Statistics
| Branch: | Revision:

root / kvm-all.c @ e824012b

History | View | Annotate | Download (28.7 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu-barrier.h"
25
#include "sysemu.h"
26
#include "hw/hw.h"
27
#include "gdbstub.h"
28
#include "kvm.h"
29

    
30
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31
#define PAGE_SIZE TARGET_PAGE_SIZE
32

    
33
//#define DEBUG_KVM
34

    
35
#ifdef DEBUG_KVM
36
#define dprintf(fmt, ...) \
37
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38
#else
39
#define dprintf(fmt, ...) \
40
    do { } while (0)
41
#endif
42

    
43
typedef struct KVMSlot
44
{
45
    target_phys_addr_t start_addr;
46
    ram_addr_t memory_size;
47
    ram_addr_t phys_offset;
48
    int slot;
49
    int flags;
50
} KVMSlot;
51

    
52
typedef struct kvm_dirty_log KVMDirtyLog;
53

    
54
int kvm_allowed = 0;
55

    
56
struct KVMState
57
{
58
    KVMSlot slots[32];
59
    int fd;
60
    int vmfd;
61
    int coalesced_mmio;
62
#ifdef KVM_CAP_COALESCED_MMIO
63
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
64
#endif
65
    int broken_set_mem_region;
66
    int migration_log;
67
    int vcpu_events;
68
#ifdef KVM_CAP_SET_GUEST_DEBUG
69
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
70
#endif
71
    int irqchip_in_kernel;
72
    int pit_in_kernel;
73
};
74

    
75
static KVMState *kvm_state;
76

    
77
static KVMSlot *kvm_alloc_slot(KVMState *s)
78
{
79
    int i;
80

    
81
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
82
        /* KVM private memory slots */
83
        if (i >= 8 && i < 12)
84
            continue;
85
        if (s->slots[i].memory_size == 0)
86
            return &s->slots[i];
87
    }
88

    
89
    fprintf(stderr, "%s: no free slot available\n", __func__);
90
    abort();
91
}
92

    
93
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
94
                                         target_phys_addr_t start_addr,
95
                                         target_phys_addr_t end_addr)
96
{
97
    int i;
98

    
99
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
100
        KVMSlot *mem = &s->slots[i];
101

    
102
        if (start_addr == mem->start_addr &&
103
            end_addr == mem->start_addr + mem->memory_size) {
104
            return mem;
105
        }
106
    }
107

    
108
    return NULL;
109
}
110

    
111
/*
112
 * Find overlapping slot with lowest start address
113
 */
114
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
115
                                            target_phys_addr_t start_addr,
116
                                            target_phys_addr_t end_addr)
117
{
118
    KVMSlot *found = NULL;
119
    int i;
120

    
121
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
122
        KVMSlot *mem = &s->slots[i];
123

    
124
        if (mem->memory_size == 0 ||
125
            (found && found->start_addr < mem->start_addr)) {
126
            continue;
127
        }
128

    
129
        if (end_addr > mem->start_addr &&
130
            start_addr < mem->start_addr + mem->memory_size) {
131
            found = mem;
132
        }
133
    }
134

    
135
    return found;
136
}
137

    
138
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
139
{
140
    struct kvm_userspace_memory_region mem;
141

    
142
    mem.slot = slot->slot;
143
    mem.guest_phys_addr = slot->start_addr;
144
    mem.memory_size = slot->memory_size;
145
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
146
    mem.flags = slot->flags;
147
    if (s->migration_log) {
148
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
149
    }
150
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
151
}
152

    
153
static void kvm_reset_vcpu(void *opaque)
154
{
155
    CPUState *env = opaque;
156

    
157
    kvm_arch_reset_vcpu(env);
158
    if (kvm_arch_put_registers(env)) {
159
        fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
160
        abort();
161
    }
162
}
163

    
164
int kvm_irqchip_in_kernel(void)
165
{
166
    return kvm_state->irqchip_in_kernel;
167
}
168

    
169
int kvm_pit_in_kernel(void)
170
{
171
    return kvm_state->pit_in_kernel;
172
}
173

    
174

    
175
int kvm_init_vcpu(CPUState *env)
176
{
177
    KVMState *s = kvm_state;
178
    long mmap_size;
179
    int ret;
180

    
181
    dprintf("kvm_init_vcpu\n");
182

    
183
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
184
    if (ret < 0) {
185
        dprintf("kvm_create_vcpu failed\n");
186
        goto err;
187
    }
188

