Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ e83ce550

History | View | Annotate | Download (84.4 kB)

1
#include "exec.h"
2
#include "host-utils.h"
3
#include "helper.h"
4
#if !defined(CONFIG_USER_ONLY)
5
#include "softmmu_exec.h"
6
#endif /* !defined(CONFIG_USER_ONLY) */
7

    
8
//#define DEBUG_MMU
9
//#define DEBUG_MXCC
10
//#define DEBUG_UNALIGNED
11
//#define DEBUG_UNASSIGNED
12
//#define DEBUG_ASI
13

    
14
#ifdef DEBUG_MMU
15
#define DPRINTF_MMU(fmt, args...) \
16
do { printf("MMU: " fmt , ##args); } while (0)
17
#else
18
#define DPRINTF_MMU(fmt, args...) do {} while (0)
19
#endif
20

    
21
#ifdef DEBUG_MXCC
22
#define DPRINTF_MXCC(fmt, args...) \
23
do { printf("MXCC: " fmt , ##args); } while (0)
24
#else
25
#define DPRINTF_MXCC(fmt, args...) do {} while (0)
26
#endif
27

    
28
#ifdef DEBUG_ASI
29
#define DPRINTF_ASI(fmt, args...) \
30
do { printf("ASI: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF_ASI(fmt, args...) do {} while (0)
33
#endif
34

    
35
#ifdef TARGET_SPARC64
36
#ifndef TARGET_ABI32
37
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
38
#else
39
#define AM_CHECK(env1) (1)
40
#endif
41
#endif
42

    
43
static inline void address_mask(CPUState *env1, target_ulong *addr)
44
{
45
#ifdef TARGET_SPARC64
46
    if (AM_CHECK(env1))
47
        *addr &= 0xffffffffULL;
48
#endif
49
}
50

    
51
void raise_exception(int tt)
52
{
53
    env->exception_index = tt;
54
    cpu_loop_exit();
55
}
56

    
57
void helper_trap(target_ulong nb_trap)
58
{
59
    env->exception_index = TT_TRAP + (nb_trap & 0x7f);
60
    cpu_loop_exit();
61
}
62

    
63
void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
64
{
65
    if (do_trap) {
66
        env->exception_index = TT_TRAP + (nb_trap & 0x7f);
67
        cpu_loop_exit();
68
    }
69
}
70

    
71
static inline void set_cwp(int new_cwp)
72
{
73
    cpu_set_cwp(env, new_cwp);
74
}
75

    
76
void helper_check_align(target_ulong addr, uint32_t align)
77
{
78
    if (addr & align) {
79
#ifdef DEBUG_UNALIGNED
80
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
81
           "\n", addr, env->pc);
82
#endif
83
        raise_exception(TT_UNALIGNED);
84
    }
85
}
86

    
87
#define F_HELPER(name, p) void helper_f##name##p(void)
88

    
89
#define F_BINOP(name)                                           \
90
    F_HELPER(name, s)                                           \
91
    {                                                           \
92
        FT0 = float32_ ## name (FT0, FT1, &env->fp_status);     \
93
    }                                                           \
94
    F_HELPER(name, d)                                           \
95
    {                                                           \
96
        DT0 = float64_ ## name (DT0, DT1, &env->fp_status);     \
97
    }                                                           \
98
    F_HELPER(name, q)                                           \
99
    {                                                           \
100
        QT0 = float128_ ## name (QT0, QT1, &env->fp_status);    \
101
    }
102

    
103
F_BINOP(add);
104
F_BINOP(sub);
105
F_BINOP(mul);
106
F_BINOP(div);
107
#undef F_BINOP
108

    
109
void helper_fsmuld(void)
110
{
111
    DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
112
                      float32_to_float64(FT1, &env->fp_status),
113
                      &env->fp_status);
114
}
115

    
116
void helper_fdmulq(void)
117
{
118
    QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
119
                       float64_to_float128(DT1, &env->fp_status),
120
                       &env->fp_status);
121
}
122

    
123
F_HELPER(neg, s)
124
{
125
    FT0 = float32_chs(FT1);
126
}
127

    
128
#ifdef TARGET_SPARC64
129
F_HELPER(neg, d)
130
{
131
    DT0 = float64_chs(DT1);
132
}
133

    
134
F_HELPER(neg, q)
135
{
136
    QT0 = float128_chs(QT1);
137
}
138
#endif
139

    
140
/* Integer to float conversion.  */
141
F_HELPER(ito, s)
142
{
143
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
144
}
145

    
146
F_HELPER(ito, d)
147
{
148
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
149
}
150

    
151
F_HELPER(ito, q)
152
{
153
    QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
154
}
155

    
156
#ifdef TARGET_SPARC64
157
F_HELPER(xto, s)
158
{
159
    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
160
}
161

    
162
F_HELPER(xto, d)
163
{
164
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
165
}
166

    
167
F_HELPER(xto, q)
168
{
169
    QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
170
}
171
#endif
172
#undef F_HELPER
173

    
174
/* floating point conversion */
175
void helper_fdtos(void)
176
{
177
    FT0 = float64_to_float32(DT1, &env->fp_status);
178
}
179

    
180
void helper_fstod(void)
181
{
182
    DT0 = float32_to_float64(FT1, &env->fp_status);
183
}
184

    
185
void helper_fqtos(void)
186
{
187
    FT0 = float128_to_float32(QT1, &env->fp_status);
188
}
189

    
190
void helper_fstoq(void)
191
{
192
    QT0 = float32_to_float128(FT1, &env->fp_status);
193
}
194

    
195
void helper_fqtod(void)
196
{
197
    DT0 = float128_to_float64(QT1, &env->fp_status);
198
}
199

    
200
void helper_fdtoq(void)
201
{
202
    QT0 = float64_to_float128(DT1, &env->fp_status);
203
}
204

    
205
/* Float to integer conversion.  */
206
void helper_fstoi(void)
207
{
208
    *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status);
209
}
210

    
211
void helper_fdtoi(void)
212
{
213
    *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
214
}
215

    
216
void helper_fqtoi(void)
217
{
218
    *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
219
}
220

    
221
#ifdef TARGET_SPARC64
222
void helper_fstox(void)
223
{
224
    *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
225
}
226

    
227
void helper_fdtox(void)
228
{
229
    *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
230
}
231

    
232
void helper_fqtox(void)
233
{
234
    *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
235
}
236

    
237
void helper_faligndata(void)
238
{
239
    uint64_t tmp;
240

    
241
    tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
242
    /* on many architectures a shift of 64 does nothing */
243
    if ((env->gsr & 7) != 0) {
244
        tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
245
    }
246
    *((uint64_t *)&DT0) = tmp;
247
}
248

    
249
void helper_movl_FT0_0(void)
250
{
251
    *((uint32_t *)&FT0) = 0;
252
}
253

    
254
void helper_movl_DT0_0(void)
255
{
256
    *((uint64_t *)&DT0) = 0;
257
}
258

    
259
void helper_movl_FT0_1(void)
260
{
261
    *((uint32_t *)&FT0) = 0xffffffff;
262
}
263

    
264
void helper_movl_DT0_1(void)
265
{
266
    *((uint64_t *)&DT0) = 0xffffffffffffffffULL;
267
}
268

    
269
void helper_fnot(void)
270
{
271
    *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1;
272
}
273

    
274
void helper_fnots(void)
275
{
276
    *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1;
277
}
278

    
279
void helper_fnor(void)
280
{
281
    *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1);
282
}
283

    
284
void helper_fnors(void)
285
{
286
    *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1);
287
}
288

    
289
void helper_for(void)
290
{
291
    *(uint64_t *)&DT0 |= *(uint64_t *)&DT1;
292
}
293

    
294
void helper_fors(void)
295
{
296
    *(uint32_t *)&FT0 |= *(uint32_t *)&FT1;
297
}
298

    
299
void helper_fxor(void)
300
{
301
    *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1;
302
}
303

    
304
void helper_fxors(void)
305
{
306
    *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1;
307
}
308

    
309
void helper_fand(void)
310
{
311
    *(uint64_t *)&DT0 &= *(uint64_t *)&DT1;
312
}
313

    
314
void helper_fands(void)
315
{
316
    *(uint32_t *)&FT0 &= *(uint32_t *)&FT1;
317
}
318

    
319
void helper_fornot(void)
320
{
321
    *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1;
322
}
323

    
324
void helper_fornots(void)
325
{
326
    *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1;
327
}
328

    
329
void helper_fandnot(void)
330
{
331
    *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1;
332
}
333

    
334
void helper_fandnots(void)
335
{
336
    *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1;
337
}
338

    
339
void helper_fnand(void)
340
{
341
    *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1);
342
}
343

    
344
void helper_fnands(void)
345
{
346
    *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1);
347
}
348

    
349
void helper_fxnor(void)
350
{
351
    *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1;
352
}
353

    
354
void helper_fxnors(void)
355
{
356
    *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1;
357
}
358

    
359
#ifdef WORDS_BIGENDIAN
360
#define VIS_B64(n) b[7 - (n)]
361
#define VIS_W64(n) w[3 - (n)]
362
#define VIS_SW64(n) sw[3 - (n)]
363
#define VIS_L64(n) l[1 - (n)]
364
#define VIS_B32(n) b[3 - (n)]
365
#define VIS_W32(n) w[1 - (n)]
366
#else
367
#define VIS_B64(n) b[n]
368
#define VIS_W64(n) w[n]
369
#define VIS_SW64(n) sw[n]
370
#define VIS_L64(n) l[n]
371
#define VIS_B32(n) b[n]
372
#define VIS_W32(n) w[n]
373
#endif
374

    
375
typedef union {
376
    uint8_t b[8];
377
    uint16_t w[4];
378
    int16_t sw[4];
379
    uint32_t l[2];
380
    float64 d;
381
} vis64;
382

    
383
typedef union {
384
    uint8_t b[4];
385
    uint16_t w[2];
386
    uint32_t l;
387
    float32 f;
388
} vis32;
389

    
390
void helper_fpmerge(void)
391
{
392
    vis64 s, d;
393

    
394
    s.d = DT0;
395
    d.d = DT1;
396

    
397
    // Reverse calculation order to handle overlap
398
    d.VIS_B64(7) = s.VIS_B64(3);
399
    d.VIS_B64(6) = d.VIS_B64(3);
400
    d.VIS_B64(5) = s.VIS_B64(2);
401
    d.VIS_B64(4) = d.VIS_B64(2);
402
    d.VIS_B64(3) = s.VIS_B64(1);
403
    d.VIS_B64(2) = d.VIS_B64(1);
404
    d.VIS_B64(1) = s.VIS_B64(0);
405
    //d.VIS_B64(0) = d.VIS_B64(0);
406

    
407
    DT0 = d.d;
408
}
409

    
410
void helper_fmul8x16(void)
411
{
412
    vis64 s, d;
413
    uint32_t tmp;
414

