Statistics
| Branch: | Revision:

root / hw / ppc / spapr.c @ e68cb8b4

History | View | Annotate | Download (39.8 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "elf.h"
30
#include "net/net.h"
31
#include "sysemu/blockdev.h"
32
#include "sysemu/cpus.h"
33
#include "sysemu/kvm.h"
34
#include "kvm_ppc.h"
35
#include "mmu-hash64.h"
36

    
37
#include "hw/boards.h"
38
#include "hw/ppc/ppc.h"
39
#include "hw/loader.h"
40

    
41
#include "hw/ppc/spapr.h"
42
#include "hw/ppc/spapr_vio.h"
43
#include "hw/pci-host/spapr.h"
44
#include "hw/ppc/xics.h"
45
#include "hw/pci/msi.h"
46

    
47
#include "hw/pci/pci.h"
48

    
49
#include "exec/address-spaces.h"
50
#include "hw/usb.h"
51
#include "qemu/config-file.h"
52

    
53
#include <libfdt.h>
54

    
55
/* SLOF memory layout:
56
 *
57
 * SLOF raw image loaded at 0, copies its romfs right below the flat
58
 * device-tree, then position SLOF itself 31M below that
59
 *
60
 * So we set FW_OVERHEAD to 40MB which should account for all of that
61
 * and more
62
 *
63
 * We load our kernel at 4M, leaving space for SLOF initial image
64
 */
65
#define FDT_MAX_SIZE            0x10000
66
#define RTAS_MAX_SIZE           0x10000
67
#define FW_MAX_SIZE             0x400000
68
#define FW_FILE_NAME            "slof.bin"
69
#define FW_OVERHEAD             0x2800000
70
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
71

    
72
#define MIN_RMA_SLOF            128UL
73

    
74
#define TIMEBASE_FREQ           512000000ULL
75

    
76
#define MAX_CPUS                256
77
#define XICS_IRQS               1024
78

    
79
#define PHANDLE_XICP            0x00001111
80

    
81
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
82

    
83
sPAPREnvironment *spapr;
84

    
85
int spapr_allocate_irq(int hint, bool lsi)
86
{
87
    int irq;
88

    
89
    if (hint) {
90
        irq = hint;
91
        /* FIXME: we should probably check for collisions somehow */
92
    } else {
93
        irq = spapr->next_irq++;
94
    }
95

    
96
    /* Configure irq type */
97
    if (!xics_get_qirq(spapr->icp, irq)) {
98
        return 0;
99
    }
100

    
101
    xics_set_irq_type(spapr->icp, irq, lsi);
102

    
103
    return irq;
104
}
105

    
106
/* Allocate block of consequtive IRQs, returns a number of the first */
107
int spapr_allocate_irq_block(int num, bool lsi)
108
{
109
    int first = -1;
110
    int i;
111

    
112
    for (i = 0; i < num; ++i) {
113
        int irq;
114

    
115
        irq = spapr_allocate_irq(0, lsi);
116
        if (!irq) {
117
            return -1;
118
        }
119

    
120
        if (0 == i) {
121
            first = irq;
122
        }
123

    
124
        /* If the above doesn't create a consecutive block then that's
125
         * an internal bug */
126
        assert(irq == (first + i));
127
    }
128

    
129
    return first;
130
}
131

    
132
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
133
{
134
    int ret = 0, offset;
135
    CPUState *cpu;
136
    char cpu_model[32];
137
    int smt = kvmppc_smt_threads();
138
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
139

    
140
    assert(spapr->cpu_model);
141

    
142
    for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
143
        uint32_t associativity[] = {cpu_to_be32(0x5),
144
                                    cpu_to_be32(0x0),
145
                                    cpu_to_be32(0x0),
146
                                    cpu_to_be32(0x0),
147
                                    cpu_to_be32(cpu->numa_node),
148
                                    cpu_to_be32(cpu->cpu_index)};
149

    
150
        if ((cpu->cpu_index % smt) != 0) {
151
            continue;
152
        }
153

    
154
        snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
155
                 cpu->cpu_index);
156

    
157
        offset = fdt_path_offset(fdt, cpu_model);
158
        if (offset < 0) {
159
            return offset;
160
        }
161

    
162
        if (nb_numa_nodes > 1) {
163
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
164
                              sizeof(associativity));
165
            if (ret < 0) {
166
                return ret;
167
            }
168
        }
169

    
170
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
171
                          pft_size_prop, sizeof(pft_size_prop));
172
        if (ret < 0) {
173
            return ret;
174
        }
175
    }
176
    return ret;
177
}
178

    
179

    
180
static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
181
                                     size_t maxsize)
182
{
183
    size_t maxcells = maxsize / sizeof(uint32_t);
184
    int i, j, count;
185
    uint32_t *p = prop;
186

    
187
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
188
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
189

