Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ e72210e1

History | View | Annotate | Download (10.5 kB)

1
/*
2
 *  i386 execution defines
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "dyngen-exec.h"
22

    
23
/* XXX: factorize this mess */
24
#ifdef TARGET_X86_64
25
#define TARGET_LONG_BITS 64
26
#else
27
#define TARGET_LONG_BITS 32
28
#endif
29

    
30
#include "cpu-defs.h"
31

    
32
register struct CPUX86State *env asm(AREG0);
33

    
34
extern FILE *logfile;
35
extern int loglevel;
36

    
37
#define EAX (env->regs[R_EAX])
38
#define ECX (env->regs[R_ECX])
39
#define EDX (env->regs[R_EDX])
40
#define EBX (env->regs[R_EBX])
41
#define ESP (env->regs[R_ESP])
42
#define EBP (env->regs[R_EBP])
43
#define ESI (env->regs[R_ESI])
44
#define EDI (env->regs[R_EDI])
45
#define EIP (env->eip)
46
#define DF  (env->df)
47

    
48
#define CC_SRC (env->cc_src)
49
#define CC_DST (env->cc_dst)
50
#define CC_OP  (env->cc_op)
51

    
52
/* float macros */
53
#define FT0    (env->ft0)
54
#define ST0    (env->fpregs[env->fpstt].d)
55
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
56
#define ST1    ST(1)
57

    
58
#include "cpu.h"
59
#include "exec-all.h"
60

    
61
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
62
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
63
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
64
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
65
                             int is_write, int mmu_idx, int is_softmmu);
66
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
67
              void *retaddr);
68
void __hidden cpu_lock(void);
69
void __hidden cpu_unlock(void);
70
void do_interrupt(int intno, int is_int, int error_code,
71
                  target_ulong next_eip, int is_hw);
72
void do_interrupt_user(int intno, int is_int, int error_code,
73
                       target_ulong next_eip);
74
void raise_interrupt(int intno, int is_int, int error_code,
75
                     int next_eip_addend);
76
void raise_exception_err(int exception_index, int error_code);
77
void raise_exception(int exception_index);
78
void do_smm_enter(void);
79
void __hidden cpu_loop_exit(void);
80

    
81
void OPPROTO op_movl_eflags_T0(void);
82
void OPPROTO op_movl_T0_eflags(void);
83

    
84
/* n must be a constant to be efficient */
85
static inline target_long lshift(target_long x, int n)
86
{
87
    if (n >= 0)
88
        return x << n;
89
    else
90
        return x >> (-n);
91
}
92

    
93
#include "helper.h"
94

    
95
static inline void svm_check_intercept(uint32_t type)
96
{
97
    helper_svm_check_intercept_param(type, 0);
98
}
99

    
100
#if !defined(CONFIG_USER_ONLY)
101

    
102
#include "softmmu_exec.h"
103

    
104
#endif /* !defined(CONFIG_USER_ONLY) */
105

    
106
#ifdef USE_X86LDOUBLE
107
/* use long double functions */
108
#define floatx_to_int32 floatx80_to_int32
109
#define floatx_to_int64 floatx80_to_int64
110
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
111
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
112
#define int32_to_floatx int32_to_floatx80
113
#define int64_to_floatx int64_to_floatx80
114
#define float32_to_floatx float32_to_floatx80
115
#define float64_to_floatx float64_to_floatx80
116
#define floatx_to_float32 floatx80_to_float32
117
#define floatx_to_float64 floatx80_to_float64
118
#define floatx_abs floatx80_abs
119
#define floatx_chs floatx80_chs
120
#define floatx_round_to_int floatx80_round_to_int
121
#define floatx_compare floatx80_compare
122
#define floatx_compare_quiet floatx80_compare_quiet
123
#define sin sinl
124
#define cos cosl
125
#define sqrt sqrtl
126
#define pow powl
127
#define log logl
128
#define tan tanl
129
#define atan2 atan2l
130
#define floor floorl
131
#define ceil ceill
132
#define ldexp ldexpl
133
#else
134
#define floatx_to_int32 float64_to_int32
135
#define floatx_to_int64 float64_to_int64
136
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
137
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
138
#define int32_to_floatx int32_to_float64
139
#define int64_to_floatx int64_to_float64
140
#define float32_to_floatx float32_to_float64
141
#define float64_to_floatx(x, e) (x)
142
#define floatx_to_float32 float64_to_float32
143
#define floatx_to_float64(x, e) (x)
144
#define floatx_abs float64_abs
145
#define floatx_chs float64_chs
146
#define floatx_round_to_int float64_round_to_int
147
#define floatx_compare float64_compare
148
#define floatx_compare_quiet float64_compare_quiet
149
#endif
150

