221
        env->HI = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
222
    }
223
}
224
#endif
225

    
226
#ifdef TARGET_MIPS64
227
void do_ddiv (void)
228
{
229
    if (T1 != 0) {
230
        lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
231
        env->LO = res.quot;
232
        env->HI = res.rem;
233
    }
234
}
235

    
236
#if TARGET_LONG_BITS > HOST_LONG_BITS
237
void do_ddivu (void)
238
{
239
    if (T1 != 0) {
240
        env->LO = T0 / T1;
241
        env->HI = T0 % T1;
242
    }
243
}
244
#endif
245
#endif /* TARGET_MIPS64 */
246

    
247
#if defined(CONFIG_USER_ONLY) 
248
void do_mfc0_random (void)
249
{
250
    cpu_abort(env, "mfc0 random\n");
251
}
252

    
253
void do_mfc0_count (void)
254
{
255
    cpu_abort(env, "mfc0 count\n");
256
}
257

    
258
void cpu_mips_store_count(CPUState *env, uint32_t value)
259
{
260
    cpu_abort(env, "mtc0 count\n");
261
}
262

    
263
void cpu_mips_store_compare(CPUState *env, uint32_t value)
264
{
265
    cpu_abort(env, "mtc0 compare\n");
266
}
267

    
268
void cpu_mips_update_irq(CPUState *env)
269
{
270
    cpu_abort(env, "mtc0 status / mtc0 cause\n");
271
}
272

    
273
void do_mtc0_status_debug(uint32_t old, uint32_t val)
274
{
275
    cpu_abort(env, "mtc0 status debug\n");
276
}
277

    
278
void do_mtc0_status_irqraise_debug (void)
279
{
280
    cpu_abort(env, "mtc0 status irqraise debug\n");
281
}
282

    
283
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
284
{
285
    cpu_abort(env, "mips_tlb_flush\n");
286
}
287

    
288
#else
289

    
290
/* CP0 helpers */
291
void do_mfc0_random (void)
292
{
293
    T0 = (int32_t)cpu_mips_get_random(env);
294
}
295

    
296
void do_mfc0_count (void)
297
{
298
    T0 = (int32_t)cpu_mips_get_count(env);
299
}
300

    
301
void do_mtc0_status_debug(uint32_t old, uint32_t val)
302
{
303
    fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
304
            old, old & env->CP0_Cause & CP0Ca_IP_mask,
305
            val, val & env->CP0_Cause & CP0Ca_IP_mask,
306
            env->CP0_Cause);
307
    (env->hflags & MIPS_HFLAG_UM) ? fputs(", UM\n", logfile)
308
                                  : fputs("\n", logfile);
309
}
310

    
311
void do_mtc0_status_irqraise_debug(void)
312
{
313
    fprintf(logfile, "Raise pending IRQs\n");
314
}
315

    
316
void fpu_handle_exception(void)
317
{
318
#ifdef CONFIG_SOFTFLOAT
319
    int flags = get_float_exception_flags(&env->fp_status);
320
    unsigned int cpuflags = 0, enable, cause = 0;
321

    
322
    enable = GET_FP_ENABLE(env->fcr31);
323

    
324
    /* determine current flags */   
325
    if (flags & float_flag_invalid) {
326
        cpuflags |= FP_INVALID;
327
        cause |= FP_INVALID & enable;
328
    }
329
    if (flags & float_flag_divbyzero) {
330
        cpuflags |= FP_DIV0;    
331
        cause |= FP_DIV0 & enable;
332
    }
333
    if (flags & float_flag_overflow) {
334
        cpuflags |= FP_OVERFLOW;    
335
        cause |= FP_OVERFLOW & enable;
336
    }
337
    if (flags & float_flag_underflow) {
338
        cpuflags |= FP_UNDERFLOW;   
339
        cause |= FP_UNDERFLOW & enable;
340
    }
341
    if (flags & float_flag_inexact) {
342
        cpuflags |= FP_INEXACT; 
343
        cause |= FP_INEXACT & enable;
344
    }
345
    SET_FP_FLAGS(env->fcr31, cpuflags);
346
    SET_FP_CAUSE(env->fcr31, cause);
347
#else
348
    SET_FP_FLAGS(env->fcr31, 0);
349
    SET_FP_CAUSE(env->fcr31, 0);
350
#endif
351
}
352

    
353
/* TLB management */
354
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
355
{
356
    /* Flush qemu's TLB and discard all shadowed entries.  */
357
    tlb_flush (env, flush_global);
358
    env->tlb_in_use = env->nb_tlb;
359
}
360

    
361
static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
362
{
363
    /* Discard entries from env->tlb[first] onwards.  */
364
    while (env->tlb_in_use > first) {
365
        r4k_invalidate_tlb(env, --env->tlb_in_use, 0);
366
    }
367
}
368

    
369
static void r4k_fill_tlb (int idx)
370
{
371
    r4k_tlb_t *tlb;
372

    
373
    /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
374
    tlb = &env->mmu.r4k.tlb[idx];
375
    tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
376
#ifdef TARGET_MIPS64
377
    tlb->VPN &= env->SEGMask;
378
#endif
379
    tlb->ASID = env->CP0_EntryHi & 0xFF;
380
    tlb->PageMask = env->CP0_PageMask;
381
    tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
382
    tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
383
    tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
384
    tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
385
    tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
386
    tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
387
    tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
388
    tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
389
    tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
390
}
391