    
415
    s.d = DT0;
416
    d.d = DT1;
417

    
418
#define PMUL(r)                                                 \
419
    tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r);       \
420
    if ((tmp & 0xff) > 0x7f)                                    \
421
        tmp += 0x100;                                           \
422
    d.VIS_W64(r) = tmp >> 8;
423

    
424
    PMUL(0);
425
    PMUL(1);
426
    PMUL(2);
427
    PMUL(3);
428
#undef PMUL
429

    
430
    DT0 = d.d;
431
}
432

    
433
void helper_fmul8x16al(void)
434
{
435
    vis64 s, d;
436
    uint32_t tmp;
437

    
438
    s.d = DT0;
439
    d.d = DT1;
440

    
441
#define PMUL(r)                                                 \
442
    tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r);       \
443
    if ((tmp & 0xff) > 0x7f)                                    \
444
        tmp += 0x100;                                           \
445
    d.VIS_W64(r) = tmp >> 8;
446

    
447
    PMUL(0);
448
    PMUL(1);
449
    PMUL(2);
450
    PMUL(3);
451
#undef PMUL
452

    
453
    DT0 = d.d;
454
}
455

    
456
void helper_fmul8x16au(void)
457
{
458
    vis64 s, d;
459
    uint32_t tmp;
460

    
461
    s.d = DT0;
462
    d.d = DT1;
463

    
464
#define PMUL(r)                                                 \
465
    tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r);       \
466
    if ((tmp & 0xff) > 0x7f)                                    \
467
        tmp += 0x100;                                           \
468
    d.VIS_W64(r) = tmp >> 8;
469

    
470
    PMUL(0);
471
    PMUL(1);
472
    PMUL(2);
473
    PMUL(3);
474
#undef PMUL
475

    
476
    DT0 = d.d;
477
}
478

    
479
void helper_fmul8sux16(void)
480
{
481
    vis64 s, d;
482
    uint32_t tmp;
483

    
484
    s.d = DT0;
485
    d.d = DT1;
486

    
487
#define PMUL(r)                                                         \
488
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
489
    if ((tmp & 0xff) > 0x7f)                                            \
490
        tmp += 0x100;                                                   \
491
    d.VIS_W64(r) = tmp >> 8;
492

    
493
    PMUL(0);
494
    PMUL(1);
495
    PMUL(2);
496
    PMUL(3);
497
#undef PMUL
498

    
499
    DT0 = d.d;
500
}
501

    
502
void helper_fmul8ulx16(void)
503
{
504
    vis64 s, d;
505
    uint32_t tmp;
506

    
507
    s.d = DT0;
508
    d.d = DT1;
509

    
510
#define PMUL(r)                                                         \
511
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
512
    if ((tmp & 0xff) > 0x7f)                                            \
513
        tmp += 0x100;                                                   \
514
    d.VIS_W64(r) = tmp >> 8;
515

    
516
    PMUL(0);
517
    PMUL(1);
518
    PMUL(2);
519
    PMUL(3);
520
#undef PMUL
521

    
522
    DT0 = d.d;
523
}
524

    
525
void helper_fmuld8sux16(void)
526
{
527
    vis64 s, d;
528
    uint32_t tmp;
529

    
530
    s.d = DT0;
531
    d.d = DT1;
532

    
533
#define PMUL(r)                                                         \
534
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
535
    if ((tmp & 0xff) > 0x7f)                                            \
536
        tmp += 0x100;                                                   \
537
    d.VIS_L64(r) = tmp;
538

    
539
    // Reverse calculation order to handle overlap
540
    PMUL(1);
541
    PMUL(0);
542
#undef PMUL
543

    
544
    DT0 = d.d;
545
}
546

    
547
void helper_fmuld8ulx16(void)
548
{
549
    vis64 s, d;
550
    uint32_t tmp;
551

    
552
    s.d = DT0;
553
    d.d = DT1;
554

    
555
#define PMUL(r)                                                         \
556
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
557
    if ((tmp & 0xff) > 0x7f)                                            \
558
        tmp += 0x100;                                                   \
559
    d.VIS_L64(r) = tmp;
560

    
561
    // Reverse calculation order to handle overlap
562
    PMUL(1);
563
    PMUL(0);
564
#undef PMUL
565

    
566
    DT0 = d.d;
567
}
568

    
569
void helper_fexpand(void)
570
{
571
    vis32 s;
572
    vis64 d;
573

    
574
    s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
575
    d.d = DT1;
576
    d.VIS_L64(0) = s.VIS_W32(0) << 4;
577
    d.VIS_L64(1) = s.VIS_W32(1) << 4;
578
    d.VIS_L64(2) = s.VIS_W32(2) << 4;
579
    d.VIS_L64(3) = s.VIS_W32(3) << 4;
580

    
581
    DT0 = d.d;
582
}
583

    
584
#define VIS_HELPER(name, F)                             \
585
    void name##16(void)                                 \
586
    {                                                   \
587
        vis64 s, d;                                     \
588
                                                        \
589
        s.d = DT0;                                      \
590
        d.d = DT1;                                      \
591
                                                        \
592
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0));   \
593
        d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1));   \
594
        d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2));   \
595
        d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3));   \
596
                                                        \
597
        DT0 = d.d;                                      \
598
    }                                                   \
599
                                                        \
600
    void name##16s(void)                                \
601
    {                                                   \
602
        vis32 s, d;                                     \
603
                                                        \
604
        s.f = FT0;                                      \
605
        d.f = FT1;                                      \
606
                                                        \
607
        d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0));   \
608
        d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1));   \
609
                                                        \
610
        FT0 = d.f;                                      \
611
    }                                                   \
612
                                                        \
613
    void name##32(void)                                 \
614
    {                                                   \
615
        vis64 s, d;                                     \
616
                                                        \
617
        s.d = DT0;                                      \
618
        d.d = DT1;                                      \
619
                                                        \
620
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0));   \
621
        d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1));   \
622
                                                        \
623
        DT0 = d.d;                                      \
624
    }                                                   \
625
                                                        \
626
    void name##32s(void)                                \
627
    {                                                   \
628
        vis32 s, d;                                     \
629
                                                        \
630
        s.f = FT0;                                      \
631
        d.f = FT1;                                      \
632
                                                        \
633
        d.l = F(d.l, s.l);                              \
634
                                                        \
635
        FT0 = d.f;                                      \
636
    }
637

    
638
#define FADD(a, b) ((a) + (b))
639
#define FSUB(a, b) ((a) - (b))
640
VIS_HELPER(helper_fpadd, FADD)
641
VIS_HELPER(helper_fpsub, FSUB)
642

    
643
#define VIS_CMPHELPER(name, F)                                        \
644
    void name##16(void)                                           \
645
    {                                                             \
646
        vis64 s, d;                                               \
647
                                                                  \
648
        s.d = DT0;                                                \
649
        d.d = DT1;                                                \
650
                                                                  \
651
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0;       \
652
        d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0;      \
653
        d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0;      \
654
        d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0;      \
655
                                                                  \
656
        DT0 = d.d;                                                \
657
    }                                                             \
658
                                                                  \
659
    void name##32(void)                                           \
660
    {                                                             \
661
        vis64 s, d;                                               \
662
                                                                  \
663
        s.d = DT0;                                                \
664
        d.d = DT1;                                                \
665
                                                                  \
666
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0;       \
667
        d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0;      \
668
                                                                  \
669
        DT0 = d.d;                                                \
670
    }
671

    
672
#define FCMPGT(a, b) ((a) > (b))
673
#define FCMPEQ(a, b) ((a) == (b))
674
#define FCMPLE(a, b) ((a) <= (b))
675
#define FCMPNE(a, b) ((a) != (b))
676

    
677
VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
678
VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
679
VIS_CMPHELPER(helper_fcmple, FCMPLE)
680
VIS_CMPHELPER(helper_fcmpne, FCMPNE)
681
#endif
682

    
683
void helper_check_ieee_exceptions(void)
684
{
685
    target_ulong status;
686

    
687
    status = get_float_exception_flags(&env->fp_status);
688
    if (status) {
689
        /* Copy IEEE 754 flags into FSR */
690
        if (status & float_flag_invalid)
691
            env->fsr |= FSR_NVC;
692
        if (status & float_flag_overflow)
693
            env->fsr |= FSR_OFC;
694
        if (status & float_flag_underflow)
695
            env->fsr |= FSR_UFC;
696
        if (status & float_flag_divbyzero)
697
            env->fsr |= FSR_DZC;
698
        if (status & float_flag_inexact)
699
            env->fsr |= FSR_NXC;
700

    
701
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
702
            /* Unmasked exception, generate a trap */
703
            env->fsr |= FSR_FTT_IEEE_EXCP;
704
            raise_exception(TT_FP_EXCP);
705
        } else {
706
            /* Accumulate exceptions */
707
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
708
        }
709
    }
710
}
711

    
712
void helper_clear_float_exceptions(void)
713
{
714
    set_float_exception_flags(0, &env->fp_status);
715
}
716

    
717
void helper_fabss(void)
718
{
719
    FT0 = float32_abs(FT1);
720
}
721

    
722
#ifdef TARGET_SPARC64
723
void helper_fabsd(void)
724
{
725
    DT0 = float64_abs(DT1);
726
}
727

    
728
void helper_fabsq(void)
729
{
730
    QT0 = float128_abs(QT1);
731
}
732
#endif
733

    
734
void helper_fsqrts(void)
735
{
736
    FT0 = float32_sqrt(FT1, &env->fp_status);
737
}
738

    
739
void helper_fsqrtd(void)
740
{
741
    DT0 = float64_sqrt(DT1, &env->fp_status);
742
}
743

    
744
void helper_fsqrtq(void)
745
{
746
    QT0 = float128_sqrt(QT1, &env->fp_status);
747
}
748

    
749
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
750
    void glue(helper_, name) (void)                                     \
751
    {                                                                   \
752
        target_ulong new_fsr;                                           \
753
                                                                        \
754
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
755
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
756
        case float_relation_unordered:                                  \
757
            new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
758
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
759
                env->fsr |= new_fsr;                                    \
760
                env->fsr |= FSR_NVC;                                    \
761
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
762
                raise_exception(TT_FP_EXCP);                            \
763
            } else {                                                    \
764
                env->fsr |= FSR_NVA;                                    \
765
            }                                                           \
766
            break;                                                      \
767
        case float_relation_less:                                       \
768
            new_fsr = FSR_FCC0 << FS;                                   \
769
            break;                                                      \
770
        case float_relation_greater:                                    \
771
            new_fsr = FSR_FCC1 << FS;                                   \
772
            break;                                                      \
773
        default:                                                        \
774
            new_fsr = 0;                                                \
775
            break;                                                      \
776
        }                                                               \
777
        env->fsr |= new_fsr;                                            \
778
    }
779