    
189
    env->kvm_fd = ret;
190
    env->kvm_state = s;
191

    
192
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
193
    if (mmap_size < 0) {
194
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
195
        goto err;
196
    }
197

    
198
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
199
                        env->kvm_fd, 0);
200
    if (env->kvm_run == MAP_FAILED) {
201
        ret = -errno;
202
        dprintf("mmap'ing vcpu state failed\n");
203
        goto err;
204
    }
205

    
206
#ifdef KVM_CAP_COALESCED_MMIO
207
    if (s->coalesced_mmio && !s->coalesced_mmio_ring)
208
        s->coalesced_mmio_ring = (void *) env->kvm_run +
209
                s->coalesced_mmio * PAGE_SIZE;
210
#endif
211

    
212
    ret = kvm_arch_init_vcpu(env);
213
    if (ret == 0) {
214
        qemu_register_reset(kvm_reset_vcpu, env);
215
        kvm_arch_reset_vcpu(env);
216
        ret = kvm_arch_put_registers(env);
217
    }
218
err:
219
    return ret;
220
}
221

    
222
/*
223
 * dirty pages logging control
224
 */
225
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
226
                                      ram_addr_t size, int flags, int mask)
227
{
228
    KVMState *s = kvm_state;
229
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
230
    int old_flags;
231

    
232
    if (mem == NULL)  {
233
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
234
                    TARGET_FMT_plx "\n", __func__, phys_addr,
235
                    (target_phys_addr_t)(phys_addr + size - 1));
236
            return -EINVAL;
237
    }
238

    
239
    old_flags = mem->flags;
240

    
241
    flags = (mem->flags & ~mask) | flags;
242
    mem->flags = flags;
243

    
244
    /* If nothing changed effectively, no need to issue ioctl */
245
    if (s->migration_log) {
246
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
247
    }
248
    if (flags == old_flags) {
249
            return 0;
250
    }
251

    
252
    return kvm_set_user_memory_region(s, mem);
253
}
254

    
255
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
256
{
257
        return kvm_dirty_pages_log_change(phys_addr, size,
258
                                          KVM_MEM_LOG_DIRTY_PAGES,
259
                                          KVM_MEM_LOG_DIRTY_PAGES);
260
}
261

    
262
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
263
{
264
        return kvm_dirty_pages_log_change(phys_addr, size,
265
                                          0,
266
                                          KVM_MEM_LOG_DIRTY_PAGES);
267
}
268

    
269
static int kvm_set_migration_log(int enable)
270
{
271
    KVMState *s = kvm_state;
272
    KVMSlot *mem;
273
    int i, err;
274

    
275
    s->migration_log = enable;
276

    
277
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
278
        mem = &s->slots[i];
279

    
280
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
281
            continue;
282
        }
283
        err = kvm_set_user_memory_region(s, mem);
284
        if (err) {
285
            return err;
286
        }
287
    }
288
    return 0;
289
}
290

    
291
static int test_le_bit(unsigned long nr, unsigned char *addr)
292
{
293
    return (addr[nr >> 3] >> (nr & 7)) & 1;
294
}
295

    
296
/**
297
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
298
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
299
 * This means all bits are set to dirty.
300
 *
301
 * @start_add: start of logged region.
302
 * @end_addr: end of logged region.
303
 */
304
static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
305
                                          target_phys_addr_t end_addr)
306
{
307
    KVMState *s = kvm_state;
308
    unsigned long size, allocated_size = 0;
309
    target_phys_addr_t phys_addr;
310
    ram_addr_t addr;
311
    KVMDirtyLog d;
312
    KVMSlot *mem;
313
    int ret = 0;
314

    
315
    d.dirty_bitmap = NULL;
316
    while (start_addr < end_addr) {
317
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
318
        if (mem == NULL) {
319
            break;
320
        }
321

    
322
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
323
        if (!d.dirty_bitmap) {
324
            d.dirty_bitmap = qemu_malloc(size);
325
        } else if (size > allocated_size) {
326
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
327
        }
328
        allocated_size = size;
329
        memset(d.dirty_bitmap, 0, allocated_size);
330

    
331
        d.slot = mem->slot;
332

    
333
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
334
            dprintf("ioctl failed %d\n", errno);
335
            ret = -1;
336
            break;
337
        }
338