    
190
        if (!sps->page_shift) {
191
            break;
192
        }
193
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
194
            if (sps->enc[count].page_shift == 0) {
195
                break;
196
            }
197
        }
198
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
199
            break;
200
        }
201
        *(p++) = cpu_to_be32(sps->page_shift);
202
        *(p++) = cpu_to_be32(sps->slb_enc);
203
        *(p++) = cpu_to_be32(count);
204
        for (j = 0; j < count; j++) {
205
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
206
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
207
        }
208
    }
209

    
210
    return (p - prop) * sizeof(uint32_t);
211
}
212

    
213
#define _FDT(exp) \
214
    do { \
215
        int ret = (exp);                                           \
216
        if (ret < 0) {                                             \
217
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
218
                    #exp, fdt_strerror(ret));                      \
219
            exit(1);                                               \
220
        }                                                          \
221
    } while (0)
222

    
223

    
224
static void *spapr_create_fdt_skel(const char *cpu_model,
225
                                   hwaddr initrd_base,
226
                                   hwaddr initrd_size,
227
                                   hwaddr kernel_size,
228
                                   const char *boot_device,
229
                                   const char *kernel_cmdline,
230
                                   uint32_t epow_irq)
231
{
232
    void *fdt;
233
    CPUState *cs;
234
    uint32_t start_prop = cpu_to_be32(initrd_base);
235
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
236
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
237
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
238
    char qemu_hypertas_prop[] = "hcall-memop1";
239
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
240
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
241
    char *modelname;
242
    int i, smt = kvmppc_smt_threads();
243
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
244

    
245
    fdt = g_malloc0(FDT_MAX_SIZE);
246
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
247

    
248
    if (kernel_size) {
249
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
250
    }
251
    if (initrd_size) {
252
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
253
    }
254
    _FDT((fdt_finish_reservemap(fdt)));
255

    
256
    /* Root node */
257
    _FDT((fdt_begin_node(fdt, "")));
258
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
259
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
260
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
261

    
262
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
263
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
264

    
265
    /* /chosen */
266
    _FDT((fdt_begin_node(fdt, "chosen")));
267

    
268
    /* Set Form1_affinity */
269
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
270

    
271
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
272
    _FDT((fdt_property(fdt, "linux,initrd-start",
273
                       &start_prop, sizeof(start_prop))));
274
    _FDT((fdt_property(fdt, "linux,initrd-end",
275
                       &end_prop, sizeof(end_prop))));
276
    if (kernel_size) {
277
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
278
                              cpu_to_be64(kernel_size) };
279

    
280
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
281
    }
282
    if (boot_device) {
283
        _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
284
    }
285
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
286
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
287
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
288

    
289
    _FDT((fdt_end_node(fdt)));
290

    
291
    /* cpus */
292
    _FDT((fdt_begin_node(fdt, "cpus")));
293

    
294
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
295
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
296

    
297
    modelname = g_strdup(cpu_model);
298

    
299
    for (i = 0; i < strlen(modelname); i++) {
300
        modelname[i] = toupper(modelname[i]);
301
    }
302

    
303
    /* This is needed during FDT finalization */
304
    spapr->cpu_model = g_strdup(modelname);
305

    
306
    for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
307
        PowerPCCPU *cpu = POWERPC_CPU(cs);
308
        CPUPPCState *env = &cpu->env;
309
        PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
310
        int index = cs->cpu_index;
311
        uint32_t servers_prop[smp_threads];
312
        uint32_t gservers_prop[smp_threads * 2];
313
        char *nodename;
314
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
315
                           0xffffffff, 0xffffffff};
316
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
317
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
318
        uint32_t page_sizes_prop[64];
319
        size_t page_sizes_prop_size;
320

    
321
        if ((index % smt) != 0) {
322
            continue;
323
        }
324

    
325
        nodename = g_strdup_printf("%s@%x", modelname, index);
326

    
327
        _FDT((fdt_begin_node(fdt, nodename)));
328

    
329
        g_free(nodename);
330

    
331
        _FDT((fdt_property_cell(fdt, "reg", index)));
332
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
333

    
334
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
335
        _FDT((fdt_property_cell(fdt, "d-cache-block-size",
336
                                env->dcache_line_size)));
337
        _FDT((fdt_property_cell(fdt, "d-cache-line-size",
338
                                env->dcache_line_size)));
339
        _FDT((fdt_property_cell(fdt, "i-cache-block-size",
340
                                env->icache_line_size)));
341
        _FDT((fdt_property_cell(fdt, "i-cache-line-size",
342
                                env->icache_line_size)));
343

    
344
        if (pcc->l1_dcache_size) {
345
            _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
346
        } else {
347
            fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
348
        }
349
        if (pcc->l1_icache_size) {
350
            _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
351
        } else {
352
            fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
353
        }
354