    
780
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
781
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
782

    
783
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
784
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
785

    
786
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
787
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
788

    
789
#ifdef TARGET_SPARC64
790
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
791
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
792
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
793

    
794
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
795
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
796
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
797

    
798
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
799
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
800
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
801

    
802
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
803
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
804
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
805

    
806
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
807
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
808
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
809

    
810
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
811
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
812
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
813
#endif
814

    
815
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
816
    defined(DEBUG_MXCC)
817
static void dump_mxcc(CPUState *env)
818
{
819
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
820
           env->mxccdata[0], env->mxccdata[1],
821
           env->mxccdata[2], env->mxccdata[3]);
822
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
823
           "          %016llx %016llx %016llx %016llx\n",
824
           env->mxccregs[0], env->mxccregs[1],
825
           env->mxccregs[2], env->mxccregs[3],
826
           env->mxccregs[4], env->mxccregs[5],
827
           env->mxccregs[6], env->mxccregs[7]);
828
}
829
#endif
830

    
831
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
832
    && defined(DEBUG_ASI)
833
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
834
                     uint64_t r1)
835
{
836
    switch (size)
837
    {
838
    case 1:
839
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
840
                    addr, asi, r1 & 0xff);
841
        break;
842
    case 2:
843
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
844
                    addr, asi, r1 & 0xffff);
845
        break;
846
    case 4:
847
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
848
                    addr, asi, r1 & 0xffffffff);
849
        break;
850
    case 8:
851
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
852
                    addr, asi, r1);
853
        break;
854
    }
855
}
856
#endif
857

    
858
#ifndef TARGET_SPARC64
859
#ifndef CONFIG_USER_ONLY
860
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
861
{
862
    uint64_t ret = 0;
863
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
864
    uint32_t last_addr = addr;
865
#endif
866

    
867
    helper_check_align(addr, size - 1);
868
    switch (asi) {
869
    case 2: /* SuperSparc MXCC registers */
870
        switch (addr) {
871
        case 0x01c00a00: /* MXCC control register */
872
            if (size == 8)
873
                ret = env->mxccregs[3];
874
            else
875
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
876
                             size);
877
            break;
878
        case 0x01c00a04: /* MXCC control register */
879
            if (size == 4)
880
                ret = env->mxccregs[3];
881
            else
882
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
883
                             size);
884
            break;
885
        case 0x01c00c00: /* Module reset register */
886
            if (size == 8) {
887
                ret = env->mxccregs[5];
888
                // should we do something here?
889
            } else
890
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
891
                             size);
892
            break;
893
        case 0x01c00f00: /* MBus port address register */
894
            if (size == 8)
895
                ret = env->mxccregs[7];
896
            else
897
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
898
                             size);
899
            break;
900
        default:
901
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
902
                         size);
903
            break;
904
        }
905
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
906
                     "addr = %08x -> ret = %08x,"
907
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
908
#ifdef DEBUG_MXCC
909
        dump_mxcc(env);
910
#endif
911
        break;
912
    case 3: /* MMU probe */
913
        {
914
            int mmulev;
915

    
916
            mmulev = (addr >> 8) & 15;
917
            if (mmulev > 4)
918
                ret = 0;
919
            else
920
                ret = mmu_probe(env, addr, mmulev);
921
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
922
                        addr, mmulev, ret);
923
        }
924
        break;
925
    case 4: /* read MMU regs */
926
        {
927
            int reg = (addr >> 8) & 0x1f;
928

    
929
            ret = env->mmuregs[reg];
930
            if (reg == 3) /* Fault status cleared on read */
931
                env->mmuregs[3] = 0;
932
            else if (reg == 0x13) /* Fault status read */
933
                ret = env->mmuregs[3];
934
            else if (reg == 0x14) /* Fault address read */
935
                ret = env->mmuregs[4];
936
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
937
        }
938
        break;
939
    case 5: // Turbosparc ITLB Diagnostic
940
    case 6: // Turbosparc DTLB Diagnostic
941
    case 7: // Turbosparc IOTLB Diagnostic
942
        break;
943
    case 9: /* Supervisor code access */
944
        switch(size) {
945
        case 1:
946
            ret = ldub_code(addr);
947
            break;
948
        case 2:
949
            ret = lduw_code(addr);
950
            break;
951
        default:
952
        case 4:
953
            ret = ldl_code(addr);
954
            break;
955
        case 8:
956
            ret = ldq_code(addr);
957
            break;
958
        }
959
        break;
960
    case 0xa: /* User data access */
961
        switch(size) {
962
        case 1:
963
            ret = ldub_user(addr);
964
            break;
965
        case 2:
966
            ret = lduw_user(addr);
967
            break;
968
        default:
969
        case 4:
970
            ret = ldl_user(addr);
971
            break;
972
        case 8:
973
            ret = ldq_user(addr);
974
            break;
975
        }
976
        break;
977
    case 0xb: /* Supervisor data access */
978
        switch(size) {
979
        case 1:
980
            ret = ldub_kernel(addr);
981
            break;
982
        case 2:
983
            ret = lduw_kernel(addr);
984
            break;
985
        default:
986
        case 4:
987
            ret = ldl_kernel(addr);
988
            break;
989
        case 8:
990
            ret = ldq_kernel(addr);
991
            break;
992
        }
993
        break;
994
    case 0xc: /* I-cache tag */
995
    case 0xd: /* I-cache data */
996
    case 0xe: /* D-cache tag */
997
    case 0xf: /* D-cache data */
998
        break;
999
    case 0x20: /* MMU passthrough */
1000
        switch(size) {
1001
        case 1:
1002
            ret = ldub_phys(addr);
1003
            break;
1004
        case 2:
1005
            ret = lduw_phys(addr);
1006
            break;
1007
        default:
1008
        case 4:
1009
            ret = ldl_phys(addr);
1010
            break;
1011
        case 8:
1012
            ret = ldq_phys(addr);
1013
            break;
1014
        }
1015
        break;
1016
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1017
        switch(size) {
1018
        case 1:
1019
            ret = ldub_phys((target_phys_addr_t)addr
1020
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1021
            break;
1022
        case 2:
1023
            ret = lduw_phys((target_phys_addr_t)addr
1024
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1025
            break;
1026
        default:
1027
        case 4:
1028
            ret = ldl_phys((target_phys_addr_t)addr
1029
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1030
            break;
1031
        case 8:
1032
            ret = ldq_phys((target_phys_addr_t)addr
1033
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1034
            break;
1035
        }
1036
        break;
1037
    case 0x30: // Turbosparc secondary cache diagnostic
1038
    case 0x31: // Turbosparc RAM snoop
1039
    case 0x32: // Turbosparc page table descriptor diagnostic
1040
    case 0x39: /* data cache diagnostic register */
1041
        ret = 0;
1042
        break;
1043
    case 8: /* User code access, XXX */
1044
    default:
1045
        do_unassigned_access(addr, 0, 0, asi);
1046
        ret = 0;
1047
        break;
1048
    }
1049
    if (sign) {
1050
        switch(size) {
1051
        case 1:
1052
            ret = (int8_t) ret;
1053
            break;
1054
        case 2:
1055
            ret = (int16_t) ret;
1056
            break;
1057
        case 4:
1058
            ret = (int32_t) ret;
1059
            break;
1060
        default:
1061
            break;
1062
        }
1063
    }
1064
#ifdef DEBUG_ASI
1065
    dump_asi("read ", last_addr, asi, size, ret);
1066
#endif
1067
    return ret;
1068
}
1069

    
1070
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1071
{
1072
    helper_check_align(addr, size - 1);
1073
    switch(asi) {
1074
    case 2: /* SuperSparc MXCC registers */
1075
        switch (addr) {
1076
        case 0x01c00000: /* MXCC stream data register 0 */
1077
            if (size == 8)
1078
                env->mxccdata[0] = val;
1079
            else
1080
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1081
                             size);
1082
            break;
1083
        case 0x01c00008: /* MXCC stream data register 1 */
1084
            if (size == 8)
1085
                env->mxccdata[1] = val;
1086
            else
1087
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1088
                             size);
1089
            break;
1090
        case 0x01c00010: /* MXCC stream data register 2 */
1091
            if (size == 8)
1092
                env->mxccdata[2] = val;
1093
            else
1094
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1095
                             size);
1096
            break;
1097
        case 0x01c00018: /* MXCC stream data register 3 */
1098
            if (size == 8)
1099
                env->mxccdata[3] = val;
1100
            else
1101
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1102
                             size);
1103
            break;
1104
        case 0x01c00100: /* MXCC stream source */
1105
            if (size == 8)
1106
                env->mxccregs[0] = val;
1107
            else
1108
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1109
                             size);
1110
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1111
                                        0);
1112
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1113
                                        8);
1114
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1115
                                        16);
1116
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1117
                                        24);
1118
            break;
1119
        case 0x01c00200: /* MXCC stream destination */
1120
            if (size == 8)
1121
                env->mxccregs[1] = val;
1122
            else
1123
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1124
                             size);
1125
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0,
1126
                     env->mxccdata[0]);
1127
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8,
1128
                     env->mxccdata[1]);
1129
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1130
                     env->mxccdata[2]);
1131
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1132
                     env->mxccdata[3]);
1133
            break;
1134
        case 0x01c00a00: /* MXCC control register */
1135
            if (size == 8)
1136
                env->mxccregs[3] = val;
1137
            else
1138
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1139
                             size);
1140
            break;
1141
        case 0x01c00a04: /* MXCC control register */
1142
            if (size == 4)
1143
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL)
1144
                    | val;
1145
            else
1146
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1147
                             size);
1148
            break;
1149
        case 0x01c00e00: /* MXCC error register  */
1150
            // writing a 1 bit clears the error
1151
            if (size == 8)
1152
                env->mxccregs[6] &= ~val;
1153
            else
1154
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1155
                             size);
1156
            break;
1157
        case 0x01c00f00: /* MBus port address register */
1158
            if (size == 8)
1159
                env->mxccregs[7] = val;
1160
            else
1161
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1162
                             size);
1163
            break;
1164
        default:
1165
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1166
                         size);
1167
            break;
1168
        }
1169
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi,
1170
                     size, addr, val);
1171
#ifdef DEBUG_MXCC
1172
        dump_mxcc(env);
1173
#endif
1174
        break;
1175
    case 3: /* MMU flush */
1176
        {
1177
            int mmulev;
1178

    
1179
            mmulev = (addr >> 8) & 15;
1180
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
1181
            switch (mmulev) {
1182
            case 0: // flush page
1183
                tlb_flush_page(env, addr & 0xfffff000);
1184
                break;
1185
            case 1: // flush segment (256k)
1186
            case 2: // flush region (16M)
1187
            case 3: // flush context (4G)
1188
            case 4: // flush entire
1189
                tlb_flush(env, 1);
1190
                break;
1191
            default:
1192
                break;
1193
            }
1194
#ifdef DEBUG_MMU
1195
            dump_mmu(env);
1196
#endif
1197
        }
1198
        break;
1199
    case 4: /* write MMU regs */
1200
        {
1201
            int reg = (addr >> 8) & 0x1f;
1202
            uint32_t oldreg;
1203