    
151
extern CPU86_LDouble sin(CPU86_LDouble x);
152
extern CPU86_LDouble cos(CPU86_LDouble x);
153
extern CPU86_LDouble sqrt(CPU86_LDouble x);
154
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
155
extern CPU86_LDouble log(CPU86_LDouble x);
156
extern CPU86_LDouble tan(CPU86_LDouble x);
157
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
158
extern CPU86_LDouble floor(CPU86_LDouble x);
159
extern CPU86_LDouble ceil(CPU86_LDouble x);
160

    
161
#define RC_MASK         0xc00
162
#define RC_NEAR                0x000
163
#define RC_DOWN                0x400
164
#define RC_UP                0x800
165
#define RC_CHOP                0xc00
166

    
167
#define MAXTAN 9223372036854775808.0
168

    
169
#ifdef USE_X86LDOUBLE
170

    
171
/* only for x86 */
172
typedef union {
173
    long double d;
174
    struct {
175
        unsigned long long lower;
176
        unsigned short upper;
177
    } l;
178
} CPU86_LDoubleU;
179

    
180
/* the following deal with x86 long double-precision numbers */
181
#define MAXEXPD 0x7fff
182
#define EXPBIAS 16383
183
#define EXPD(fp)        (fp.l.upper & 0x7fff)
184
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
185
#define MANTD(fp)       (fp.l.lower)
186
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
187

    
188
#else
189

    
190
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
191
typedef union {
192
    double d;
193
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
194
    struct {
195
        uint32_t lower;
196
        int32_t upper;
197
    } l;
198
#else
199
    struct {
200
        int32_t upper;
201
        uint32_t lower;
202
    } l;
203
#endif
204
#ifndef __arm__
205
    int64_t ll;
206
#endif
207
} CPU86_LDoubleU;
208

    
209
/* the following deal with IEEE double-precision numbers */
210
#define MAXEXPD 0x7ff
211
#define EXPBIAS 1023
212
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
213
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
214
#ifdef __arm__
215
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
216
#else
217
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
218
#endif
219
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
220
#endif
221

    
222
static inline void fpush(void)
223
{
224
    env->fpstt = (env->fpstt - 1) & 7;
225
    env->fptags[env->fpstt] = 0; /* validate stack entry */
226
}
227

    
228
static inline void fpop(void)
229
{
230
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
231
    env->fpstt = (env->fpstt + 1) & 7;
232
}
233

    
234
#ifndef USE_X86LDOUBLE
235
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
236
{
237
    CPU86_LDoubleU temp;
238
    int upper, e;
239
    uint64_t ll;
240

    
241
    /* mantissa */
242
    upper = lduw(ptr + 8);
243
    /* XXX: handle overflow ? */
244
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
245
    e |= (upper >> 4) & 0x800; /* sign */
246
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
247
#ifdef __arm__
248
    temp.l.upper = (e << 20) | (ll >> 32);
249
    temp.l.lower = ll;
250
#else
251
    temp.ll = ll | ((uint64_t)e << 52);
252
#endif
253
    return temp.d;
254
}
255

    
256
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
257
{
258
    CPU86_LDoubleU temp;
259
    int e;
260

    
261
    temp.d = f;
262
    /* mantissa */
263
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
264
    /* exponent + sign */
265
    e = EXPD(temp) - EXPBIAS + 16383;
266
    e |= SIGND(temp) >> 16;
267
    stw(ptr + 8, e);
268
}
269
#else
270

    
271
/* we use memory access macros */
272

    
273
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
274
{
275
    CPU86_LDoubleU temp;
276

    
277
    temp.l.lower = ldq(ptr);
278
    temp.l.upper = lduw(ptr + 8);
279
    return temp.d;
280
}
281