    
355
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
356
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
357
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
358
        _FDT((fdt_property_string(fdt, "status", "okay")));
359
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
360

    
361
        /* Build interrupt servers and gservers properties */
362
        for (i = 0; i < smp_threads; i++) {
363
            servers_prop[i] = cpu_to_be32(index + i);
364
            /* Hack, direct the group queues back to cpu 0 */
365
            gservers_prop[i*2] = cpu_to_be32(index + i);
366
            gservers_prop[i*2 + 1] = 0;
367
        }
368
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
369
                           servers_prop, sizeof(servers_prop))));
370
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
371
                           gservers_prop, sizeof(gservers_prop))));
372

    
373
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
374
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
375
                               segs, sizeof(segs))));
376
        }
377

    
378
        /* Advertise VMX/VSX (vector extensions) if available
379
         *   0 / no property == no vector extensions
380
         *   1               == VMX / Altivec available
381
         *   2               == VSX available */
382
        if (env->insns_flags & PPC_ALTIVEC) {
383
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
384

    
385
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
386
        }
387

    
388
        /* Advertise DFP (Decimal Floating Point) if available
389
         *   0 / no property == no DFP
390
         *   1               == DFP available */
391
        if (env->insns_flags2 & PPC2_DFP) {
392
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
393
        }
394

    
395
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
396
                                                      sizeof(page_sizes_prop));
397
        if (page_sizes_prop_size) {
398
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
399
                               page_sizes_prop, page_sizes_prop_size)));
400
        }
401

    
402
        _FDT((fdt_end_node(fdt)));
403
    }
404

    
405
    g_free(modelname);
406

    
407
    _FDT((fdt_end_node(fdt)));
408

    
409
    /* RTAS */
410
    _FDT((fdt_begin_node(fdt, "rtas")));
411

    
412
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
413
                       sizeof(hypertas_prop))));
414
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
415
                       sizeof(qemu_hypertas_prop))));
416

    
417
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
418
        refpoints, sizeof(refpoints))));
419

    
420
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
421

    
422
    _FDT((fdt_end_node(fdt)));
423

    
424
    /* interrupt controller */
425
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
426

    
427
    _FDT((fdt_property_string(fdt, "device_type",
428
                              "PowerPC-External-Interrupt-Presentation")));
429
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
430
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
431
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
432
                       interrupt_server_ranges_prop,
433
                       sizeof(interrupt_server_ranges_prop))));
434
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
435
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
436
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
437

    
438
    _FDT((fdt_end_node(fdt)));
439

    
440
    /* vdevice */
441
    _FDT((fdt_begin_node(fdt, "vdevice")));
442

    
443
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
444
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
445
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
446
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
447
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
448
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
449

    
450
    _FDT((fdt_end_node(fdt)));
451

    
452
    /* event-sources */
453
    spapr_events_fdt_skel(fdt, epow_irq);
454

    
455
    _FDT((fdt_end_node(fdt))); /* close root node */
456
    _FDT((fdt_finish(fdt)));
457

    
458
    return fdt;
459
}
460

    
461
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
462
{
463
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
464
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
465
                                cpu_to_be32(0x0)};
466
    char mem_name[32];
467
    hwaddr node0_size, mem_start;
468
    uint64_t mem_reg_property[2];
469
    int i, off;
470

    
471
    /* memory node(s) */
472
    node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
473
    if (spapr->rma_size > node0_size) {
474
        spapr->rma_size = node0_size;
475
    }
476

    
477
    /* RMA */
478
    mem_reg_property[0] = 0;
479
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
480
    off = fdt_add_subnode(fdt, 0, "memory@0");
481
    _FDT(off);
482
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
483
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
484
                      sizeof(mem_reg_property))));
485
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
486
                      sizeof(associativity))));
487

    
488
    /* RAM: Node 0 */
489
    if (node0_size > spapr->rma_size) {
490
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
491
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
492

    
493
        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
494
        off = fdt_add_subnode(fdt, 0, mem_name);
495
        _FDT(off);
496
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
497
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
498
                          sizeof(mem_reg_property))));
499
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
500
                          sizeof(associativity))));
501
    }
502

    
503
    /* RAM: Node 1 and beyond */
504
    mem_start = node0_size;
505
    for (i = 1; i < nb_numa_nodes; i++) {
506
        mem_reg_property[0] = cpu_to_be64(mem_start);
507
        mem_reg_property[1] = cpu_to_be64(node_mem[i]);
508
        associativity[3] = associativity[4] = cpu_to_be32(i);
509
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
510
        off = fdt_add_subnode(fdt, 0, mem_name);
511
        _FDT(off);
512
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
513
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
514
                          sizeof(mem_reg_property))));
515
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
516
                          sizeof(associativity))));
517
        mem_start += node_mem[i];
518
    }
519