    
392
void r4k_do_tlbwi (void)
393
{
394
    /* Discard cached TLB entries.  We could avoid doing this if the
395
       tlbwi is just upgrading access permissions on the current entry;
396
       that might be a further win.  */
397
    r4k_mips_tlb_flush_extra (env, env->nb_tlb);
398

    
399
    r4k_invalidate_tlb(env, env->CP0_Index % env->nb_tlb, 0);
400
    r4k_fill_tlb(env->CP0_Index % env->nb_tlb);
401
}
402

    
403
void r4k_do_tlbwr (void)
404
{
405
    int r = cpu_mips_get_random(env);
406

    
407
    r4k_invalidate_tlb(env, r, 1);
408
    r4k_fill_tlb(r);
409
}
410

    
411
void r4k_do_tlbp (void)
412
{
413
    r4k_tlb_t *tlb;
414
    target_ulong mask;
415
    target_ulong tag;
416
    target_ulong VPN;
417
    uint8_t ASID;
418
    int i;
419

    
420
    ASID = env->CP0_EntryHi & 0xFF;
421
    for (i = 0; i < env->nb_tlb; i++) {
422
        tlb = &env->mmu.r4k.tlb[i];
423
        /* 1k pages are not supported. */
424
        mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
425
        tag = env->CP0_EntryHi & ~mask;
426
        VPN = tlb->VPN & ~mask;
427
        /* Check ASID, virtual page number & size */
428
        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
429
            /* TLB match */
430
            env->CP0_Index = i;
431
            break;
432
        }
433
    }
434
    if (i == env->nb_tlb) {
435
        /* No match.  Discard any shadow entries, if any of them match.  */
436
        for (i = env->nb_tlb; i < env->tlb_in_use; i++) {
437
            tlb = &env->mmu.r4k.tlb[i];
438
            /* 1k pages are not supported. */
439
            mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
440
            tag = env->CP0_EntryHi & ~mask;
441
            VPN = tlb->VPN & ~mask;
442
            /* Check ASID, virtual page number & size */
443
            if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
444
                r4k_mips_tlb_flush_extra (env, i);
445
                break;
446
            }
447
        }
448

    
449
        env->CP0_Index |= 0x80000000;
450
    }
451
}
452

    
453
void r4k_do_tlbr (void)
454
{
455
    r4k_tlb_t *tlb;
456
    uint8_t ASID;
457

    
458
    ASID = env->CP0_EntryHi & 0xFF;
459
    tlb = &env->mmu.r4k.tlb[env->CP0_Index % env->nb_tlb];
460

    
461
    /* If this will change the current ASID, flush qemu's TLB.  */
462
    if (ASID != tlb->ASID)
463
        cpu_mips_tlb_flush (env, 1);
464

    
465
    r4k_mips_tlb_flush_extra(env, env->nb_tlb);
466

    
467
    env->CP0_EntryHi = tlb->VPN | tlb->ASID;
468
    env->CP0_PageMask = tlb->PageMask;
469
    env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
470
                        (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
471
    env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
472
                        (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
473
}
474

    
475
#endif /* !CONFIG_USER_ONLY */
476

    
477
void dump_ldst (const unsigned char *func)
478
{
479
    if (loglevel)
480
        fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
481
}
482

    
483
void dump_sc (void)
484
{
485
    if (loglevel) {
486
        fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
487
                T1, T0, env->CP0_LLAddr);
488
    }
489
}
490

    
491
void debug_pre_eret (void)
492
{
493
    fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
494
            env->PC, env->CP0_EPC);
495
    if (env->CP0_Status & (1 << CP0St_ERL))
496
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
497
    if (env->hflags & MIPS_HFLAG_DM)
498
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
499
    fputs("\n", logfile);
500
}
501

    
502
void debug_post_eret (void)
503
{
504
    fprintf(logfile, "  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
505
            env->PC, env->CP0_EPC);
506
    if (env->CP0_Status & (1 << CP0St_ERL))
507
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
508
    if (env->hflags & MIPS_HFLAG_DM)
509
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
510
    if (env->hflags & MIPS_HFLAG_UM)
511
        fputs(", UM\n", logfile);
512
    else
513
        fputs("\n", logfile);
514
}
515

    
516
void do_pmon (int function)
517
{
518
    function /= 2;
519
    switch (function) {
520
    case 2: /* TODO: char inbyte(int waitflag); */
521
        if (env->gpr[4] == 0)
522
            env->gpr[2] = -1;
523
        /* Fall through */
524
    case 11: /* TODO: char inbyte (void); */
525
        env->gpr[2] = -1;
526
        break;
527
    case 3:
528
    case 12:
529
        printf("%c", (char)(env->gpr[4] & 0xFF));
530
        break;
531
    case 17:
532
        break;
533
    case 158:
534
        {
535
            unsigned char *fmt = (void *)(unsigned long)env->gpr[4];
536
            printf("%s", fmt);
537
        }
538
        break;
539
    }
540
}
541