    
282
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
283
{
284
    CPU86_LDoubleU temp;
285

    
286
    temp.d = f;
287
    stq(ptr, temp.l.lower);
288
    stw(ptr + 8, temp.l.upper);
289
}
290

    
291
#endif /* USE_X86LDOUBLE */
292

    
293
#define FPUS_IE (1 << 0)
294
#define FPUS_DE (1 << 1)
295
#define FPUS_ZE (1 << 2)
296
#define FPUS_OE (1 << 3)
297
#define FPUS_UE (1 << 4)
298
#define FPUS_PE (1 << 5)
299
#define FPUS_SF (1 << 6)
300
#define FPUS_SE (1 << 7)
301
#define FPUS_B  (1 << 15)
302

    
303
#define FPUC_EM 0x3f
304

    
305
extern const CPU86_LDouble f15rk[7];
306

    
307
void fpu_raise_exception(void);
308
void restore_native_fp_state(CPUState *env);
309
void save_native_fp_state(CPUState *env);
310

    
311
extern const uint8_t parity_table[256];
312
extern const uint8_t rclw_table[32];
313
extern const uint8_t rclb_table[32];
314

    
315
static inline uint32_t compute_eflags(void)
316
{
317
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
318
}
319

    
320
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
321
static inline void load_eflags(int eflags, int update_mask)
322
{
323
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
324
    DF = 1 - (2 * ((eflags >> 10) & 1));
325
    env->eflags = (env->eflags & ~update_mask) |
326
        (eflags & update_mask) | 0x2;
327
}
328

    
329
static inline void env_to_regs(void)
330
{
331
#ifdef reg_EAX
332
    EAX = env->regs[R_EAX];
333
#endif
334
#ifdef reg_ECX
335
    ECX = env->regs[R_ECX];
336
#endif
337
#ifdef reg_EDX
338
    EDX = env->regs[R_EDX];
339
#endif
340
#ifdef reg_EBX
341
    EBX = env->regs[R_EBX];
342
#endif
343
#ifdef reg_ESP
344
    ESP = env->regs[R_ESP];
345
#endif
346
#ifdef reg_EBP
347
    EBP = env->regs[R_EBP];
348
#endif
349
#ifdef reg_ESI
350
    ESI = env->regs[R_ESI];
351
#endif
352
#ifdef reg_EDI
353
    EDI = env->regs[R_EDI];
354
#endif
355
}
356

    
357
static inline void regs_to_env(void)
358
{
359
#ifdef reg_EAX
360
    env->regs[R_EAX] = EAX;
361
#endif
362
#ifdef reg_ECX
363
    env->regs[R_ECX] = ECX;
364
#endif
365
#ifdef reg_EDX
366
    env->regs[R_EDX] = EDX;
367
#endif
368
#ifdef reg_EBX
369
    env->regs[R_EBX] = EBX;
370
#endif
371
#ifdef reg_ESP
372
    env->regs[R_ESP] = ESP;
373
#endif
374
#ifdef reg_EBP
375
    env->regs[R_EBP] = EBP;
376
#endif
377
#ifdef reg_ESI
378
    env->regs[R_ESI] = ESI;
379
#endif
380
#ifdef reg_EDI
381
    env->regs[R_EDI] = EDI;
382
#endif
383
}
384

    
385
static inline int cpu_halted(CPUState *env) {
386
    /* handle exit of HALTED state */
387
    if (!env->halted)
388
        return 0;
389
    /* disable halt condition */
390
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
391
         (env->eflags & IF_MASK)) ||
392
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
393
        env->halted = 0;
394
        return 0;
395
    }
396
    return EXCP_HALTED;
397
}
398

    
399
/* load efer and update the corresponding hflags. XXX: do consistency
400
   checks with cpuid bits ? */
401
static inline void cpu_load_efer(CPUState *env, uint64_t val)
402
{
403
    env->efer = val;
404
    env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
405
    if (env->efer & MSR_EFER_LMA)
406
        env->hflags |= HF_LMA_MASK;
407
    if (env->efer & MSR_EFER_SVME)
408
        env->hflags |= HF_SVME_MASK;
409
}