    
520
    return 0;
521
}
522

    
523
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
524
                               hwaddr fdt_addr,
525
                               hwaddr rtas_addr,
526
                               hwaddr rtas_size)
527
{
528
    int ret;
529
    void *fdt;
530
    sPAPRPHBState *phb;
531

    
532
    fdt = g_malloc(FDT_MAX_SIZE);
533

    
534
    /* open out the base tree into a temp buffer for the final tweaks */
535
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
536

    
537
    ret = spapr_populate_memory(spapr, fdt);
538
    if (ret < 0) {
539
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
540
        exit(1);
541
    }
542

    
543
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
544
    if (ret < 0) {
545
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
546
        exit(1);
547
    }
548

    
549
    QLIST_FOREACH(phb, &spapr->phbs, list) {
550
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
551
    }
552

    
553
    if (ret < 0) {
554
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
555
        exit(1);
556
    }
557

    
558
    /* RTAS */
559
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
560
    if (ret < 0) {
561
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
562
    }
563

    
564
    /* Advertise NUMA via ibm,associativity */
565
    ret = spapr_fixup_cpu_dt(fdt, spapr);
566
    if (ret < 0) {
567
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
568
    }
569

    
570
    if (!spapr->has_graphics) {
571
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
572
    }
573

    
574
    _FDT((fdt_pack(fdt)));
575

    
576
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
577
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
578
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
579
        exit(1);
580
    }
581

    
582
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
583

    
584
    g_free(fdt);
585
}
586

    
587
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
588
{
589
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
590
}
591

    
592
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
593
{
594
    CPUPPCState *env = &cpu->env;
595

    
596
    if (msr_pr) {
597
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
598
        env->gpr[3] = H_PRIVILEGE;
599
    } else {
600
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
601
    }
602
}
603

    
604
static void spapr_reset_htab(sPAPREnvironment *spapr)
605
{
606
    long shift;
607

    
608
    /* allocate hash page table.  For now we always make this 16mb,
609
     * later we should probably make it scale to the size of guest
610
     * RAM */
611

    
612
    shift = kvmppc_reset_htab(spapr->htab_shift);
613

    
614
    if (shift > 0) {
615
        /* Kernel handles htab, we don't need to allocate one */
616
        spapr->htab_shift = shift;
617
    } else {
618
        if (!spapr->htab) {
619
            /* Allocate an htab if we don't yet have one */
620
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
621
        }
622

    
623
        /* And clear it */
624
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
625
    }
626

    
627
    /* Update the RMA size if necessary */
628
    if (spapr->vrma_adjust) {
629
        spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
630
    }
631
}
632

    
633
static void ppc_spapr_reset(void)
634
{
635
    PowerPCCPU *first_ppc_cpu;
636

    
637
    /* Reset the hash table & recalc the RMA */
638
    spapr_reset_htab(spapr);
639

    
640
    qemu_devices_reset();
641

    
642
    /* Load the fdt */
643
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
644
                       spapr->rtas_size);
645

    
646
    /* Set up the entry state */
647
    first_ppc_cpu = POWERPC_CPU(first_cpu);
648
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
649
    first_ppc_cpu->env.gpr[5] = 0;
650
    first_cpu->halted = 0;
651
    first_ppc_cpu->env.nip = spapr->entry_point;
652

    
653
}
654

    
655
static void spapr_cpu_reset(void *opaque)
656
{
657
    PowerPCCPU *cpu = opaque;
658
    CPUState *cs = CPU(cpu);
659
    CPUPPCState *env = &cpu->env;
660

    
661
    cpu_reset(cs);
662

    
663
    /* All CPUs start halted.  CPU0 is unhalted from the machine level
664
     * reset code and the rest are explicitly started up by the guest
665
     * using an RTAS call */
666
    cs->halted = 1;
667

    
668
    env->spr[SPR_HIOR] = 0;
669

    
670
    env->external_htab = (uint8_t *)spapr->htab;
671
    env->htab_base = -1;
672
    env->htab_mask = HTAB_SIZE(spapr) - 1;
673
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
674
        (spapr->htab_shift - 18);
675
}
676

    
677
static void spapr_create_nvram(sPAPREnvironment *spapr)
678
{
679
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
680
    const char *drivename = qemu_opt_get(qemu_get_machine_opts(), "nvram");
681

    
682
    if (drivename) {
683
        BlockDriverState *bs;
684

    
685
        bs = bdrv_find(drivename);
686
        if (!bs) {
687
            fprintf(stderr, "No such block device \"%s\" for nvram\n",
688
                    drivename);
689
            exit(1);
690
        }
691
        qdev_prop_set_drive_nofail(dev, "drive", bs);
692
    }
693