    
339
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
340
             phys_addr < mem->start_addr + mem->memory_size;
341
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
342
            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
343
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
344

    
345
            if (test_le_bit(nr, bitmap)) {
346
                cpu_physical_memory_set_dirty(addr);
347
            }
348
        }
349
        start_addr = phys_addr;
350
    }
351
    qemu_free(d.dirty_bitmap);
352

    
353
    return ret;
354
}
355

    
356
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
357
{
358
    int ret = -ENOSYS;
359
#ifdef KVM_CAP_COALESCED_MMIO
360
    KVMState *s = kvm_state;
361

    
362
    if (s->coalesced_mmio) {
363
        struct kvm_coalesced_mmio_zone zone;
364

    
365
        zone.addr = start;
366
        zone.size = size;
367

    
368
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
369
    }
370
#endif
371

    
372
    return ret;
373
}
374

    
375
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
376
{
377
    int ret = -ENOSYS;
378
#ifdef KVM_CAP_COALESCED_MMIO
379
    KVMState *s = kvm_state;
380

    
381
    if (s->coalesced_mmio) {
382
        struct kvm_coalesced_mmio_zone zone;
383

    
384
        zone.addr = start;
385
        zone.size = size;
386

    
387
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
388
    }
389
#endif
390

    
391
    return ret;
392
}
393

    
394
int kvm_check_extension(KVMState *s, unsigned int extension)
395
{
396
    int ret;
397

    
398
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
399
    if (ret < 0) {
400
        ret = 0;
401
    }
402

    
403
    return ret;
404
}
405

    
406
static void kvm_set_phys_mem(target_phys_addr_t start_addr,
407
                             ram_addr_t size,
408
                             ram_addr_t phys_offset)
409
{
410
    KVMState *s = kvm_state;
411
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
412
    KVMSlot *mem, old;
413
    int err;
414

    
415
    if (start_addr & ~TARGET_PAGE_MASK) {
416
        if (flags >= IO_MEM_UNASSIGNED) {
417
            if (!kvm_lookup_overlapping_slot(s, start_addr,
418
                                             start_addr + size)) {
419
                return;
420
            }
421
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
422
        } else {
423
            fprintf(stderr, "Only page-aligned memory slots supported\n");
424
        }
425
        abort();
426
    }
427

    
428
    /* KVM does not support read-only slots */
429
    phys_offset &= ~IO_MEM_ROM;
430

    
431
    while (1) {
432
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
433
        if (!mem) {
434
            break;
435
        }
436

    
437
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
438
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
439
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
440
            /* The new slot fits into the existing one and comes with
441
             * identical parameters - nothing to be done. */
442
            return;
443
        }
444

    
445
        old = *mem;
446

    
447
        /* unregister the overlapping slot */
448
        mem->memory_size = 0;
449
        err = kvm_set_user_memory_region(s, mem);
450
        if (err) {
451
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
452
                    __func__, strerror(-err));
453
            abort();
454
        }
455

    
456
        /* Workaround for older KVM versions: we can't join slots, even not by
457
         * unregistering the previous ones and then registering the larger
458
         * slot. We have to maintain the existing fragmentation. Sigh.
459
         *
460
         * This workaround assumes that the new slot starts at the same
461
         * address as the first existing one. If not or if some overlapping
462
         * slot comes around later, we will fail (not seen in practice so far)
463
         * - and actually require a recent KVM version. */
464
        if (s->broken_set_mem_region &&
465
            old.start_addr == start_addr && old.memory_size < size &&
466
            flags < IO_MEM_UNASSIGNED) {
467
            mem = kvm_alloc_slot(s);
468
            mem->memory_size = old.memory_size;
469
            mem->start_addr = old.start_addr;
470
            mem->phys_offset = old.phys_offset;
471
            mem->flags = 0;
472

    
473
            err = kvm_set_user_memory_region(s, mem);
474
            if (err) {
475
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
476
                        strerror(-err));
477
                abort();
478
            }
479

    
480
            start_addr += old.memory_size;
481
            phys_offset += old.memory_size;
482
            size -= old.memory_size;
483
            continue;
484
        }
485

    
486
        /* register prefix slot */
487
        if (old.start_addr < start_addr) {
488
            mem = kvm_alloc_slot(s);
489
            mem->memory_size = start_addr - old.start_addr;
490
            mem->start_addr = old.start_addr;
491
            mem->phys_offset = old.phys_offset;
492
            mem->flags = 0;
493