    
542
#if !defined(CONFIG_USER_ONLY) 
543

    
544
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
545

    
546
#define MMUSUFFIX _mmu
547
#define ALIGNED_ONLY
548

    
549
#define SHIFT 0
550
#include "softmmu_template.h"
551

    
552
#define SHIFT 1
553
#include "softmmu_template.h"
554

    
555
#define SHIFT 2
556
#include "softmmu_template.h"
557

    
558
#define SHIFT 3
559
#include "softmmu_template.h"
560

    
561
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
562
{
563
    env->CP0_BadVAddr = addr;
564
    do_restore_state (retaddr);
565
    do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
566
}
567

    
568
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
569
{
570
    TranslationBlock *tb;
571
    CPUState *saved_env;
572
    unsigned long pc;
573
    int ret;
574

    
575
    /* XXX: hack to restore env in all cases, even if not called from
576
       generated code */
577
    saved_env = env;
578
    env = cpu_single_env;
579
    ret = cpu_mips_handle_mmu_fault(env, addr, is_write, is_user, 1);
580
    if (ret) {
581
        if (retaddr) {
582
            /* now we have a real cpu fault */
583
            pc = (unsigned long)retaddr;
584
            tb = tb_find_pc(pc);
585
            if (tb) {
586
                /* the PC is inside the translated code. It means that we have
587
                   a virtual CPU fault */
588
                cpu_restore_state(tb, env, pc, NULL);
589
            }
590
        }
591
        do_raise_exception_err(env->exception_index, env->error_code);
592
    }
593
    env = saved_env;
594
}
595

    
596
#endif
597

    
598
/* Complex FPU operations which may need stack space. */
599

    
600
#define FLOAT_SIGN32 (1 << 31)
601
#define FLOAT_SIGN64 (1ULL << 63)
602
#define FLOAT_ONE32 (0x3f8 << 20)
603
#define FLOAT_ONE64 (0x3ffULL << 52)
604
#define FLOAT_TWO32 (1 << 30)
605
#define FLOAT_TWO64 (1ULL << 62)
606

    
607
/* convert MIPS rounding mode in FCR31 to IEEE library */
608
unsigned int ieee_rm[] = {
609
    float_round_nearest_even,
610
    float_round_to_zero,
611
    float_round_up,
612
    float_round_down
613
};
614

    
615
#define RESTORE_ROUNDING_MODE \
616
    set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status)
617

    
618
void do_ctc1 (void)
619
{
620
    switch(T1) {
621
    case 25:
622
        if (T0 & 0xffffff00)
623
            return;
624
        env->fcr31 = (env->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
625
                     ((T0 & 0x1) << 23);
626
        break;
627
    case 26:
628
        if (T0 & 0x007c0000)
629
            return;
630
        env->fcr31 = (env->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
631
        break;
632
    case 28:
633
        if (T0 & 0x007c0000)
634
            return;
635
        env->fcr31 = (env->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
636
                     ((T0 & 0x4) << 22);
637
        break;
638
    case 31:
639
        if (T0 & 0x007c0000)
640
            return;
641
        env->fcr31 = T0;
642
        break;
643
    default:
644
        return;
645
    }
646
    /* set rounding mode */
647
    RESTORE_ROUNDING_MODE;
648
    set_float_exception_flags(0, &env->fp_status);
649
    if ((GET_FP_ENABLE(env->fcr31) | 0x20) & GET_FP_CAUSE(env->fcr31))
650
        do_raise_exception(EXCP_FPE);
651
}
652

    
653
inline char ieee_ex_to_mips(char xcpt)
654
{
655
    return (xcpt & float_flag_inexact) >> 5 |
656
           (xcpt & float_flag_underflow) >> 3 |
657
           (xcpt & float_flag_overflow) >> 1 |
658
           (xcpt & float_flag_divbyzero) << 1 |
659
           (xcpt & float_flag_invalid) << 4;
660
}
661

    
662
inline char mips_ex_to_ieee(char xcpt)
663
{
664
    return (xcpt & FP_INEXACT) << 5 |
665
           (xcpt & FP_UNDERFLOW) << 3 |
666
           (xcpt & FP_OVERFLOW) << 1 |
667
           (xcpt & FP_DIV0) >> 1 |
668
           (xcpt & FP_INVALID) >> 4;
669
}
670

    
671
inline void update_fcr31(void)
672
{
673
    int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fp_status));
674

    
675
    SET_FP_CAUSE(env->fcr31, tmp);
676
    if (GET_FP_ENABLE(env->fcr31) & tmp)
677
        do_raise_exception(EXCP_FPE);
678
    else
679
        UPDATE_FP_FLAGS(env->fcr31, tmp);
680
}
681