    
694
    qdev_init_nofail(dev);
695

    
696
    spapr->nvram = (struct sPAPRNVRAM *)dev;
697
}
698

    
699
/* Returns whether we want to use VGA or not */
700
static int spapr_vga_init(PCIBus *pci_bus)
701
{
702
    switch (vga_interface_type) {
703
    case VGA_NONE:
704
    case VGA_STD:
705
        return pci_vga_init(pci_bus) != NULL;
706
    default:
707
        fprintf(stderr, "This vga model is not supported,"
708
                "currently it only supports -vga std\n");
709
        exit(0);
710
        break;
711
    }
712
}
713

    
714
static const VMStateDescription vmstate_spapr = {
715
    .name = "spapr",
716
    .version_id = 1,
717
    .minimum_version_id = 1,
718
    .minimum_version_id_old = 1,
719
    .fields      = (VMStateField []) {
720
        VMSTATE_UINT32(next_irq, sPAPREnvironment),
721

    
722
        /* RTC offset */
723
        VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
724

    
725
        VMSTATE_END_OF_LIST()
726
    },
727
};
728

    
729
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
730
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
731
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
732
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
733

    
734
static int htab_save_setup(QEMUFile *f, void *opaque)
735
{
736
    sPAPREnvironment *spapr = opaque;
737

    
738
    /* "Iteration" header */
739
    qemu_put_be32(f, spapr->htab_shift);
740

    
741
    if (spapr->htab) {
742
        spapr->htab_save_index = 0;
743
        spapr->htab_first_pass = true;
744
    } else {
745
        assert(kvm_enabled());
746

    
747
        spapr->htab_fd = kvmppc_get_htab_fd(false);
748
        if (spapr->htab_fd < 0) {
749
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
750
                    strerror(errno));
751
            return -1;
752
        }
753
    }
754

    
755

    
756
    return 0;
757
}
758

    
759
static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
760
                                 int64_t max_ns)
761
{
762
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
763
    int index = spapr->htab_save_index;
764
    int64_t starttime = qemu_get_clock_ns(rt_clock);
765

    
766
    assert(spapr->htab_first_pass);
767

    
768
    do {
769
        int chunkstart;
770

    
771
        /* Consume invalid HPTEs */
772
        while ((index < htabslots)
773
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
774
            index++;
775
            CLEAN_HPTE(HPTE(spapr->htab, index));
776
        }
777

    
778
        /* Consume valid HPTEs */
779
        chunkstart = index;
780
        while ((index < htabslots)
781
               && HPTE_VALID(HPTE(spapr->htab, index))) {
782
            index++;
783
            CLEAN_HPTE(HPTE(spapr->htab, index));
784
        }
785

    
786
        if (index > chunkstart) {
787
            int n_valid = index - chunkstart;
788

    
789
            qemu_put_be32(f, chunkstart);
790
            qemu_put_be16(f, n_valid);
791
            qemu_put_be16(f, 0);
792
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
793
                            HASH_PTE_SIZE_64 * n_valid);
794

    
795
            if ((qemu_get_clock_ns(rt_clock) - starttime) > max_ns) {
796
                break;
797
            }
798
        }
799
    } while ((index < htabslots) && !qemu_file_rate_limit(f));
800

    
801
    if (index >= htabslots) {
802
        assert(index == htabslots);
803
        index = 0;
804
        spapr->htab_first_pass = false;
805
    }
806
    spapr->htab_save_index = index;
807
}
808

    
809
static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
810
                                int64_t max_ns)
811
{
812
    bool final = max_ns < 0;
813
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
814
    int examined = 0, sent = 0;
815
    int index = spapr->htab_save_index;
816
    int64_t starttime = qemu_get_clock_ns(rt_clock);
817

    
818
    assert(!spapr->htab_first_pass);
819

    
820
    do {
821
        int chunkstart, invalidstart;
822

    
823
        /* Consume non-dirty HPTEs */
824
        while ((index < htabslots)
825
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
826
            index++;
827
            examined++;
828
        }
829

    
830
        chunkstart = index;
831
        /* Consume valid dirty HPTEs */
832
        while ((index < htabslots)
833
               && HPTE_DIRTY(HPTE(spapr->htab, index))
834
               && HPTE_VALID(HPTE(spapr->htab, index))) {
835
            CLEAN_HPTE(HPTE(spapr->htab, index));
836
            index++;
837
            examined++;
838
        }
839

    
840
        invalidstart = index;
841
        /* Consume invalid dirty HPTEs */
842
        while ((index < htabslots)
843
               && HPTE_DIRTY(HPTE(spapr->htab, index))
844
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
845
            CLEAN_HPTE(HPTE(spapr->htab, index));
846
            index++;
847
            examined++;
848
        }
849

    
850
        if (index > chunkstart) {
851
            int n_valid = invalidstart - chunkstart;
852
            int n_invalid = index - invalidstart;
853