    
494
            err = kvm_set_user_memory_region(s, mem);
495
            if (err) {
496
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
497
                        __func__, strerror(-err));
498
                abort();
499
            }
500
        }
501

    
502
        /* register suffix slot */
503
        if (old.start_addr + old.memory_size > start_addr + size) {
504
            ram_addr_t size_delta;
505

    
506
            mem = kvm_alloc_slot(s);
507
            mem->start_addr = start_addr + size;
508
            size_delta = mem->start_addr - old.start_addr;
509
            mem->memory_size = old.memory_size - size_delta;
510
            mem->phys_offset = old.phys_offset + size_delta;
511
            mem->flags = 0;
512

    
513
            err = kvm_set_user_memory_region(s, mem);
514
            if (err) {
515
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
516
                        __func__, strerror(-err));
517
                abort();
518
            }
519
        }
520
    }
521

    
522
    /* in case the KVM bug workaround already "consumed" the new slot */
523
    if (!size)
524
        return;
525

    
526
    /* KVM does not need to know about this memory */
527
    if (flags >= IO_MEM_UNASSIGNED)
528
        return;
529

    
530
    mem = kvm_alloc_slot(s);
531
    mem->memory_size = size;
532
    mem->start_addr = start_addr;
533
    mem->phys_offset = phys_offset;
534
    mem->flags = 0;
535

    
536
    err = kvm_set_user_memory_region(s, mem);
537
    if (err) {
538
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
539
                strerror(-err));
540
        abort();
541
    }
542
}
543

    
544
static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
545
                                  target_phys_addr_t start_addr,
546
                                  ram_addr_t size,
547
                                  ram_addr_t phys_offset)
548
{
549
        kvm_set_phys_mem(start_addr, size, phys_offset);
550
}
551

    
552
static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
553
                                        target_phys_addr_t start_addr,
554
                                        target_phys_addr_t end_addr)
555
{
556
        return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
557
}
558

    
559
static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
560
                                    int enable)
561
{
562
        return kvm_set_migration_log(enable);
563
}
564

    
565
static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
566
        .set_memory = kvm_client_set_memory,
567
        .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
568
        .migration_log = kvm_client_migration_log,
569
};
570

    
571
int kvm_init(int smp_cpus)
572
{
573
    static const char upgrade_note[] =
574
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
575
        "(see http://sourceforge.net/projects/kvm).\n";
576
    KVMState *s;
577
    int ret;
578
    int i;
579

    
580
    if (smp_cpus > 1) {
581
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
582
        return -EINVAL;
583
    }
584

    
585
    s = qemu_mallocz(sizeof(KVMState));
586

    
587
#ifdef KVM_CAP_SET_GUEST_DEBUG
588
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
589
#endif
590
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
591
        s->slots[i].slot = i;
592

    
593
    s->vmfd = -1;
594
    s->fd = qemu_open("/dev/kvm", O_RDWR);
595
    if (s->fd == -1) {
596
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
597
        ret = -errno;
598
        goto err;
599
    }
600

    
601
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
602
    if (ret < KVM_API_VERSION) {
603
        if (ret > 0)
604
            ret = -EINVAL;
605
        fprintf(stderr, "kvm version too old\n");
606
        goto err;
607
    }
608

    
609
    if (ret > KVM_API_VERSION) {
610
        ret = -EINVAL;
611
        fprintf(stderr, "kvm version not supported\n");
612
        goto err;
613
    }
614

    
615
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
616
    if (s->vmfd < 0)
617
        goto err;
618

    
619
    /* initially, KVM allocated its own memory and we had to jump through
620
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
621
     * just use a user allocated buffer so we can use regular pages
622
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
623
     */
624
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
625
        ret = -EINVAL;
626
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
627
                upgrade_note);
628
        goto err;
629
    }
630

    
631
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
632
     * destroyed properly.  Since we rely on this capability, refuse to work
633
     * with any kernel without this capability. */
634
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
635
        ret = -EINVAL;
636

    
637
        fprintf(stderr,
638
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
639
                upgrade_note);
640
        goto err;
641
    }
642

    
643
    s->coalesced_mmio = 0;
644
#ifdef KVM_CAP_COALESCED_MMIO
645
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
646
    s->coalesced_mmio_ring = NULL;
647
#endif
648

    
649
    s->broken_set_mem_region = 1;
650
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
651
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
652
    if (ret > 0) {
653
        s->broken_set_mem_region = 0;
654
    }
655
#endif
656