    
682
#define FLOAT_OP(name, p) void do_float_##name##_##p(void)
683

    
684
FLOAT_OP(cvtd, s)
685
{
686
    set_float_exception_flags(0, &env->fp_status);
687
    FDT2 = float32_to_float64(FST0, &env->fp_status);
688
    update_fcr31();
689
}
690
FLOAT_OP(cvtd, w)
691
{
692
    set_float_exception_flags(0, &env->fp_status);
693
    FDT2 = int32_to_float64(WT0, &env->fp_status);
694
    update_fcr31();
695
}
696
FLOAT_OP(cvtd, l)
697
{
698
    set_float_exception_flags(0, &env->fp_status);
699
    FDT2 = int64_to_float64(DT0, &env->fp_status);
700
    update_fcr31();
701
}
702
FLOAT_OP(cvtl, d)
703
{
704
    set_float_exception_flags(0, &env->fp_status);
705
    DT2 = float64_to_int64(FDT0, &env->fp_status);
706
    update_fcr31();
707
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
708
        DT2 = 0x7fffffffffffffffULL;
709
}
710
FLOAT_OP(cvtl, s)
711
{
712
    set_float_exception_flags(0, &env->fp_status);
713
    DT2 = float32_to_int64(FST0, &env->fp_status);
714
    update_fcr31();
715
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
716
        DT2 = 0x7fffffffffffffffULL;
717
}
718

    
719
FLOAT_OP(cvtps, pw)
720
{
721
    set_float_exception_flags(0, &env->fp_status);
722
    FST2 = int32_to_float32(WT0, &env->fp_status);
723
    FSTH2 = int32_to_float32(WTH0, &env->fp_status);
724
    update_fcr31();
725
}
726
FLOAT_OP(cvtpw, ps)
727
{
728
    set_float_exception_flags(0, &env->fp_status);
729
    WT2 = float32_to_int32(FST0, &env->fp_status);
730
    WTH2 = float32_to_int32(FSTH0, &env->fp_status);
731
    update_fcr31();
732
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
733
        WT2 = 0x7fffffff;
734
}
735
FLOAT_OP(cvts, d)
736
{
737
    set_float_exception_flags(0, &env->fp_status);
738
    FST2 = float64_to_float32(FDT0, &env->fp_status);
739
    update_fcr31();
740
}
741
FLOAT_OP(cvts, w)
742
{
743
    set_float_exception_flags(0, &env->fp_status);
744
    FST2 = int32_to_float32(WT0, &env->fp_status);
745
    update_fcr31();
746
}
747
FLOAT_OP(cvts, l)
748
{
749
    set_float_exception_flags(0, &env->fp_status);
750
    FST2 = int64_to_float32(DT0, &env->fp_status);
751
    update_fcr31();
752
}
753
FLOAT_OP(cvts, pl)
754
{
755
    set_float_exception_flags(0, &env->fp_status);
756
    WT2 = WT0;
757
    update_fcr31();
758
}
759
FLOAT_OP(cvts, pu)
760
{
761
    set_float_exception_flags(0, &env->fp_status);
762
    WT2 = WTH0;
763
    update_fcr31();
764
}
765
FLOAT_OP(cvtw, s)
766
{
767
    set_float_exception_flags(0, &env->fp_status);
768
    WT2 = float32_to_int32(FST0, &env->fp_status);
769
    update_fcr31();
770
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
771
        WT2 = 0x7fffffff;
772
}
773
FLOAT_OP(cvtw, d)
774
{
775
    set_float_exception_flags(0, &env->fp_status);
776
    WT2 = float64_to_int32(FDT0, &env->fp_status);
777
    update_fcr31();
778
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
779
        WT2 = 0x7fffffff;
780
}
781

    
782
FLOAT_OP(roundl, d)
783
{
784
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
785
    DT2 = float64_round_to_int(FDT0, &env->fp_status);
786
    DT2 = float64_to_int64(DT2, &env->fp_status);
787
    RESTORE_ROUNDING_MODE;
788
    update_fcr31();
789
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
790
        DT2 = 0x7fffffffffffffffULL;
791
}
792
FLOAT_OP(roundl, s)
793
{
794
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
795
    WT2 = float32_round_to_int(FST0, &env->fp_status);
796
    DT2 = float32_to_int64(WT2, &env->fp_status);
797
    RESTORE_ROUNDING_MODE;
798
    update_fcr31();
799
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
800
        DT2 = 0x7fffffffffffffffULL;
801
}
802
FLOAT_OP(roundw, d)
803
{
804
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
805
    DT2 = float64_round_to_int(FDT0, &env->fp_status);
806
// ???
807
    env->fp_status.float_exception_flags &= ~float_flag_inexact;
808
    WT2 = float64_to_int32(DT2, &env->fp_status);
809
    RESTORE_ROUNDING_MODE;
810
    update_fcr31();
811
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
812
        WT2 = 0x7fffffff;
813
}
814
FLOAT_OP(roundw, s)
815
{
816
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
817
    WT2 = float32_round_to_int(FST0, &env->fp_status);
818
    WT2 = float32_to_int32(WT2, &env->fp_status);
819
    RESTORE_ROUNDING_MODE;
820
    update_fcr31();
821
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
822
        WT2 = 0x7fffffff;
823
}
824

    
825
FLOAT_OP(truncl, d)
826
{
827
    DT2 = float64_to_int64_round_to_zero(FDT0, &env->fp_status);
828
    update_fcr31();
829
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
830
        DT2 = 0x7fffffffffffffffULL;
831
}
832
FLOAT_OP(truncl, s)
833
{
834
    DT2 = float32_to_int64_round_to_zero(FST0, &env->fp_status);
835
    update_fcr31();
836
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
837
        DT2 = 0x7fffffffffffffffULL;
838
}
839
FLOAT_OP(truncw, d)
840
{
841
    WT2 = float64_to_int32_round_to_zero(FDT0, &env->fp_status);
842
    update_fcr31();
843
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
844
        WT2 = 0x7fffffff;
845
}
846
FLOAT_OP(truncw, s)
847
{
848
    WT2 = float32_to_int32_round_to_zero(FST0, &env->fp_status);
849
    update_fcr31();
850
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
851
        WT2 = 0x7fffffff;
852
}
853