    
854
            qemu_put_be32(f, chunkstart);
855
            qemu_put_be16(f, n_valid);
856
            qemu_put_be16(f, n_invalid);
857
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
858
                            HASH_PTE_SIZE_64 * n_valid);
859
            sent += index - chunkstart;
860

    
861
            if (!final && (qemu_get_clock_ns(rt_clock) - starttime) > max_ns) {
862
                break;
863
            }
864
        }
865

    
866
        if (examined >= htabslots) {
867
            break;
868
        }
869

    
870
        if (index >= htabslots) {
871
            assert(index == htabslots);
872
            index = 0;
873
        }
874
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
875

    
876
    if (index >= htabslots) {
877
        assert(index == htabslots);
878
        index = 0;
879
    }
880

    
881
    spapr->htab_save_index = index;
882

    
883
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
884
}
885

    
886
#define MAX_ITERATION_NS    5000000 /* 5 ms */
887
#define MAX_KVM_BUF_SIZE    2048
888

    
889
static int htab_save_iterate(QEMUFile *f, void *opaque)
890
{
891
    sPAPREnvironment *spapr = opaque;
892
    int rc = 0;
893

    
894
    /* Iteration header */
895
    qemu_put_be32(f, 0);
896

    
897
    if (!spapr->htab) {
898
        assert(kvm_enabled());
899

    
900
        rc = kvmppc_save_htab(f, spapr->htab_fd,
901
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
902
        if (rc < 0) {
903
            return rc;
904
        }
905
    } else  if (spapr->htab_first_pass) {
906
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
907
    } else {
908
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
909
    }
910

    
911
    /* End marker */
912
    qemu_put_be32(f, 0);
913
    qemu_put_be16(f, 0);
914
    qemu_put_be16(f, 0);
915

    
916
    return rc;
917
}
918

    
919
static int htab_save_complete(QEMUFile *f, void *opaque)
920
{
921
    sPAPREnvironment *spapr = opaque;
922

    
923
    /* Iteration header */
924
    qemu_put_be32(f, 0);
925

    
926
    if (!spapr->htab) {
927
        int rc;
928

    
929
        assert(kvm_enabled());
930

    
931
        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
932
        if (rc < 0) {
933
            return rc;
934
        }
935
        close(spapr->htab_fd);
936
        spapr->htab_fd = -1;
937
    } else {
938
        htab_save_later_pass(f, spapr, -1);
939
    }
940

    
941
    /* End marker */
942
    qemu_put_be32(f, 0);
943
    qemu_put_be16(f, 0);
944
    qemu_put_be16(f, 0);
945

    
946
    return 0;
947
}
948

    
949
static int htab_load(QEMUFile *f, void *opaque, int version_id)
950
{
951
    sPAPREnvironment *spapr = opaque;
952
    uint32_t section_hdr;
953
    int fd = -1;
954

    
955
    if (version_id < 1 || version_id > 1) {
956
        fprintf(stderr, "htab_load() bad version\n");
957
        return -EINVAL;
958
    }
959

    
960
    section_hdr = qemu_get_be32(f);
961

    
962
    if (section_hdr) {
963
        /* First section, just the hash shift */
964
        if (spapr->htab_shift != section_hdr) {
965
            return -EINVAL;
966
        }
967
        return 0;
968
    }
969

    
970
    if (!spapr->htab) {
971
        assert(kvm_enabled());
972

    
973
        fd = kvmppc_get_htab_fd(true);
974
        if (fd < 0) {
975
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
976
                    strerror(errno));
977
        }
978
    }
979

    
980
    while (true) {
981
        uint32_t index;
982
        uint16_t n_valid, n_invalid;
983

    
984
        index = qemu_get_be32(f);
985
        n_valid = qemu_get_be16(f);
986
        n_invalid = qemu_get_be16(f);
987

    
988
        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
989
            /* End of Stream */
990
            break;
991
        }
992

    
993
        if ((index + n_valid + n_invalid) >
994
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
995
            /* Bad index in stream */
996
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
997
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
998
                    spapr->htab_shift);
999
            return -EINVAL;
1000
        }
1001

    
1002
        if (spapr->htab) {
1003
            if (n_valid) {
1004
                qemu_get_buffer(f, HPTE(spapr->htab, index),
1005
                                HASH_PTE_SIZE_64 * n_valid);
1006
            }
1007
            if (n_invalid) {
1008
                memset(HPTE(spapr->htab, index + n_valid), 0,
1009
                       HASH_PTE_SIZE_64 * n_invalid);
1010
            }
1011
        } else {
1012
            int rc;
1013

    
1014
            assert(fd >= 0);
1015

    
1016
            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1017
            if (rc < 0) {
1018
                return rc;
1019
            }
1020
        }
1021
    }
1022