    
657
    s->vcpu_events = 0;
658
#ifdef KVM_CAP_VCPU_EVENTS
659
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
660
#endif
661

    
662
    ret = kvm_arch_init(s, smp_cpus);
663
    if (ret < 0)
664
        goto err;
665

    
666
    kvm_state = s;
667
    cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
668

    
669
    return 0;
670

    
671
err:
672
    if (s) {
673
        if (s->vmfd != -1)
674
            close(s->vmfd);
675
        if (s->fd != -1)
676
            close(s->fd);
677
    }
678
    qemu_free(s);
679

    
680
    return ret;
681
}
682

    
683
static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
684
                         uint32_t count)
685
{
686
    int i;
687
    uint8_t *ptr = data;
688

    
689
    for (i = 0; i < count; i++) {
690
        if (direction == KVM_EXIT_IO_IN) {
691
            switch (size) {
692
            case 1:
693
                stb_p(ptr, cpu_inb(port));
694
                break;
695
            case 2:
696
                stw_p(ptr, cpu_inw(port));
697
                break;
698
            case 4:
699
                stl_p(ptr, cpu_inl(port));
700
                break;
701
            }
702
        } else {
703
            switch (size) {
704
            case 1:
705
                cpu_outb(port, ldub_p(ptr));
706
                break;
707
            case 2:
708
                cpu_outw(port, lduw_p(ptr));
709
                break;
710
            case 4:
711
                cpu_outl(port, ldl_p(ptr));
712
                break;
713
            }
714
        }
715

    
716
        ptr += size;
717
    }
718

    
719
    return 1;
720
}
721

    
722
void kvm_flush_coalesced_mmio_buffer(void)
723
{
724
#ifdef KVM_CAP_COALESCED_MMIO
725
    KVMState *s = kvm_state;
726
    if (s->coalesced_mmio_ring) {
727
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
728
        while (ring->first != ring->last) {
729
            struct kvm_coalesced_mmio *ent;
730

    
731
            ent = &ring->coalesced_mmio[ring->first];
732

    
733
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
734
            smp_wmb();
735
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
736
        }
737
    }
738
#endif
739
}
740

    
741
void kvm_cpu_synchronize_state(CPUState *env)
742
{
743
    if (!env->kvm_vcpu_dirty) {
744
        kvm_arch_get_registers(env);
745
        env->kvm_vcpu_dirty = 1;
746
    }
747
}
748

    
749
int kvm_cpu_exec(CPUState *env)
750
{
751
    struct kvm_run *run = env->kvm_run;
752
    int ret;
753

    
754
    dprintf("kvm_cpu_exec()\n");
755

    
756
    do {
757
#ifndef CONFIG_IOTHREAD
758
        if (env->exit_request) {
759
            dprintf("interrupt exit requested\n");
760
            ret = 0;
761
            break;
762
        }
763
#endif
764

    
765
        if (env->kvm_vcpu_dirty) {
766
            kvm_arch_put_registers(env);
767
            env->kvm_vcpu_dirty = 0;
768
        }
769

    
770
        kvm_arch_pre_run(env, run);
771
        qemu_mutex_unlock_iothread();
772
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
773
        qemu_mutex_lock_iothread();
774
        kvm_arch_post_run(env, run);
775

    
776
        if (ret == -EINTR || ret == -EAGAIN) {
777
            cpu_exit(env);
778
            dprintf("io window exit\n");
779
            ret = 0;
780
            break;
781
        }
782

    
783
        if (ret < 0) {
784
            dprintf("kvm run failed %s\n", strerror(-ret));
785
            abort();
786
        }
787