    
1204
            oldreg = env->mmuregs[reg];
1205
            switch(reg) {
1206
            case 0: // Control Register
1207
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1208
                                    (val & 0x00ffffff);
1209
                // Mappings generated during no-fault mode or MMU
1210
                // disabled mode are invalid in normal mode
1211
                if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1212
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1213
                    tlb_flush(env, 1);
1214
                break;
1215
            case 1: // Context Table Pointer Register
1216
                env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1217
                break;
1218
            case 2: // Context Register
1219
                env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1220
                if (oldreg != env->mmuregs[reg]) {
1221
                    /* we flush when the MMU context changes because
1222
                       QEMU has no MMU context support */
1223
                    tlb_flush(env, 1);
1224
                }
1225
                break;
1226
            case 3: // Synchronous Fault Status Register with Clear
1227
            case 4: // Synchronous Fault Address Register
1228
                break;
1229
            case 0x10: // TLB Replacement Control Register
1230
                env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1231
                break;
1232
            case 0x13: // Synchronous Fault Status Register with Read and Clear
1233
                env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1234
                break;
1235
            case 0x14: // Synchronous Fault Address Register
1236
                env->mmuregs[4] = val;
1237
                break;
1238
            default:
1239
                env->mmuregs[reg] = val;
1240
                break;
1241
            }
1242
            if (oldreg != env->mmuregs[reg]) {
1243
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1244
                            reg, oldreg, env->mmuregs[reg]);
1245
            }
1246
#ifdef DEBUG_MMU
1247
            dump_mmu(env);
1248
#endif
1249
        }
1250
        break;
1251
    case 5: // Turbosparc ITLB Diagnostic
1252
    case 6: // Turbosparc DTLB Diagnostic
1253
    case 7: // Turbosparc IOTLB Diagnostic
1254
        break;
1255
    case 0xa: /* User data access */
1256
        switch(size) {
1257
        case 1:
1258
            stb_user(addr, val);
1259
            break;
1260
        case 2:
1261
            stw_user(addr, val);
1262
            break;
1263
        default:
1264
        case 4:
1265
            stl_user(addr, val);
1266
            break;
1267
        case 8:
1268
            stq_user(addr, val);
1269
            break;
1270
        }
1271
        break;
1272
    case 0xb: /* Supervisor data access */
1273
        switch(size) {
1274
        case 1:
1275
            stb_kernel(addr, val);
1276
            break;
1277
        case 2:
1278
            stw_kernel(addr, val);
1279
            break;
1280
        default:
1281
        case 4:
1282
            stl_kernel(addr, val);
1283
            break;
1284
        case 8:
1285
            stq_kernel(addr, val);
1286
            break;
1287
        }
1288
        break;
1289
    case 0xc: /* I-cache tag */
1290
    case 0xd: /* I-cache data */
1291
    case 0xe: /* D-cache tag */
1292
    case 0xf: /* D-cache data */
1293
    case 0x10: /* I/D-cache flush page */
1294
    case 0x11: /* I/D-cache flush segment */
1295
    case 0x12: /* I/D-cache flush region */
1296
    case 0x13: /* I/D-cache flush context */
1297
    case 0x14: /* I/D-cache flush user */
1298
        break;
1299
    case 0x17: /* Block copy, sta access */
1300
        {
1301
            // val = src
1302
            // addr = dst
1303
            // copy 32 bytes
1304
            unsigned int i;
1305
            uint32_t src = val & ~3, dst = addr & ~3, temp;
1306

    
1307
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1308
                temp = ldl_kernel(src);
1309
                stl_kernel(dst, temp);
1310
            }
1311
        }
1312
        break;
1313
    case 0x1f: /* Block fill, stda access */
1314
        {
1315
            // addr = dst
1316
            // fill 32 bytes with val
1317
            unsigned int i;
1318
            uint32_t dst = addr & 7;
1319

    
1320
            for (i = 0; i < 32; i += 8, dst += 8)
1321
                stq_kernel(dst, val);
1322
        }
1323
        break;
1324
    case 0x20: /* MMU passthrough */
1325
        {
1326
            switch(size) {
1327
            case 1:
1328
                stb_phys(addr, val);
1329
                break;
1330
            case 2:
1331
                stw_phys(addr, val);
1332
                break;
1333
            case 4:
1334
            default:
1335
                stl_phys(addr, val);
1336
                break;
1337
            case 8:
1338
                stq_phys(addr, val);
1339
                break;
1340
            }
1341
        }
1342
        break;
1343
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1344
        {
1345
            switch(size) {
1346
            case 1:
1347
                stb_phys((target_phys_addr_t)addr
1348
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1349
                break;
1350
            case 2:
1351
                stw_phys((target_phys_addr_t)addr
1352
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1353
                break;
1354
            case 4:
1355
            default:
1356
                stl_phys((target_phys_addr_t)addr
1357
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1358
                break;
1359
            case 8:
1360
                stq_phys((target_phys_addr_t)addr
1361
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1362
                break;
1363
            }
1364
        }
1365
        break;
1366
    case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1367
    case 0x31: // store buffer data, Ross RT620 I-cache flush or
1368
               // Turbosparc snoop RAM
1369
    case 0x32: // store buffer control or Turbosparc page table
1370
               // descriptor diagnostic
1371
    case 0x36: /* I-cache flash clear */
1372
    case 0x37: /* D-cache flash clear */
1373
    case 0x38: /* breakpoint diagnostics */
1374
    case 0x4c: /* breakpoint action */
1375
        break;
1376
    case 8: /* User code access, XXX */
1377
    case 9: /* Supervisor code access, XXX */
1378
    default:
1379
        do_unassigned_access(addr, 1, 0, asi);
1380
        break;
1381
    }
1382
#ifdef DEBUG_ASI
1383
    dump_asi("write", addr, asi, size, val);
1384
#endif
1385
}
1386

    
1387
#endif /* CONFIG_USER_ONLY */
1388
#else /* TARGET_SPARC64 */
1389

    
1390
#ifdef CONFIG_USER_ONLY
1391
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1392
{
1393
    uint64_t ret = 0;
1394
#if defined(DEBUG_ASI)
1395
    target_ulong last_addr = addr;
1396
#endif
1397

    
1398
    if (asi < 0x80)
1399
        raise_exception(TT_PRIV_ACT);
1400

    
1401
    helper_check_align(addr, size - 1);
1402
    address_mask(env, &addr);
1403

    
1404
    switch (asi) {
1405
    case 0x82: // Primary no-fault
1406
    case 0x8a: // Primary no-fault LE
1407
        if (page_check_range(addr, size, PAGE_READ) == -1) {
1408
#ifdef DEBUG_ASI
1409
            dump_asi("read ", last_addr, asi, size, ret);
1410
#endif
1411
            return 0;
1412
        }
1413
        // Fall through
1414
    case 0x80: // Primary
1415
    case 0x88: // Primary LE
1416
        {
1417
            switch(size) {
1418
            case 1:
1419
                ret = ldub_raw(addr);
1420
                break;
1421
            case 2:
1422
                ret = lduw_raw(addr);
1423
                break;
1424
            case 4:
1425
                ret = ldl_raw(addr);
1426
                break;
1427
            default:
1428
            case 8:
1429
                ret = ldq_raw(addr);
1430
                break;
1431
            }
1432
        }
1433
        break;
1434
    case 0x83: // Secondary no-fault
1435
    case 0x8b: // Secondary no-fault LE
1436
        if (page_check_range(addr, size, PAGE_READ) == -1) {
1437
#ifdef DEBUG_ASI
1438
            dump_asi("read ", last_addr, asi, size, ret);
1439
#endif
1440
            return 0;
1441
        }
1442
        // Fall through
1443
    case 0x81: // Secondary
1444
    case 0x89: // Secondary LE
1445
        // XXX
1446
        break;
1447
    default:
1448
        break;
1449
    }
1450

    
1451
    /* Convert from little endian */
1452
    switch (asi) {
1453
    case 0x88: // Primary LE
1454
    case 0x89: // Secondary LE
1455
    case 0x8a: // Primary no-fault LE
1456
    case 0x8b: // Secondary no-fault LE
1457
        switch(size) {
1458
        case 2:
1459
            ret = bswap16(ret);
1460
            break;
1461
        case 4:
1462
            ret = bswap32(ret);
1463
            break;
1464
        case 8:
1465
            ret = bswap64(ret);
1466
            break;
1467
        default:
1468
            break;
1469
        }
1470
    default:
1471
        break;
1472
    }
1473

    
1474
    /* Convert to signed number */
1475
    if (sign) {
1476
        switch(size) {
1477
        case 1:
1478
            ret = (int8_t) ret;
1479
            break;
1480
        case 2:
1481
            ret = (int16_t) ret;
1482
            break;
1483
        case 4:
1484
            ret = (int32_t) ret;
1485
            break;
1486
        default:
1487
            break;
1488
        }
1489
    }
1490
#ifdef DEBUG_ASI
1491
    dump_asi("read ", last_addr, asi, size, ret);
1492
#endif
1493
    return ret;
1494
}
1495

    
1496
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1497
{
1498
#ifdef DEBUG_ASI
1499
    dump_asi("write", addr, asi, size, val);
1500
#endif
1501
    if (asi < 0x80)
1502
        raise_exception(TT_PRIV_ACT);
1503

    
1504
    helper_check_align(addr, size - 1);
1505
    address_mask(env, &addr);
1506

    
1507
    /* Convert to little endian */
1508
    switch (asi) {
1509
    case 0x88: // Primary LE
1510
    case 0x89: // Secondary LE
1511
        switch(size) {
1512
        case 2:
1513
            addr = bswap16(addr);
1514
            break;
1515
        case 4:
1516
            addr = bswap32(addr);
1517
            break;
1518
        case 8:
1519
            addr = bswap64(addr);
1520
            break;
1521
        default:
1522
            break;
1523
        }
1524
    default:
1525
        break;
1526
    }
1527

    
1528
    switch(asi) {
1529
    case 0x80: // Primary
1530
    case 0x88: // Primary LE
1531
        {
1532
            switch(size) {
1533
            case 1:
1534
                stb_raw(addr, val);
1535
                break;
1536
            case 2:
1537
                stw_raw(addr, val);
1538
                break;
1539
            case 4:
1540
                stl_raw(addr, val);
1541
                break;
1542
            case 8:
1543
            default:
1544
                stq_raw(addr, val);
1545
                break;
1546
            }
1547
        }
1548
        break;
1549
    case 0x81: // Secondary
1550
    case 0x89: // Secondary LE
1551
        // XXX
1552
        return;
1553