    
854
FLOAT_OP(ceill, d)
855
{
856
    set_float_rounding_mode(float_round_up, &env->fp_status);
857
    DT2 = float64_round_to_int(FDT0, &env->fp_status);
858
    DT2 = float64_to_int64(DT2, &env->fp_status);
859
    RESTORE_ROUNDING_MODE;
860
    update_fcr31();
861
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
862
        DT2 = 0x7fffffffffffffffULL;
863
}
864
FLOAT_OP(ceill, s)
865
{
866
    set_float_rounding_mode(float_round_up, &env->fp_status);
867
    WT2 = float32_round_to_int(FST0, &env->fp_status);
868
    DT2 = float32_to_int64(WT2, &env->fp_status);
869
    RESTORE_ROUNDING_MODE;
870
    update_fcr31();
871
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
872
        DT2 = 0x7fffffffffffffffULL;
873
}
874
FLOAT_OP(ceilw, d)
875
{
876
    set_float_rounding_mode(float_round_up, &env->fp_status);
877
    DT2 = float64_round_to_int(FDT0, &env->fp_status);
878
// ???
879
    env->fp_status.float_exception_flags &= ~float_flag_inexact;
880
    WT2 = float64_to_int32(DT2, &env->fp_status);
881
    RESTORE_ROUNDING_MODE;
882
    update_fcr31();
883
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
884
        WT2 = 0x7fffffff;
885
}
886
FLOAT_OP(ceilw, s)
887
{
888
    set_float_rounding_mode(float_round_up, &env->fp_status);
889
    WT2 = float32_round_to_int(FST0, &env->fp_status);
890
    WT2 = float32_to_int32(WT2, &env->fp_status);
891
    RESTORE_ROUNDING_MODE;
892
    update_fcr31();
893
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
894
        WT2 = 0x7fffffff;
895
}
896

    
897
FLOAT_OP(floorl, d)
898
{
899
    set_float_rounding_mode(float_round_down, &env->fp_status);
900
    DT2 = float64_round_to_int(FDT0, &env->fp_status);
901
    DT2 = float64_to_int64(DT2, &env->fp_status);
902
    RESTORE_ROUNDING_MODE;
903
    update_fcr31();
904
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
905
        DT2 = 0x7fffffffffffffffULL;
906
}
907
FLOAT_OP(floorl, s)
908
{
909
    set_float_rounding_mode(float_round_down, &env->fp_status);
910
    WT2 = float32_round_to_int(FST0, &env->fp_status);
911
    DT2 = float32_to_int64(WT2, &env->fp_status);
912
    RESTORE_ROUNDING_MODE;
913
    update_fcr31();
914
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
915
        DT2 = 0x7fffffffffffffffULL;
916
}
917
FLOAT_OP(floorw, d)
918
{
919
    set_float_rounding_mode(float_round_down, &env->fp_status);
920
    DT2 = float64_round_to_int(FDT0, &env->fp_status);
921
// ???
922
    env->fp_status.float_exception_flags &= ~float_flag_inexact;
923
    WT2 = float64_to_int32(DT2, &env->fp_status);
924
    RESTORE_ROUNDING_MODE;
925
    update_fcr31();
926
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
927
        WT2 = 0x7fffffff;
928
}
929
FLOAT_OP(floorw, s)
930
{
931
    set_float_rounding_mode(float_round_down, &env->fp_status);
932
    WT2 = float32_round_to_int(FST0, &env->fp_status);
933
    WT2 = float32_to_int32(WT2, &env->fp_status);
934
    RESTORE_ROUNDING_MODE;
935
    update_fcr31();
936
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
937
        WT2 = 0x7fffffff;
938
}
939

    
940
/* MIPS specific unary operations */
941
FLOAT_OP(recip, d)
942
{
943
    set_float_exception_flags(0, &env->fp_status);
944
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fp_status);
945
    update_fcr31();
946
}
947
FLOAT_OP(recip, s)
948
{
949
    set_float_exception_flags(0, &env->fp_status);
950
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fp_status);
951
    update_fcr31();
952
}
953

    
954
FLOAT_OP(rsqrt, d)
955
{
956
    set_float_exception_flags(0, &env->fp_status);
957
    FDT2 = float64_sqrt(FDT0, &env->fp_status);
958
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fp_status);
959
    update_fcr31();
960
}
961
FLOAT_OP(rsqrt, s)
962
{
963
    set_float_exception_flags(0, &env->fp_status);
964
    FST2 = float32_sqrt(FST0, &env->fp_status);
965
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fp_status);
966
    update_fcr31();
967
}
968

    
969
FLOAT_OP(recip1, d)
970
{
971
    set_float_exception_flags(0, &env->fp_status);
972
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fp_status);
973
    update_fcr31();
974
}
975
FLOAT_OP(recip1, s)
976
{
977
    set_float_exception_flags(0, &env->fp_status);
978
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fp_status);
979
    update_fcr31();
980
}
981
FLOAT_OP(recip1, ps)
982
{
983
    set_float_exception_flags(0, &env->fp_status);
984
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fp_status);
985
    FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fp_status);
986
    update_fcr31();
987
}
988