    
788
        kvm_flush_coalesced_mmio_buffer();
789

    
790
        ret = 0; /* exit loop */
791
        switch (run->exit_reason) {
792
        case KVM_EXIT_IO:
793
            dprintf("handle_io\n");
794
            ret = kvm_handle_io(run->io.port,
795
                                (uint8_t *)run + run->io.data_offset,
796
                                run->io.direction,
797
                                run->io.size,
798
                                run->io.count);
799
            break;
800
        case KVM_EXIT_MMIO:
801
            dprintf("handle_mmio\n");
802
            cpu_physical_memory_rw(run->mmio.phys_addr,
803
                                   run->mmio.data,
804
                                   run->mmio.len,
805
                                   run->mmio.is_write);
806
            ret = 1;
807
            break;
808
        case KVM_EXIT_IRQ_WINDOW_OPEN:
809
            dprintf("irq_window_open\n");
810
            break;
811
        case KVM_EXIT_SHUTDOWN:
812
            dprintf("shutdown\n");
813
            qemu_system_reset_request();
814
            ret = 1;
815
            break;
816
        case KVM_EXIT_UNKNOWN:
817
            dprintf("kvm_exit_unknown\n");
818
            break;
819
        case KVM_EXIT_FAIL_ENTRY:
820
            dprintf("kvm_exit_fail_entry\n");
821
            break;
822
        case KVM_EXIT_EXCEPTION:
823
            dprintf("kvm_exit_exception\n");
824
            break;
825
        case KVM_EXIT_DEBUG:
826
            dprintf("kvm_exit_debug\n");
827
#ifdef KVM_CAP_SET_GUEST_DEBUG
828
            if (kvm_arch_debug(&run->debug.arch)) {
829
                gdb_set_stop_cpu(env);
830
                vm_stop(EXCP_DEBUG);
831
                env->exception_index = EXCP_DEBUG;
832
                return 0;
833
            }
834
            /* re-enter, this exception was guest-internal */
835
            ret = 1;
836
#endif /* KVM_CAP_SET_GUEST_DEBUG */
837
            break;
838
        default:
839
            dprintf("kvm_arch_handle_exit\n");
840
            ret = kvm_arch_handle_exit(env, run);
841
            break;
842
        }
843
    } while (ret > 0);
844

    
845
    if (env->exit_request) {
846
        env->exit_request = 0;
847
        env->exception_index = EXCP_INTERRUPT;
848
    }
849

    
850
    return ret;
851
}
852

    
853
int kvm_ioctl(KVMState *s, int type, ...)
854
{
855
    int ret;
856
    void *arg;
857
    va_list ap;
858

    
859
    va_start(ap, type);
860
    arg = va_arg(ap, void *);
861
    va_end(ap);
862

    
863
    ret = ioctl(s->fd, type, arg);
864
    if (ret == -1)
865
        ret = -errno;
866

    
867
    return ret;
868
}
869

    
870
int kvm_vm_ioctl(KVMState *s, int type, ...)
871
{
872
    int ret;
873
    void *arg;
874
    va_list ap;
875

    
876
    va_start(ap, type);
877
    arg = va_arg(ap, void *);
878
    va_end(ap);
879

    
880
    ret = ioctl(s->vmfd, type, arg);
881
    if (ret == -1)
882
        ret = -errno;
883

    
884
    return ret;
885
}
886

    
887
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
888
{
889
    int ret;
890
    void *arg;
891
    va_list ap;
892

    
893
    va_start(ap, type);
894
    arg = va_arg(ap, void *);
895
    va_end(ap);
896

    
897
    ret = ioctl(env->kvm_fd, type, arg);
898
    if (ret == -1)
899
        ret = -errno;
900

    
901
    return ret;
902
}
903

    
904
int kvm_has_sync_mmu(void)
905
{
906
#ifdef KVM_CAP_SYNC_MMU
907
    KVMState *s = kvm_state;
908

    
909
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
910
#else
911
    return 0;
912
#endif
913
}
914

    
915
int kvm_has_vcpu_events(void)
916
{
917
    return kvm_state->vcpu_events;
918
}
919

    
920
void kvm_setup_guest_memory(void *start, size_t size)
921
{
922
    if (!kvm_has_sync_mmu()) {
923
#ifdef MADV_DONTFORK
924
        int ret = madvise(start, size, MADV_DONTFORK);
925

    
926
        if (ret) {
927
            perror("madvice");
928
            exit(1);
929
        }
930
#else
931
        fprintf(stderr,
932
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
933
        exit(1);
934
#endif
935
    }
936
}
937

    
938
#ifdef KVM_CAP_SET_GUEST_DEBUG
939
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
940
{
941
#ifdef CONFIG_IOTHREAD
942
    if (env != cpu_single_env) {
943
        abort();
944
    }
945
#endif
946
    func(data);
947
}
948

    
949
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
950
                                                 target_ulong pc)
951
{
952
    struct kvm_sw_breakpoint *bp;
953

    
954
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
955
        if (bp->pc == pc)
956
            return bp;
957
    }
958
    return NULL;
959
}
960

    
961
int kvm_sw_breakpoints_active(CPUState *env)
962
{
963
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
964
}
965