    
1554
    case 0x82: // Primary no-fault, RO
1555
    case 0x83: // Secondary no-fault, RO
1556
    case 0x8a: // Primary no-fault LE, RO
1557
    case 0x8b: // Secondary no-fault LE, RO
1558
    default:
1559
        do_unassigned_access(addr, 1, 0, 1);
1560
        return;
1561
    }
1562
}
1563

    
1564
#else /* CONFIG_USER_ONLY */
1565

    
1566
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1567
{
1568
    uint64_t ret = 0;
1569
#if defined(DEBUG_ASI)
1570
    target_ulong last_addr = addr;
1571
#endif
1572

    
1573
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1574
        || ((env->def->features & CPU_FEATURE_HYPV)
1575
            && asi >= 0x30 && asi < 0x80
1576
            && !(env->hpstate & HS_PRIV)))
1577
        raise_exception(TT_PRIV_ACT);
1578

    
1579
    helper_check_align(addr, size - 1);
1580
    switch (asi) {
1581
    case 0x82: // Primary no-fault
1582
    case 0x8a: // Primary no-fault LE
1583
        if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1584
#ifdef DEBUG_ASI
1585
            dump_asi("read ", last_addr, asi, size, ret);
1586
#endif
1587
            return 0;
1588
        }
1589
        // Fall through
1590
    case 0x10: // As if user primary
1591
    case 0x18: // As if user primary LE
1592
    case 0x80: // Primary
1593
    case 0x88: // Primary LE
1594
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1595
            if ((env->def->features & CPU_FEATURE_HYPV)
1596
                && env->hpstate & HS_PRIV) {
1597
                switch(size) {
1598
                case 1:
1599
                    ret = ldub_hypv(addr);
1600
                    break;
1601
                case 2:
1602
                    ret = lduw_hypv(addr);
1603
                    break;
1604
                case 4:
1605
                    ret = ldl_hypv(addr);
1606
                    break;
1607
                default:
1608
                case 8:
1609
                    ret = ldq_hypv(addr);
1610
                    break;
1611
                }
1612
            } else {
1613
                switch(size) {
1614
                case 1:
1615
                    ret = ldub_kernel(addr);
1616
                    break;
1617
                case 2:
1618
                    ret = lduw_kernel(addr);
1619
                    break;
1620
                case 4:
1621
                    ret = ldl_kernel(addr);
1622
                    break;
1623
                default:
1624
                case 8:
1625
                    ret = ldq_kernel(addr);
1626
                    break;
1627
                }
1628
            }
1629
        } else {
1630
            switch(size) {
1631
            case 1:
1632
                ret = ldub_user(addr);
1633
                break;
1634
            case 2:
1635
                ret = lduw_user(addr);
1636
                break;
1637
            case 4:
1638
                ret = ldl_user(addr);
1639
                break;
1640
            default:
1641
            case 8:
1642
                ret = ldq_user(addr);
1643
                break;
1644
            }
1645
        }
1646
        break;
1647
    case 0x14: // Bypass
1648
    case 0x15: // Bypass, non-cacheable
1649
    case 0x1c: // Bypass LE
1650
    case 0x1d: // Bypass, non-cacheable LE
1651
        {
1652
            switch(size) {
1653
            case 1:
1654
                ret = ldub_phys(addr);
1655
                break;
1656
            case 2:
1657
                ret = lduw_phys(addr);
1658
                break;
1659
            case 4:
1660
                ret = ldl_phys(addr);
1661
                break;
1662
            default:
1663
            case 8:
1664
                ret = ldq_phys(addr);
1665
                break;
1666
            }
1667
            break;
1668
        }
1669
    case 0x24: // Nucleus quad LDD 128 bit atomic
1670
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1671
        //  Only ldda allowed
1672
        raise_exception(TT_ILL_INSN);
1673
        return 0;
1674
    case 0x83: // Secondary no-fault
1675
    case 0x8b: // Secondary no-fault LE
1676
        if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1677
#ifdef DEBUG_ASI
1678
            dump_asi("read ", last_addr, asi, size, ret);
1679
#endif
1680
            return 0;
1681
        }
1682
        // Fall through
1683
    case 0x04: // Nucleus
1684
    case 0x0c: // Nucleus Little Endian (LE)
1685
    case 0x11: // As if user secondary
1686
    case 0x19: // As if user secondary LE
1687
    case 0x4a: // UPA config
1688
    case 0x81: // Secondary
1689
    case 0x89: // Secondary LE
1690
        // XXX
1691
        break;
1692
    case 0x45: // LSU
1693
        ret = env->lsu;
1694
        break;
1695
    case 0x50: // I-MMU regs
1696
        {
1697
            int reg = (addr >> 3) & 0xf;
1698

    
1699
            ret = env->immuregs[reg];
1700
            break;
1701
        }
1702
    case 0x51: // I-MMU 8k TSB pointer
1703
    case 0x52: // I-MMU 64k TSB pointer
1704
        // XXX
1705
        break;
1706
    case 0x55: // I-MMU data access
1707
        {
1708
            int reg = (addr >> 3) & 0x3f;
1709

    
1710
            ret = env->itlb_tte[reg];
1711
            break;
1712
        }
1713
    case 0x56: // I-MMU tag read
1714
        {
1715
            int reg = (addr >> 3) & 0x3f;
1716

    
1717
            ret = env->itlb_tag[reg];
1718
            break;
1719
        }
1720
    case 0x58: // D-MMU regs
1721
        {
1722
            int reg = (addr >> 3) & 0xf;
1723

    
1724
            ret = env->dmmuregs[reg];
1725
            break;
1726
        }
1727
    case 0x5d: // D-MMU data access
1728
        {
1729
            int reg = (addr >> 3) & 0x3f;
1730

    
1731
            ret = env->dtlb_tte[reg];
1732
            break;
1733
        }
1734
    case 0x5e: // D-MMU tag read
1735
        {
1736
            int reg = (addr >> 3) & 0x3f;
1737

    
1738
            ret = env->dtlb_tag[reg];
1739
            break;
1740
        }
1741
    case 0x46: // D-cache data
1742
    case 0x47: // D-cache tag access
1743
    case 0x4b: // E-cache error enable
1744
    case 0x4c: // E-cache asynchronous fault status
1745
    case 0x4d: // E-cache asynchronous fault address
1746
    case 0x4e: // E-cache tag data
1747
    case 0x66: // I-cache instruction access
1748
    case 0x67: // I-cache tag access
1749
    case 0x6e: // I-cache predecode
1750
    case 0x6f: // I-cache LRU etc.
1751
    case 0x76: // E-cache tag
1752
    case 0x7e: // E-cache tag
1753
        break;
1754
    case 0x59: // D-MMU 8k TSB pointer
1755
    case 0x5a: // D-MMU 64k TSB pointer
1756
    case 0x5b: // D-MMU data pointer
1757
    case 0x48: // Interrupt dispatch, RO
1758
    case 0x49: // Interrupt data receive
1759
    case 0x7f: // Incoming interrupt vector, RO
1760
        // XXX
1761
        break;
1762
    case 0x54: // I-MMU data in, WO
1763
    case 0x57: // I-MMU demap, WO
1764
    case 0x5c: // D-MMU data in, WO
1765
    case 0x5f: // D-MMU demap, WO
1766
    case 0x77: // Interrupt vector, WO
1767
    default:
1768
        do_unassigned_access(addr, 0, 0, 1);
1769
        ret = 0;
1770
        break;
1771
    }
1772

    
1773
    /* Convert from little endian */
1774
    switch (asi) {
1775
    case 0x0c: // Nucleus Little Endian (LE)
1776
    case 0x18: // As if user primary LE
1777
    case 0x19: // As if user secondary LE
1778
    case 0x1c: // Bypass LE
1779
    case 0x1d: // Bypass, non-cacheable LE
1780
    case 0x88: // Primary LE
1781
    case 0x89: // Secondary LE
1782
    case 0x8a: // Primary no-fault LE
1783
    case 0x8b: // Secondary no-fault LE
1784
        switch(size) {
1785
        case 2:
1786
            ret = bswap16(ret);
1787
            break;
1788
        case 4:
1789
            ret = bswap32(ret);
1790
            break;
1791
        case 8:
1792
            ret = bswap64(ret);
1793
            break;
1794
        default:
1795
            break;
1796
        }
1797
    default:
1798
        break;
1799
    }
1800

    
1801
    /* Convert to signed number */
1802
    if (sign) {
1803
        switch(size) {
1804
        case 1:
1805
            ret = (int8_t) ret;
1806
            break;
1807
        case 2:
1808
            ret = (int16_t) ret;
1809
            break;
1810
        case 4:
1811
            ret = (int32_t) ret;
1812
            break;
1813
        default:
1814
            break;
1815
        }
1816
    }
1817
#ifdef DEBUG_ASI
1818
    dump_asi("read ", last_addr, asi, size, ret);
1819
#endif
1820
    return ret;
1821
}
1822

    
1823
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1824
{
1825
#ifdef DEBUG_ASI
1826
    dump_asi("write", addr, asi, size, val);
1827
#endif
1828
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1829
        || ((env->def->features & CPU_FEATURE_HYPV)
1830
            && asi >= 0x30 && asi < 0x80
1831
            && !(env->hpstate & HS_PRIV)))
1832
        raise_exception(TT_PRIV_ACT);
1833

    
1834
    helper_check_align(addr, size - 1);
1835
    /* Convert to little endian */
1836
    switch (asi) {
1837
    case 0x0c: // Nucleus Little Endian (LE)
1838
    case 0x18: // As if user primary LE
1839
    case 0x19: // As if user secondary LE
1840
    case 0x1c: // Bypass LE
1841
    case 0x1d: // Bypass, non-cacheable LE
1842
    case 0x88: // Primary LE
1843
    case 0x89: // Secondary LE
1844
        switch(size) {
1845
        case 2:
1846
            addr = bswap16(addr);
1847
            break;
1848
        case 4:
1849
            addr = bswap32(addr);
1850
            break;
1851
        case 8:
1852
            addr = bswap64(addr);
1853
            break;
1854
        default:
1855
            break;
1856
        }
1857
    default:
1858
        break;
1859
    }
1860