    
989
FLOAT_OP(rsqrt1, d)
990
{
991
    set_float_exception_flags(0, &env->fp_status);
992
    FDT2 = float64_sqrt(FDT0, &env->fp_status);
993
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fp_status);
994
    update_fcr31();
995
}
996
FLOAT_OP(rsqrt1, s)
997
{
998
    set_float_exception_flags(0, &env->fp_status);
999
    FST2 = float32_sqrt(FST0, &env->fp_status);
1000
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fp_status);
1001
    update_fcr31();
1002
}
1003
FLOAT_OP(rsqrt1, ps)
1004
{
1005
    set_float_exception_flags(0, &env->fp_status);
1006
    FST2 = float32_sqrt(FST0, &env->fp_status);
1007
    FSTH2 = float32_sqrt(FSTH0, &env->fp_status);
1008
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fp_status);
1009
    FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fp_status);
1010
    update_fcr31();
1011
}
1012

    
1013
/* binary operations */
1014
#define FLOAT_BINOP(name) \
1015
FLOAT_OP(name, d)         \
1016
{                         \
1017
    set_float_exception_flags(0, &env->fp_status);            \
1018
    FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status);    \
1019
    update_fcr31();                                           \
1020
    if (GET_FP_CAUSE(env->fcr31) & FP_INVALID)                \
1021
        FDT2 = 0x7ff7ffffffffffffULL;                         \
1022
    else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) {       \
1023
        if ((env->fcr31 & 0x3) == 0)                          \
1024
            FDT2 &= FLOAT_SIGN64;                             \
1025
    }                     \
1026
}                         \
1027
FLOAT_OP(name, s)         \
1028
{                         \
1029
    set_float_exception_flags(0, &env->fp_status);            \
1030
    FST2 = float32_ ## name (FST0, FST1, &env->fp_status);    \
1031
    update_fcr31();                                           \
1032
    if (GET_FP_CAUSE(env->fcr31) & FP_INVALID)                \
1033
        FST2 = 0x7fbfffff;                                    \
1034
    else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) {       \
1035
        if ((env->fcr31 & 0x3) == 0)                          \
1036
            FST2 &= FLOAT_SIGN32;                             \
1037
    }                     \
1038
}                         \
1039
FLOAT_OP(name, ps)        \
1040
{                         \
1041
    set_float_exception_flags(0, &env->fp_status);            \
1042
    FST2 = float32_ ## name (FST0, FST1, &env->fp_status);    \
1043
    FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fp_status); \
1044
    update_fcr31();       \
1045
    if (GET_FP_CAUSE(env->fcr31) & FP_INVALID) {              \
1046
        FST2 = 0x7fbfffff;                                    \
1047
        FSTH2 = 0x7fbfffff;                                   \
1048
    } else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) {     \
1049
        if ((env->fcr31 & 0x3) == 0) {                        \
1050
            FST2 &= FLOAT_SIGN32;                             \
1051
            FSTH2 &= FLOAT_SIGN32;                            \
1052
        }                 \
1053
    }                     \
1054
}
1055
FLOAT_BINOP(add)
1056
FLOAT_BINOP(sub)
1057
FLOAT_BINOP(mul)
1058
FLOAT_BINOP(div)
1059
#undef FLOAT_BINOP
1060

    
1061
/* MIPS specific binary operations */
1062
FLOAT_OP(recip2, d)
1063
{
1064
    set_float_exception_flags(0, &env->fp_status);
1065
    FDT2 = float64_mul(FDT0, FDT2, &env->fp_status);
1066
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fp_status) ^ FLOAT_SIGN64;
1067
    update_fcr31();
1068
}
1069
FLOAT_OP(recip2, s)
1070
{
1071
    set_float_exception_flags(0, &env->fp_status);
1072
    FST2 = float32_mul(FST0, FST2, &env->fp_status);
1073
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status) ^ FLOAT_SIGN32;
1074
    update_fcr31();
1075
}
1076
FLOAT_OP(recip2, ps)
1077
{
1078
    set_float_exception_flags(0, &env->fp_status);
1079
    FST2 = float32_mul(FST0, FST2, &env->fp_status);
1080
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fp_status);
1081
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status) ^ FLOAT_SIGN32;
1082
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fp_status) ^ FLOAT_SIGN32;
1083
    update_fcr31();
1084
}
1085