    
966
struct kvm_set_guest_debug_data {
967
    struct kvm_guest_debug dbg;
968
    CPUState *env;
969
    int err;
970
};
971

    
972
static void kvm_invoke_set_guest_debug(void *data)
973
{
974
    struct kvm_set_guest_debug_data *dbg_data = data;
975
    CPUState *env = dbg_data->env;
976

    
977
    if (env->kvm_vcpu_dirty) {
978
        kvm_arch_put_registers(env);
979
        env->kvm_vcpu_dirty = 0;
980
    }
981
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
982
}
983

    
984
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
985
{
986
    struct kvm_set_guest_debug_data data;
987

    
988
    data.dbg.control = 0;
989
    if (env->singlestep_enabled)
990
        data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
991

    
992
    kvm_arch_update_guest_debug(env, &data.dbg);
993
    data.dbg.control |= reinject_trap;
994
    data.env = env;
995

    
996
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
997
    return data.err;
998
}
999

    
1000
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1001
                          target_ulong len, int type)
1002
{
1003
    struct kvm_sw_breakpoint *bp;
1004
    CPUState *env;
1005
    int err;
1006

    
1007
    if (type == GDB_BREAKPOINT_SW) {
1008
        bp = kvm_find_sw_breakpoint(current_env, addr);
1009
        if (bp) {
1010
            bp->use_count++;
1011
            return 0;
1012
        }
1013

    
1014
        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1015
        if (!bp)
1016
            return -ENOMEM;
1017

    
1018
        bp->pc = addr;
1019
        bp->use_count = 1;
1020
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1021
        if (err) {
1022
            free(bp);
1023
            return err;
1024
        }
1025

    
1026
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1027
                          bp, entry);
1028
    } else {
1029
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1030
        if (err)
1031
            return err;
1032
    }
1033

    
1034
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1035
        err = kvm_update_guest_debug(env, 0);
1036
        if (err)
1037
            return err;
1038
    }
1039
    return 0;
1040
}
1041

    
1042
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1043
                          target_ulong len, int type)
1044
{
1045
    struct kvm_sw_breakpoint *bp;
1046
    CPUState *env;
1047
    int err;
1048

    
1049
    if (type == GDB_BREAKPOINT_SW) {
1050
        bp = kvm_find_sw_breakpoint(current_env, addr);
1051
        if (!bp)
1052
            return -ENOENT;
1053

    
1054
        if (bp->use_count > 1) {
1055
            bp->use_count--;
1056
            return 0;
1057
        }
1058

    
1059
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1060
        if (err)
1061
            return err;
1062

    
1063
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1064
        qemu_free(bp);
1065
    } else {
1066
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1067
        if (err)
1068
            return err;
1069
    }
1070

    
1071
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1072
        err = kvm_update_guest_debug(env, 0);
1073
        if (err)
1074
            return err;
1075
    }
1076
    return 0;
1077
}
1078

    
1079
void kvm_remove_all_breakpoints(CPUState *current_env)
1080
{
1081
    struct kvm_sw_breakpoint *bp, *next;
1082
    KVMState *s = current_env->kvm_state;
1083
    CPUState *env;
1084

    
1085
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1086
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1087
            /* Try harder to find a CPU that currently sees the breakpoint. */
1088
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1089
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1090
                    break;
1091
            }
1092
        }
1093
    }
1094
    kvm_arch_remove_all_hw_breakpoints();
1095

    
1096
    for (env = first_cpu; env != NULL; env = env->next_cpu)
1097
        kvm_update_guest_debug(env, 0);
1098
}
1099

    
1100
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1101

    
1102
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1103
{
1104
    return -EINVAL;
1105
}
1106

    
1107
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1108
                          target_ulong len, int type)
1109
{
1110
    return -EINVAL;
1111
}
1112

    
1113
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1114
                          target_ulong len, int type)
1115
{
1116
    return -EINVAL;
1117
}
1118

    
1119
void kvm_remove_all_breakpoints(CPUState *current_env)
1120
{
1121
}
1122
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1123

    
1124
int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1125
{
1126
    struct kvm_signal_mask *sigmask;
1127
    int r;
1128

    
1129
    if (!sigset)
1130
        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1131

    
1132
    sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1133

    
1134
    sigmask->len = 8;
1135
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1136
    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1137
    free(sigmask);
1138

    
1139
    return r;
1140
}