    
1861
    switch(asi) {
1862
    case 0x10: // As if user primary
1863
    case 0x18: // As if user primary LE
1864
    case 0x80: // Primary
1865
    case 0x88: // Primary LE
1866
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1867
            if ((env->def->features & CPU_FEATURE_HYPV)
1868
                && env->hpstate & HS_PRIV) {
1869
                switch(size) {
1870
                case 1:
1871
                    stb_hypv(addr, val);
1872
                    break;
1873
                case 2:
1874
                    stw_hypv(addr, val);
1875
                    break;
1876
                case 4:
1877
                    stl_hypv(addr, val);
1878
                    break;
1879
                case 8:
1880
                default:
1881
                    stq_hypv(addr, val);
1882
                    break;
1883
                }
1884
            } else {
1885
                switch(size) {
1886
                case 1:
1887
                    stb_kernel(addr, val);
1888
                    break;
1889
                case 2:
1890
                    stw_kernel(addr, val);
1891
                    break;
1892
                case 4:
1893
                    stl_kernel(addr, val);
1894
                    break;
1895
                case 8:
1896
                default:
1897
                    stq_kernel(addr, val);
1898
                    break;
1899
                }
1900
            }
1901
        } else {
1902
            switch(size) {
1903
            case 1:
1904
                stb_user(addr, val);
1905
                break;
1906
            case 2:
1907
                stw_user(addr, val);
1908
                break;
1909
            case 4:
1910
                stl_user(addr, val);
1911
                break;
1912
            case 8:
1913
            default:
1914
                stq_user(addr, val);
1915
                break;
1916
            }
1917
        }
1918
        break;
1919
    case 0x14: // Bypass
1920
    case 0x15: // Bypass, non-cacheable
1921
    case 0x1c: // Bypass LE
1922
    case 0x1d: // Bypass, non-cacheable LE
1923
        {
1924
            switch(size) {
1925
            case 1:
1926
                stb_phys(addr, val);
1927
                break;
1928
            case 2:
1929
                stw_phys(addr, val);
1930
                break;
1931
            case 4:
1932
                stl_phys(addr, val);
1933
                break;
1934
            case 8:
1935
            default:
1936
                stq_phys(addr, val);
1937
                break;
1938
            }
1939
        }
1940
        return;
1941
    case 0x24: // Nucleus quad LDD 128 bit atomic
1942
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1943
        //  Only ldda allowed
1944
        raise_exception(TT_ILL_INSN);
1945
        return;
1946
    case 0x04: // Nucleus
1947
    case 0x0c: // Nucleus Little Endian (LE)
1948
    case 0x11: // As if user secondary
1949
    case 0x19: // As if user secondary LE
1950
    case 0x4a: // UPA config
1951
    case 0x81: // Secondary
1952
    case 0x89: // Secondary LE
1953
        // XXX
1954
        return;
1955
    case 0x45: // LSU
1956
        {
1957
            uint64_t oldreg;
1958

    
1959
            oldreg = env->lsu;
1960
            env->lsu = val & (DMMU_E | IMMU_E);
1961
            // Mappings generated during D/I MMU disabled mode are
1962
            // invalid in normal mode
1963
            if (oldreg != env->lsu) {
1964
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1965
                            oldreg, env->lsu);
1966
#ifdef DEBUG_MMU
1967
                dump_mmu(env);
1968
#endif
1969
                tlb_flush(env, 1);
1970
            }
1971
            return;
1972
        }
1973
    case 0x50: // I-MMU regs
1974
        {
1975
            int reg = (addr >> 3) & 0xf;
1976
            uint64_t oldreg;
1977

    
1978
            oldreg = env->immuregs[reg];
1979
            switch(reg) {
1980
            case 0: // RO
1981
            case 4:
1982
                return;
1983
            case 1: // Not in I-MMU
1984
            case 2:
1985
            case 7:
1986
            case 8:
1987
                return;
1988
            case 3: // SFSR
1989
                if ((val & 1) == 0)
1990
                    val = 0; // Clear SFSR
1991
                break;
1992
            case 5: // TSB access
1993
            case 6: // Tag access
1994
            default:
1995
                break;
1996
            }
1997
            env->immuregs[reg] = val;
1998
            if (oldreg != env->immuregs[reg]) {
1999
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2000
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2001
            }
2002
#ifdef DEBUG_MMU
2003
            dump_mmu(env);
2004
#endif
2005
            return;
2006
        }
2007
    case 0x54: // I-MMU data in
2008
        {
2009
            unsigned int i;
2010

    
2011
            // Try finding an invalid entry
2012
            for (i = 0; i < 64; i++) {
2013
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
2014
                    env->itlb_tag[i] = env->immuregs[6];
2015
                    env->itlb_tte[i] = val;
2016
                    return;
2017
                }
2018
            }
2019
            // Try finding an unlocked entry
2020
            for (i = 0; i < 64; i++) {
2021
                if ((env->itlb_tte[i] & 0x40) == 0) {
2022
                    env->itlb_tag[i] = env->immuregs[6];
2023
                    env->itlb_tte[i] = val;
2024
                    return;
2025
                }
2026
            }
2027
            // error state?
2028
            return;
2029
        }
2030
    case 0x55: // I-MMU data access
2031
        {
2032
            unsigned int i = (addr >> 3) & 0x3f;
2033

    
2034
            env->itlb_tag[i] = env->immuregs[6];
2035
            env->itlb_tte[i] = val;
2036
            return;
2037
        }
2038
    case 0x57: // I-MMU demap
2039
        // XXX
2040
        return;
2041
    case 0x58: // D-MMU regs
2042
        {
2043
            int reg = (addr >> 3) & 0xf;
2044
            uint64_t oldreg;
2045

    
2046
            oldreg = env->dmmuregs[reg];
2047
            switch(reg) {
2048
            case 0: // RO
2049
            case 4:
2050
                return;
2051
            case 3: // SFSR
2052
                if ((val & 1) == 0) {
2053
                    val = 0; // Clear SFSR, Fault address
2054
                    env->dmmuregs[4] = 0;
2055
                }
2056
                env->dmmuregs[reg] = val;
2057
                break;
2058
            case 1: // Primary context
2059
            case 2: // Secondary context
2060
            case 5: // TSB access
2061
            case 6: // Tag access
2062
            case 7: // Virtual Watchpoint
2063
            case 8: // Physical Watchpoint
2064
            default:
2065
                break;
2066
            }
2067
            env->dmmuregs[reg] = val;
2068
            if (oldreg != env->dmmuregs[reg]) {
2069
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2070
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2071
            }
2072
#ifdef DEBUG_MMU
2073
            dump_mmu(env);
2074
#endif
2075
            return;
2076
        }
2077
    case 0x5c: // D-MMU data in
2078
        {
2079
            unsigned int i;
2080

    
2081
            // Try finding an invalid entry
2082
            for (i = 0; i < 64; i++) {
2083
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2084
                    env->dtlb_tag[i] = env->dmmuregs[6];
2085
                    env->dtlb_tte[i] = val;
2086
                    return;
2087
                }
2088
            }
2089
            // Try finding an unlocked entry
2090
            for (i = 0; i < 64; i++) {
2091
                if ((env->dtlb_tte[i] & 0x40) == 0) {
2092
                    env->dtlb_tag[i] = env->dmmuregs[6];
2093
                    env->dtlb_tte[i] = val;
2094
                    return;
2095
                }
2096
            }
2097
            // error state?
2098
            return;
2099
        }
2100
    case 0x5d: // D-MMU data access
2101
        {
2102
            unsigned int i = (addr >> 3) & 0x3f;
2103

    
2104
            env->dtlb_tag[i] = env->dmmuregs[6];
2105
            env->dtlb_tte[i] = val;
2106
            return;
2107
        }
2108
    case 0x5f: // D-MMU demap
2109
    case 0x49: // Interrupt data receive
2110
        // XXX
2111
        return;
2112
    case 0x46: // D-cache data
2113
    case 0x47: // D-cache tag access
2114
    case 0x4b: // E-cache error enable
2115
    case 0x4c: // E-cache asynchronous fault status
2116
    case 0x4d: // E-cache asynchronous fault address
2117
    case 0x4e: // E-cache tag data
2118
    case 0x66: // I-cache instruction access
2119
    case 0x67: // I-cache tag access
2120
    case 0x6e: // I-cache predecode
2121
    case 0x6f: // I-cache LRU etc.
2122
    case 0x76: // E-cache tag
2123
    case 0x7e: // E-cache tag
2124
        return;
2125
    case 0x51: // I-MMU 8k TSB pointer, RO
2126
    case 0x52: // I-MMU 64k TSB pointer, RO
2127
    case 0x56: // I-MMU tag read, RO
2128
    case 0x59: // D-MMU 8k TSB pointer, RO
2129
    case 0x5a: // D-MMU 64k TSB pointer, RO
2130
    case 0x5b: // D-MMU data pointer, RO
2131
    case 0x5e: // D-MMU tag read, RO
2132
    case 0x48: // Interrupt dispatch, RO
2133
    case 0x7f: // Incoming interrupt vector, RO
2134
    case 0x82: // Primary no-fault, RO
2135
    case 0x83: // Secondary no-fault, RO
2136
    case 0x8a: // Primary no-fault LE, RO
2137
    case 0x8b: // Secondary no-fault LE, RO
2138
    default:
2139
        do_unassigned_access(addr, 1, 0, 1);
2140
        return;
2141
    }
2142
}
2143
#endif /* CONFIG_USER_ONLY */
2144

    
2145
void helper_ldda_asi(target_ulong addr, int asi, int rd)
2146
{
2147
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2148
        || ((env->def->features & CPU_FEATURE_HYPV)
2149
            && asi >= 0x30 && asi < 0x80
2150
            && !(env->hpstate & HS_PRIV)))
2151
        raise_exception(TT_PRIV_ACT);
2152

    
2153
    switch (asi) {
2154
    case 0x24: // Nucleus quad LDD 128 bit atomic
2155
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2156
        helper_check_align(addr, 0xf);
2157
        if (rd == 0) {
2158
            env->gregs[1] = ldq_kernel(addr + 8);
2159
            if (asi == 0x2c)
2160
                bswap64s(&env->gregs[1]);
2161
        } else if (rd < 8) {
2162
            env->gregs[rd] = ldq_kernel(addr);
2163
            env->gregs[rd + 1] = ldq_kernel(addr + 8);
2164
            if (asi == 0x2c) {
2165
                bswap64s(&env->gregs[rd]);
2166
                bswap64s(&env->gregs[rd + 1]);
2167
            }
2168
        } else {
2169
            env->regwptr[rd] = ldq_kernel(addr);
2170
            env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2171
            if (asi == 0x2c) {
2172
                bswap64s(&env->regwptr[rd]);
2173
                bswap64s(&env->regwptr[rd + 1]);
2174
            }
2175
        }
2176
        break;
2177
    default:
2178
        helper_check_align(addr, 0x3);
2179
        if (rd == 0)
2180
            env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2181
        else if (rd < 8) {
2182
            env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2183
            env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2184
        } else {
2185
            env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2186
            env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2187
        }
2188
        break;
2189
    }
2190
}
2191

    
2192
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2193
{
2194
    unsigned int i;
2195
    target_ulong val;
2196