    
1086
FLOAT_OP(rsqrt2, d)
1087
{
1088
    set_float_exception_flags(0, &env->fp_status);
1089
    FDT2 = float64_mul(FDT0, FDT2, &env->fp_status);
1090
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fp_status);
1091
    FDT2 = float64_div(FDT2, FLOAT_TWO64, &env->fp_status) ^ FLOAT_SIGN64;
1092
    update_fcr31();
1093
}
1094
FLOAT_OP(rsqrt2, s)
1095
{
1096
    set_float_exception_flags(0, &env->fp_status);
1097
    FST2 = float32_mul(FST0, FST2, &env->fp_status);
1098
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status);
1099
    FST2 = float32_div(FST2, FLOAT_TWO32, &env->fp_status) ^ FLOAT_SIGN32;
1100
    update_fcr31();
1101
}
1102
FLOAT_OP(rsqrt2, ps)
1103
{
1104
    set_float_exception_flags(0, &env->fp_status);
1105
    FST2 = float32_mul(FST0, FST2, &env->fp_status);
1106
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fp_status);
1107
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status);
1108
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fp_status);
1109
    FST2 = float32_div(FST2, FLOAT_TWO32, &env->fp_status) ^ FLOAT_SIGN32;
1110
    FSTH2 = float32_div(FSTH2, FLOAT_TWO32, &env->fp_status) ^ FLOAT_SIGN32;
1111
    update_fcr31();
1112
}
1113

    
1114
FLOAT_OP(addr, ps)
1115
{
1116
    set_float_exception_flags(0, &env->fp_status);
1117
    FST2 = float32_add (FST0, FSTH0, &env->fp_status);
1118
    FSTH2 = float32_add (FST1, FSTH1, &env->fp_status);
1119
    update_fcr31();
1120
}
1121

    
1122
FLOAT_OP(mulr, ps)
1123
{
1124
    set_float_exception_flags(0, &env->fp_status);
1125
    FST2 = float32_mul (FST0, FSTH0, &env->fp_status);
1126
    FSTH2 = float32_mul (FST1, FSTH1, &env->fp_status);
1127
    update_fcr31();
1128
}
1129

    
1130
/* compare operations */
1131
#define FOP_COND_D(op, cond)                   \
1132
void do_cmp_d_ ## op (long cc)                 \
1133
{                                              \
1134
    int c = cond;                              \
1135
    update_fcr31();                            \
1136
    if (c)                                     \
1137
        SET_FP_COND(cc, env);                  \
1138
    else                                       \
1139
        CLEAR_FP_COND(cc, env);                \
1140
}                                              \
1141
void do_cmpabs_d_ ## op (long cc)              \
1142
{                                              \
1143
    int c;                                     \
1144
    FDT0 &= ~FLOAT_SIGN64;                     \
1145
    FDT1 &= ~FLOAT_SIGN64;                     \
1146
    c = cond;                                  \
1147
    update_fcr31();                            \
1148
    if (c)                                     \
1149
        SET_FP_COND(cc, env);                  \
1150
    else                                       \
1151
        CLEAR_FP_COND(cc, env);                \
1152
}
1153

    
1154
int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
1155
{
1156
    if (float64_is_signaling_nan(a) ||
1157
        float64_is_signaling_nan(b) ||
1158
        (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
1159
        float_raise(float_flag_invalid, status);
1160
        return 1;
1161
    } else if (float64_is_nan(a) || float64_is_nan(b)) {
1162
        return 1;
1163
    } else {
1164
        return 0;
1165
    }
1166
}
1167

    
1168
/* NOTE: the comma operator will make "cond" to eval to false,
1169
 * but float*_is_unordered() is still called. */
1170
FOP_COND_D(f,   (float64_is_unordered(0, FDT1, FDT0, &env->fp_status), 0))
1171
FOP_COND_D(un,  float64_is_unordered(0, FDT1, FDT0, &env->fp_status))
1172
FOP_COND_D(eq,  !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status))
1173
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fp_status)  || float64_eq(FDT0, FDT1, &env->fp_status))
1174
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status))
1175
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fp_status)  || float64_lt(FDT0, FDT1, &env->fp_status))
1176
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status))
1177
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fp_status)  || float64_le(FDT0, FDT1, &env->fp_status))
1178
/* NOTE: the comma operator will make "cond" to eval to false,
1179
 * but float*_is_unordered() is still called. */
1180
FOP_COND_D(sf,  (float64_is_unordered(1, FDT1, FDT0, &env->fp_status), 0))
1181
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fp_status))
1182
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status))
1183
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fp_status)  || float64_eq(FDT0, FDT1, &env->fp_status))
1184
FOP_COND_D(lt,  !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status))
1185
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fp_status)  || float64_lt(FDT0, FDT1, &env->fp_status))
1186
FOP_COND_D(le,  !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status))
1187
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fp_status)  || float64_le(FDT0, FDT1, &env->fp_status))
1188

    
1189
#define FOP_COND_S(op, cond)                   \
1190
void do_cmp_s_ ## op (long cc)                 \
1191
{                                              \
1192
    int c = cond;                              \
1193
    update_fcr31();                            \
1194
    if (c)                                     \
1195
        SET_FP_COND(cc, env);                  \
1196
    else                                       \
1197
        CLEAR_FP_COND(cc, env);                \
1198
}                                              \
1199
void do_cmpabs_s_ ## op (long cc)              \
1200
{                                              \
1201
    int c;                                     \
1202
    FST0 &= ~FLOAT_SIGN32;                     \
1203
    FST1 &= ~FLOAT_SIGN32;                     \
1204
    c = cond;                                  \
1205
    update_fcr31();                            \
1206
    if (c)                                     \
1207
        SET_FP_COND(cc, env);                  \
1208
    else                                       \
1209
        CLEAR_FP_COND(cc, env);                \
1210
}
1211