    
1023
    if (!spapr->htab) {
1024
        assert(fd >= 0);
1025
        close(fd);
1026
    }
1027

    
1028
    return 0;
1029
}
1030

    
1031
static SaveVMHandlers savevm_htab_handlers = {
1032
    .save_live_setup = htab_save_setup,
1033
    .save_live_iterate = htab_save_iterate,
1034
    .save_live_complete = htab_save_complete,
1035
    .load_state = htab_load,
1036
};
1037

    
1038
/* pSeries LPAR / sPAPR hardware init */
1039
static void ppc_spapr_init(QEMUMachineInitArgs *args)
1040
{
1041
    ram_addr_t ram_size = args->ram_size;
1042
    const char *cpu_model = args->cpu_model;
1043
    const char *kernel_filename = args->kernel_filename;
1044
    const char *kernel_cmdline = args->kernel_cmdline;
1045
    const char *initrd_filename = args->initrd_filename;
1046
    const char *boot_device = args->boot_device;
1047
    PowerPCCPU *cpu;
1048
    CPUPPCState *env;
1049
    PCIHostState *phb;
1050
    int i;
1051
    MemoryRegion *sysmem = get_system_memory();
1052
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1053
    hwaddr rma_alloc_size;
1054
    uint32_t initrd_base = 0;
1055
    long kernel_size = 0, initrd_size = 0;
1056
    long load_limit, rtas_limit, fw_size;
1057
    char *filename;
1058

    
1059
    msi_supported = true;
1060

    
1061
    spapr = g_malloc0(sizeof(*spapr));
1062
    QLIST_INIT(&spapr->phbs);
1063

    
1064
    cpu_ppc_hypercall = emulate_spapr_hypercall;
1065

    
1066
    /* Allocate RMA if necessary */
1067
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
1068

    
1069
    if (rma_alloc_size == -1) {
1070
        hw_error("qemu: Unable to create RMA\n");
1071
        exit(1);
1072
    }
1073

    
1074
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
1075
        spapr->rma_size = rma_alloc_size;
1076
    } else {
1077
        spapr->rma_size = ram_size;
1078

    
1079
        /* With KVM, we don't actually know whether KVM supports an
1080
         * unbounded RMA (PR KVM) or is limited by the hash table size
1081
         * (HV KVM using VRMA), so we always assume the latter
1082
         *
1083
         * In that case, we also limit the initial allocations for RTAS
1084
         * etc... to 256M since we have no way to know what the VRMA size
1085
         * is going to be as it depends on the size of the hash table
1086
         * isn't determined yet.
1087
         */
1088
        if (kvm_enabled()) {
1089
            spapr->vrma_adjust = 1;
1090
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1091
        }
1092
    }
1093

    
1094
    /* We place the device tree and RTAS just below either the top of the RMA,
1095
     * or just below 2GB, whichever is lowere, so that it can be
1096
     * processed with 32-bit real mode code if necessary */
1097
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
1098
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1099
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1100
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
1101

    
1102
    /* We aim for a hash table of size 1/128 the size of RAM.  The
1103
     * normal rule of thumb is 1/64 the size of RAM, but that's much
1104
     * more than needed for the Linux guests we support. */
1105
    spapr->htab_shift = 18; /* Minimum architected size */
1106
    while (spapr->htab_shift <= 46) {
1107
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1108
            break;
1109
        }
1110
        spapr->htab_shift++;
1111
    }
1112

    
1113
    /* Set up Interrupt Controller before we create the VCPUs */
1114
    spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1115
                                  XICS_IRQS);
1116
    spapr->next_irq = XICS_IRQ_BASE;
1117

    
1118
    /* init CPUs */
1119
    if (cpu_model == NULL) {
1120
        cpu_model = kvm_enabled() ? "host" : "POWER7";
1121
    }
1122
    for (i = 0; i < smp_cpus; i++) {
1123
        cpu = cpu_ppc_init(cpu_model);
1124
        if (cpu == NULL) {
1125
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1126
            exit(1);
1127
        }
1128
        env = &cpu->env;
1129

    
1130
        xics_cpu_setup(spapr->icp, cpu);
1131

    
1132
        /* Set time-base frequency to 512 MHz */
1133
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1134

    
1135
        /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1136
         * MSR[IP] should never be set.
1137
         */
1138
        env->msr_mask &= ~(1 << 6);
1139

    
1140
        /* Tell KVM that we're in PAPR mode */
1141
        if (kvm_enabled()) {
1142
            kvmppc_set_papr(cpu);
1143
        }
1144

    
1145
        qemu_register_reset(spapr_cpu_reset, cpu);
1146
    }
1147

    
1148
    /* allocate RAM */
1149
    spapr->ram_limit = ram_size;
1150
    if (spapr->ram_limit > rma_alloc_size) {
1151
        ram_addr_t nonrma_base = rma_alloc_size;
1152
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
1153