    
2197
    helper_check_align(addr, 3);
2198
    switch (asi) {
2199
    case 0xf0: // Block load primary
2200
    case 0xf1: // Block load secondary
2201
    case 0xf8: // Block load primary LE
2202
    case 0xf9: // Block load secondary LE
2203
        if (rd & 7) {
2204
            raise_exception(TT_ILL_INSN);
2205
            return;
2206
        }
2207
        helper_check_align(addr, 0x3f);
2208
        for (i = 0; i < 16; i++) {
2209
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2210
                                                         0);
2211
            addr += 4;
2212
        }
2213

    
2214
        return;
2215
    default:
2216
        break;
2217
    }
2218

    
2219
    val = helper_ld_asi(addr, asi, size, 0);
2220
    switch(size) {
2221
    default:
2222
    case 4:
2223
        *((uint32_t *)&FT0) = val;
2224
        break;
2225
    case 8:
2226
        *((int64_t *)&DT0) = val;
2227
        break;
2228
    case 16:
2229
        // XXX
2230
        break;
2231
    }
2232
}
2233

    
2234
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2235
{
2236
    unsigned int i;
2237
    target_ulong val = 0;
2238

    
2239
    helper_check_align(addr, 3);
2240
    switch (asi) {
2241
    case 0xf0: // Block store primary
2242
    case 0xf1: // Block store secondary
2243
    case 0xf8: // Block store primary LE
2244
    case 0xf9: // Block store secondary LE
2245
        if (rd & 7) {
2246
            raise_exception(TT_ILL_INSN);
2247
            return;
2248
        }
2249
        helper_check_align(addr, 0x3f);
2250
        for (i = 0; i < 16; i++) {
2251
            val = *(uint32_t *)&env->fpr[rd++];
2252
            helper_st_asi(addr, val, asi & 0x8f, 4);
2253
            addr += 4;
2254
        }
2255

    
2256
        return;
2257
    default:
2258
        break;
2259
    }
2260

    
2261
    switch(size) {
2262
    default:
2263
    case 4:
2264
        val = *((uint32_t *)&FT0);
2265
        break;
2266
    case 8:
2267
        val = *((int64_t *)&DT0);
2268
        break;
2269
    case 16:
2270
        // XXX
2271
        break;
2272
    }
2273
    helper_st_asi(addr, val, asi, size);
2274
}
2275

    
2276
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2277
                            target_ulong val2, uint32_t asi)
2278
{
2279
    target_ulong ret;
2280

    
2281
    val1 &= 0xffffffffUL;
2282
    ret = helper_ld_asi(addr, asi, 4, 0);
2283
    ret &= 0xffffffffUL;
2284
    if (val1 == ret)
2285
        helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
2286
    return ret;
2287
}
2288

    
2289
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2290
                             target_ulong val2, uint32_t asi)
2291
{
2292
    target_ulong ret;
2293

    
2294
    ret = helper_ld_asi(addr, asi, 8, 0);
2295
    if (val1 == ret)
2296
        helper_st_asi(addr, val2, asi, 8);
2297
    return ret;
2298
}
2299
#endif /* TARGET_SPARC64 */
2300

    
2301
#ifndef TARGET_SPARC64
2302
void helper_rett(void)
2303
{
2304
    unsigned int cwp;
2305

    
2306
    if (env->psret == 1)
2307
        raise_exception(TT_ILL_INSN);
2308

    
2309
    env->psret = 1;
2310
    cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2311
    if (env->wim & (1 << cwp)) {
2312
        raise_exception(TT_WIN_UNF);
2313
    }
2314
    set_cwp(cwp);
2315
    env->psrs = env->psrps;
2316
}
2317
#endif
2318

    
2319
target_ulong helper_udiv(target_ulong a, target_ulong b)
2320
{
2321
    uint64_t x0;
2322
    uint32_t x1;
2323

    
2324
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2325
    x1 = b;
2326

    
2327
    if (x1 == 0) {
2328
        raise_exception(TT_DIV_ZERO);
2329
    }
2330

    
2331
    x0 = x0 / x1;
2332
    if (x0 > 0xffffffff) {
2333
        env->cc_src2 = 1;
2334
        return 0xffffffff;
2335
    } else {
2336
        env->cc_src2 = 0;
2337
        return x0;
2338
    }
2339
}
2340

    
2341
target_ulong helper_sdiv(target_ulong a, target_ulong b)
2342
{
2343
    int64_t x0;
2344
    int32_t x1;
2345

    
2346
    x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2347
    x1 = b;
2348

    
2349
    if (x1 == 0) {
2350
        raise_exception(TT_DIV_ZERO);
2351
    }
2352

    
2353
    x0 = x0 / x1;
2354
    if ((int32_t) x0 != x0) {
2355
        env->cc_src2 = 1;
2356
        return x0 < 0? 0x80000000: 0x7fffffff;
2357
    } else {
2358
        env->cc_src2 = 0;
2359
        return x0;
2360
    }
2361
}
2362

    
2363
uint64_t helper_pack64(target_ulong high, target_ulong low)
2364
{
2365
    return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
2366
}
2367

    
2368
void helper_stdf(target_ulong addr, int mem_idx)
2369
{
2370
    helper_check_align(addr, 7);
2371
#if !defined(CONFIG_USER_ONLY)
2372
    switch (mem_idx) {
2373
    case 0:
2374
        stfq_user(addr, DT0);
2375
        break;
2376
    case 1:
2377
        stfq_kernel(addr, DT0);
2378
        break;
2379
#ifdef TARGET_SPARC64
2380
    case 2:
2381
        stfq_hypv(addr, DT0);
2382
        break;
2383
#endif
2384
    default:
2385
        break;
2386
    }
2387
#else
2388
    address_mask(env, &addr);
2389
    stfq_raw(addr, DT0);
2390
#endif
2391
}
2392

    
2393
void helper_lddf(target_ulong addr, int mem_idx)
2394
{
2395
    helper_check_align(addr, 7);
2396
#if !defined(CONFIG_USER_ONLY)
2397
    switch (mem_idx) {
2398
    case 0:
2399
        DT0 = ldfq_user(addr);
2400
        break;
2401
    case 1:
2402
        DT0 = ldfq_kernel(addr);
2403
        break;
2404
#ifdef TARGET_SPARC64
2405
    case 2:
2406
        DT0 = ldfq_hypv(addr);
2407
        break;
2408
#endif
2409
    default:
2410
        break;
2411
    }
2412
#else
2413
    address_mask(env, &addr);
2414
    DT0 = ldfq_raw(addr);
2415
#endif
2416
}
2417

    
2418
void helper_ldqf(target_ulong addr, int mem_idx)
2419
{
2420
    // XXX add 128 bit load
2421
    CPU_QuadU u;
2422

    
2423
    helper_check_align(addr, 7);
2424
#if !defined(CONFIG_USER_ONLY)
2425
    switch (mem_idx) {
2426
    case 0:
2427
        u.ll.upper = ldq_user(addr);
2428
        u.ll.lower = ldq_user(addr + 8);
2429
        QT0 = u.q;
2430
        break;
2431
    case 1:
2432
        u.ll.upper = ldq_kernel(addr);
2433
        u.ll.lower = ldq_kernel(addr + 8);
2434
        QT0 = u.q;
2435
        break;
2436
#ifdef TARGET_SPARC64
2437
    case 2:
2438
        u.ll.upper = ldq_hypv(addr);
2439
        u.ll.lower = ldq_hypv(addr + 8);
2440
        QT0 = u.q;
2441
        break;
2442
#endif
2443
    default:
2444
        break;
2445
    }
2446
#else
2447
    address_mask(env, &addr);
2448
    u.ll.upper = ldq_raw(addr);
2449
    u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2450
    QT0 = u.q;
2451
#endif
2452
}
2453

    
2454
void helper_stqf(target_ulong addr, int mem_idx)
2455
{
2456
    // XXX add 128 bit store
2457
    CPU_QuadU u;
2458

    
2459
    helper_check_align(addr, 7);
2460
#if !defined(CONFIG_USER_ONLY)
2461
    switch (mem_idx) {
2462
    case 0:
2463
        u.q = QT0;
2464
        stq_user(addr, u.ll.upper);
2465
        stq_user(addr + 8, u.ll.lower);
2466
        break;
2467
    case 1:
2468
        u.q = QT0;
2469
        stq_kernel(addr, u.ll.upper);
2470
        stq_kernel(addr + 8, u.ll.lower);
2471
        break;
2472
#ifdef TARGET_SPARC64
2473
    case 2:
2474
        u.q = QT0;
2475
        stq_hypv(addr, u.ll.upper);
2476
        stq_hypv(addr + 8, u.ll.lower);
2477
        break;
2478
#endif
2479
    default:
2480
        break;
2481
    }
2482
#else
2483
    u.q = QT0;
2484
    address_mask(env, &addr);
2485
    stq_raw(addr, u.ll.upper);
2486
    stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
2487
#endif
2488
}
2489

    
2490
void helper_ldfsr(void)
2491
{
2492
    int rnd_mode;
2493

    
2494
    PUT_FSR32(env, *((uint32_t *) &FT0));
2495
    switch (env->fsr & FSR_RD_MASK) {
2496
    case FSR_RD_NEAREST:
2497
        rnd_mode = float_round_nearest_even;
2498
        break;
2499
    default:
2500
    case FSR_RD_ZERO:
2501
        rnd_mode = float_round_to_zero;
2502
        break;
2503
    case FSR_RD_POS:
2504
        rnd_mode = float_round_up;
2505
        break;
2506
    case FSR_RD_NEG:
2507
        rnd_mode = float_round_down;
2508
        break;
2509
    }
2510
    set_float_rounding_mode(rnd_mode, &env->fp_status);
2511
}
2512

    
2513
void helper_stfsr(void)
2514
{
2515
    *((uint32_t *) &FT0) = GET_FSR32(env);
2516
}
2517

    
2518
void helper_debug(void)
2519
{
2520
    env->exception_index = EXCP_DEBUG;
2521
    cpu_loop_exit();
2522
}
2523

    
2524
#ifndef TARGET_SPARC64
2525
/* XXX: use another pointer for %iN registers to avoid slow wrapping
2526
   handling ? */
2527
void helper_save(void)
2528
{
2529
    uint32_t cwp;
2530

    
2531
    cwp = cpu_cwp_dec(env, env->cwp - 1);
2532
    if (env->wim & (1 << cwp)) {
2533
        raise_exception(TT_WIN_OVF);
2534
    }
2535
    set_cwp(cwp);
2536
}
2537

    
2538
void helper_restore(void)
2539
{
2540
    uint32_t cwp;
2541

    
2542
    cwp = cpu_cwp_inc(env, env->cwp + 1);
2543
    if (env->wim & (1 << cwp)) {
2544
        raise_exception(TT_WIN_UNF);
2545
    }
2546
    set_cwp(cwp);
2547
}
2548