    
1212
flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
1213
{
1214
    if (float32_is_signaling_nan(a) ||
1215
        float32_is_signaling_nan(b) ||
1216
        (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
1217
        float_raise(float_flag_invalid, status);
1218
        return 1;
1219
    } else if (float32_is_nan(a) || float32_is_nan(b)) {
1220
        return 1;
1221
    } else {
1222
        return 0;
1223
    }
1224
}
1225

    
1226
/* NOTE: the comma operator will make "cond" to eval to false,
1227
 * but float*_is_unordered() is still called. */
1228
FOP_COND_S(f,   (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0))
1229
FOP_COND_S(un,  float32_is_unordered(0, FST1, FST0, &env->fp_status))
1230
FOP_COND_S(eq,  !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status))
1231
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status)  || float32_eq(FST0, FST1, &env->fp_status))
1232
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status))
1233
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status)  || float32_lt(FST0, FST1, &env->fp_status))
1234
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status))
1235
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status)  || float32_le(FST0, FST1, &env->fp_status))
1236
/* NOTE: the comma operator will make "cond" to eval to false,
1237
 * but float*_is_unordered() is still called. */
1238
FOP_COND_S(sf,  (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0))
1239
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status))
1240
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status))
1241
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status)  || float32_eq(FST0, FST1, &env->fp_status))
1242
FOP_COND_S(lt,  !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status))
1243
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status)  || float32_lt(FST0, FST1, &env->fp_status))
1244
FOP_COND_S(le,  !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status))
1245
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status)  || float32_le(FST0, FST1, &env->fp_status))
1246

    
1247
#define FOP_COND_PS(op, condl, condh)          \
1248
void do_cmp_ps_ ## op (long cc)                \
1249
{                                              \
1250
    int cl = condl;                            \
1251
    int ch = condh;                            \
1252
    update_fcr31();                            \
1253
    if (cl)                                    \
1254
        SET_FP_COND(cc, env);                  \
1255
    else                                       \
1256
        CLEAR_FP_COND(cc, env);                \
1257
    if (ch)                                    \
1258
        SET_FP_COND(cc + 1, env);              \
1259
    else                                       \
1260
        CLEAR_FP_COND(cc + 1, env);            \
1261
}                                              \
1262
void do_cmpabs_ps_ ## op (long cc)             \
1263
{                                              \
1264
    int cl, ch;                                \
1265
    FST0 &= ~FLOAT_SIGN32;                     \
1266
    FSTH0 &= ~FLOAT_SIGN32;                    \
1267
    FST1 &= ~FLOAT_SIGN32;                     \
1268
    FSTH1 &= ~FLOAT_SIGN32;                    \
1269
    cl = condl;                                \
1270
    ch = condh;                                \
1271
    update_fcr31();                            \
1272
    if (cl)                                    \
1273
        SET_FP_COND(cc, env);                  \
1274
    else                                       \
1275
        CLEAR_FP_COND(cc, env);                \
1276
    if (ch)                                    \
1277
        SET_FP_COND(cc + 1, env);              \
1278
    else                                       \
1279
        CLEAR_FP_COND(cc + 1, env);            \
1280
}
1281

    
1282
/* NOTE: the comma operator will make "cond" to eval to false,
1283
 * but float*_is_unordered() is still called. */
1284
FOP_COND_PS(f,   (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0),
1285
                 (float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status), 0))
1286
FOP_COND_PS(un,  float32_is_unordered(0, FST1, FST0, &env->fp_status),
1287
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status))
1288
FOP_COND_PS(eq,  !float32_is_unordered(0, FST1, FST0, &env->fp_status)   && float32_eq(FST0, FST1, &env->fp_status),
1289
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status))
1290
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status)    || float32_eq(FST0, FST1, &env->fp_status),
1291
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fp_status))
1292
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status)   && float32_lt(FST0, FST1, &env->fp_status),
1293
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status))
1294
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status)    || float32_lt(FST0, FST1, &env->fp_status),
1295
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fp_status))
1296
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status)   && float32_le(FST0, FST1, &env->fp_status),
1297
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status))
1298
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status)    || float32_le(FST0, FST1, &env->fp_status),
1299
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status)  || float32_le(FSTH0, FSTH1, &env->fp_status))
1300
/* NOTE: the comma operator will make "cond" to eval to false,
1301
 * but float*_is_unordered() is still called. */
1302
FOP_COND_PS(sf,  (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0),
1303
                 (float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status), 0))
1304
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status),
1305
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status))
1306
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status)   && float32_eq(FST0, FST1, &env->fp_status),
1307
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status))
1308
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status)    || float32_eq(FST0, FST1, &env->fp_status),
1309
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fp_status))
1310
FOP_COND_PS(lt,  !float32_is_unordered(1, FST1, FST0, &env->fp_status)   && float32_lt(FST0, FST1, &env->fp_status),
1311
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status))
1312
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status)    || float32_lt(FST0, FST1, &env->fp_status),
1313
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fp_status))
1314
FOP_COND_PS(le,  !float32_is_unordered(1, FST1, FST0, &env->fp_status)   && float32_le(FST0, FST1, &env->fp_status),
1315
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status))
1316
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status)    || float32_le(FST0, FST1, &env->fp_status),
1317
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status)  || float32_le(FSTH0, FSTH1, &env->fp_status))