    
1154
        memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1155
        vmstate_register_ram_global(ram);
1156
        memory_region_add_subregion(sysmem, nonrma_base, ram);
1157
    }
1158

    
1159
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1160
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1161
                                           rtas_limit - spapr->rtas_addr);
1162
    if (spapr->rtas_size < 0) {
1163
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1164
        exit(1);
1165
    }
1166
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1167
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1168
                 spapr->rtas_size, RTAS_MAX_SIZE);
1169
        exit(1);
1170
    }
1171
    g_free(filename);
1172

    
1173
    /* Set up EPOW events infrastructure */
1174
    spapr_events_init(spapr);
1175

    
1176
    /* Set up VIO bus */
1177
    spapr->vio_bus = spapr_vio_bus_init();
1178

    
1179
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1180
        if (serial_hds[i]) {
1181
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1182
        }
1183
    }
1184

    
1185
    /* We always have at least the nvram device on VIO */
1186
    spapr_create_nvram(spapr);
1187

    
1188
    /* Set up PCI */
1189
    spapr_pci_rtas_init();
1190

    
1191
    phb = spapr_create_phb(spapr, 0);
1192

    
1193
    for (i = 0; i < nb_nics; i++) {
1194
        NICInfo *nd = &nd_table[i];
1195

    
1196
        if (!nd->model) {
1197
            nd->model = g_strdup("ibmveth");
1198
        }
1199

    
1200
        if (strcmp(nd->model, "ibmveth") == 0) {
1201
            spapr_vlan_create(spapr->vio_bus, nd);
1202
        } else {
1203
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1204
        }
1205
    }
1206

    
1207
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1208
        spapr_vscsi_create(spapr->vio_bus);
1209
    }
1210

    
1211
    /* Graphics */
1212
    if (spapr_vga_init(phb->bus)) {
1213
        spapr->has_graphics = true;
1214
    }
1215

    
1216
    if (usb_enabled(spapr->has_graphics)) {
1217
        pci_create_simple(phb->bus, -1, "pci-ohci");
1218
        if (spapr->has_graphics) {
1219
            usbdevice_create("keyboard");
1220
            usbdevice_create("mouse");
1221
        }
1222
    }
1223

    
1224
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1225
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1226
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1227
        exit(1);
1228
    }
1229

    
1230
    if (kernel_filename) {
1231
        uint64_t lowaddr = 0;
1232

    
1233
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1234
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1235
        if (kernel_size < 0) {
1236
            kernel_size = load_image_targphys(kernel_filename,
1237
                                              KERNEL_LOAD_ADDR,
1238
                                              load_limit - KERNEL_LOAD_ADDR);
1239
        }
1240
        if (kernel_size < 0) {
1241
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
1242
                    kernel_filename);
1243
            exit(1);
1244
        }
1245

    
1246
        /* load initrd */
1247
        if (initrd_filename) {
1248
            /* Try to locate the initrd in the gap between the kernel
1249
             * and the firmware. Add a bit of space just in case
1250
             */
1251
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1252
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1253
                                              load_limit - initrd_base);
1254
            if (initrd_size < 0) {
1255
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1256
                        initrd_filename);
1257
                exit(1);
1258
            }
1259
        } else {
1260
            initrd_base = 0;
1261
            initrd_size = 0;
1262
        }
1263
    }
1264

    
1265
    if (bios_name == NULL) {
1266
        bios_name = FW_FILE_NAME;
1267
    }
1268
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1269
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1270
    if (fw_size < 0) {
1271
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1272
        exit(1);
1273
    }
1274
    g_free(filename);
1275

    
1276
    spapr->entry_point = 0x100;
1277

    
1278
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1279
    register_savevm_live(NULL, "spapr/htab", -1, 1,
1280
                         &savevm_htab_handlers, spapr);
1281

    
1282
    /* Prepare the device tree */
1283
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
1284
                                            initrd_base, initrd_size,
1285
                                            kernel_size,
1286
                                            boot_device, kernel_cmdline,
1287
                                            spapr->epow_irq);
1288
    assert(spapr->fdt_skel != NULL);
1289
}
1290

    
1291
static QEMUMachine spapr_machine = {
1292
    .name = "pseries",
1293
    .desc = "pSeries Logical Partition (PAPR compliant)",
1294
    .is_default = 1,
1295
    .init = ppc_spapr_init,
1296
    .reset = ppc_spapr_reset,
1297
    .block_default_type = IF_SCSI,
1298
    .max_cpus = MAX_CPUS,
1299
    .no_parallel = 1,
1300
    .boot_order = NULL,
1301
};
1302

    
1303
static void spapr_machine_init(void)
1304
{
1305
    qemu_register_machine(&spapr_machine);
1306
}
1307

    
1308
machine_init(spapr_machine_init);