    
2549
void helper_wrpsr(target_ulong new_psr)
2550
{
2551
    if ((new_psr & PSR_CWP) >= env->nwindows)
2552
        raise_exception(TT_ILL_INSN);
2553
    else
2554
        PUT_PSR(env, new_psr);
2555
}
2556

    
2557
target_ulong helper_rdpsr(void)
2558
{
2559
    return GET_PSR(env);
2560
}
2561

    
2562
#else
2563
/* XXX: use another pointer for %iN registers to avoid slow wrapping
2564
   handling ? */
2565
void helper_save(void)
2566
{
2567
    uint32_t cwp;
2568

    
2569
    cwp = cpu_cwp_dec(env, env->cwp - 1);
2570
    if (env->cansave == 0) {
2571
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
2572
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2573
                                    ((env->wstate & 0x7) << 2)));
2574
    } else {
2575
        if (env->cleanwin - env->canrestore == 0) {
2576
            // XXX Clean windows without trap
2577
            raise_exception(TT_CLRWIN);
2578
        } else {
2579
            env->cansave--;
2580
            env->canrestore++;
2581
            set_cwp(cwp);
2582
        }
2583
    }
2584
}
2585

    
2586
void helper_restore(void)
2587
{
2588
    uint32_t cwp;
2589

    
2590
    cwp = cpu_cwp_inc(env, env->cwp + 1);
2591
    if (env->canrestore == 0) {
2592
        raise_exception(TT_FILL | (env->otherwin != 0 ?
2593
                                   (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2594
                                   ((env->wstate & 0x7) << 2)));
2595
    } else {
2596
        env->cansave++;
2597
        env->canrestore--;
2598
        set_cwp(cwp);
2599
    }
2600
}
2601

    
2602
void helper_flushw(void)
2603
{
2604
    if (env->cansave != env->nwindows - 2) {
2605
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
2606
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2607
                                    ((env->wstate & 0x7) << 2)));
2608
    }
2609
}
2610

    
2611
void helper_saved(void)
2612
{
2613
    env->cansave++;
2614
    if (env->otherwin == 0)
2615
        env->canrestore--;
2616
    else
2617
        env->otherwin--;
2618
}
2619

    
2620
void helper_restored(void)
2621
{
2622
    env->canrestore++;
2623
    if (env->cleanwin < env->nwindows - 1)
2624
        env->cleanwin++;
2625
    if (env->otherwin == 0)
2626
        env->cansave--;
2627
    else
2628
        env->otherwin--;
2629
}
2630

    
2631
target_ulong helper_rdccr(void)
2632
{
2633
    return GET_CCR(env);
2634
}
2635

    
2636
void helper_wrccr(target_ulong new_ccr)
2637
{
2638
    PUT_CCR(env, new_ccr);
2639
}
2640

    
2641
// CWP handling is reversed in V9, but we still use the V8 register
2642
// order.
2643
target_ulong helper_rdcwp(void)
2644
{
2645
    return GET_CWP64(env);
2646
}
2647

    
2648
void helper_wrcwp(target_ulong new_cwp)
2649
{
2650
    PUT_CWP64(env, new_cwp);
2651
}
2652

    
2653
// This function uses non-native bit order
2654
#define GET_FIELD(X, FROM, TO)                                  \
2655
    ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2656

    
2657
// This function uses the order in the manuals, i.e. bit 0 is 2^0
2658
#define GET_FIELD_SP(X, FROM, TO)               \
2659
    GET_FIELD(X, 63 - (TO), 63 - (FROM))
2660

    
2661
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2662
{
2663
    return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2664
        (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2665
        (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2666
        (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2667
        (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2668
        (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2669
        (((pixel_addr >> 55) & 1) << 4) |
2670
        (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2671
        GET_FIELD_SP(pixel_addr, 11, 12);
2672
}
2673

    
2674
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2675
{
2676
    uint64_t tmp;
2677

    
2678
    tmp = addr + offset;
2679
    env->gsr &= ~7ULL;
2680
    env->gsr |= tmp & 7ULL;
2681
    return tmp & ~7ULL;
2682
}
2683

    
2684
target_ulong helper_popc(target_ulong val)
2685
{
2686
    return ctpop64(val);
2687
}
2688

    
2689
static inline uint64_t *get_gregset(uint64_t pstate)
2690
{
2691
    switch (pstate) {
2692
    default:
2693
    case 0:
2694
        return env->bgregs;
2695
    case PS_AG:
2696
        return env->agregs;
2697
    case PS_MG:
2698
        return env->mgregs;
2699
    case PS_IG:
2700
        return env->igregs;
2701
    }
2702
}
2703

    
2704
static inline void change_pstate(uint64_t new_pstate)
2705
{
2706
    uint64_t pstate_regs, new_pstate_regs;
2707
    uint64_t *src, *dst;
2708

    
2709
    pstate_regs = env->pstate & 0xc01;
2710
    new_pstate_regs = new_pstate & 0xc01;
2711
    if (new_pstate_regs != pstate_regs) {
2712
        // Switch global register bank
2713
        src = get_gregset(new_pstate_regs);
2714
        dst = get_gregset(pstate_regs);
2715
        memcpy32(dst, env->gregs);
2716
        memcpy32(env->gregs, src);
2717
    }
2718
    env->pstate = new_pstate;
2719
}
2720

    
2721
void helper_wrpstate(target_ulong new_state)
2722
{
2723
    if (!(env->def->features & CPU_FEATURE_GL))
2724
        change_pstate(new_state & 0xf3f);
2725
}
2726

    
2727
void helper_done(void)
2728
{
2729
    env->pc = env->tsptr->tpc;
2730
    env->npc = env->tsptr->tnpc + 4;
2731
    PUT_CCR(env, env->tsptr->tstate >> 32);
2732
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
2733
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2734
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
2735
    env->tl--;
2736
    env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2737
}
2738

    
2739
void helper_retry(void)
2740
{
2741
    env->pc = env->tsptr->tpc;
2742
    env->npc = env->tsptr->tnpc;
2743
    PUT_CCR(env, env->tsptr->tstate >> 32);
2744
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
2745
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2746
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
2747
    env->tl--;
2748
    env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2749
}
2750
#endif
2751

    
2752
void helper_flush(target_ulong addr)
2753
{
2754
    addr &= ~7;
2755
    tb_invalidate_page_range(addr, addr + 8);
2756
}
2757

    
2758
#ifdef TARGET_SPARC64
2759
#ifdef DEBUG_PCALL
2760
static const char * const excp_names[0x80] = {
2761
    [TT_TFAULT] = "Instruction Access Fault",
2762
    [TT_TMISS] = "Instruction Access MMU Miss",
2763
    [TT_CODE_ACCESS] = "Instruction Access Error",
2764
    [TT_ILL_INSN] = "Illegal Instruction",
2765
    [TT_PRIV_INSN] = "Privileged Instruction",
2766
    [TT_NFPU_INSN] = "FPU Disabled",
2767
    [TT_FP_EXCP] = "FPU Exception",
2768
    [TT_TOVF] = "Tag Overflow",
2769
    [TT_CLRWIN] = "Clean Windows",
2770
    [TT_DIV_ZERO] = "Division By Zero",
2771
    [TT_DFAULT] = "Data Access Fault",
2772
    [TT_DMISS] = "Data Access MMU Miss",
2773
    [TT_DATA_ACCESS] = "Data Access Error",
2774
    [TT_DPROT] = "Data Protection Error",
2775
    [TT_UNALIGNED] = "Unaligned Memory Access",
2776
    [TT_PRIV_ACT] = "Privileged Action",
2777
    [TT_EXTINT | 0x1] = "External Interrupt 1",
2778
    [TT_EXTINT | 0x2] = "External Interrupt 2",
2779
    [TT_EXTINT | 0x3] = "External Interrupt 3",
2780
    [TT_EXTINT | 0x4] = "External Interrupt 4",
2781
    [TT_EXTINT | 0x5] = "External Interrupt 5",
2782
    [TT_EXTINT | 0x6] = "External Interrupt 6",
2783
    [TT_EXTINT | 0x7] = "External Interrupt 7",
2784
    [TT_EXTINT | 0x8] = "External Interrupt 8",
2785
    [TT_EXTINT | 0x9] = "External Interrupt 9",
2786
    [TT_EXTINT | 0xa] = "External Interrupt 10",
2787
    [TT_EXTINT | 0xb] = "External Interrupt 11",
2788
    [TT_EXTINT | 0xc] = "External Interrupt 12",
2789
    [TT_EXTINT | 0xd] = "External Interrupt 13",
2790
    [TT_EXTINT | 0xe] = "External Interrupt 14",
2791
    [TT_EXTINT | 0xf] = "External Interrupt 15",
2792
};
2793
#endif
2794

    
2795
void do_interrupt(CPUState *env)
2796
{
2797
    int intno = env->exception_index;
2798

    
2799
#ifdef DEBUG_PCALL
2800
    if (loglevel & CPU_LOG_INT) {
2801
        static int count;
2802
        const char *name;
2803

    
2804
        if (intno < 0 || intno >= 0x180)
2805
            name = "Unknown";
2806
        else if (intno >= 0x100)
2807
            name = "Trap Instruction";
2808
        else if (intno >= 0xc0)
2809
            name = "Window Fill";
2810
        else if (intno >= 0x80)
2811
            name = "Window Spill";
2812
        else {
2813
            name = excp_names[intno];
2814
            if (!name)
2815
                name = "Unknown";
2816
        }
2817

    
2818
        fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
2819
                " SP=%016" PRIx64 "\n",
2820
                count, name, intno,
2821
                env->pc,
2822
                env->npc, env->regwptr[6]);
2823
        cpu_dump_state(env, logfile, fprintf, 0);
2824
#if 0
2825
        {
2826
            int i;
2827
            uint8_t *ptr;
2828

2829
            fprintf(logfile, "       code=");
2830
            ptr = (uint8_t *)env->pc;
2831
            for(i = 0; i < 16; i++) {
2832
                fprintf(logfile, " %02x", ldub(ptr + i));
2833
            }
2834
            fprintf(logfile, "\n");
2835
        }
2836
#endif
2837
        count++;
2838
    }
2839
#endif
2840
#if !defined(CONFIG_USER_ONLY)
2841
    if (env->tl >= env->maxtl) {
2842
        cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
2843
                  " Error state", env->exception_index, env->tl, env->maxtl);
2844
        return;
2845
    }
2846
#endif
2847
    if (env->tl < env->maxtl - 1) {
2848
        env->tl++;
2849
    } else {
2850
        env->pstate |= PS_RED;
2851
        if (env->tl < env->maxtl)
2852
            env->tl++;
2853
    }
2854
    env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2855
    env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
2856
        ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
2857
        GET_CWP64(env);
2858
    env->tsptr->tpc = env->pc;
2859
    env->tsptr->tnpc = env->npc;
2860
    env->tsptr->tt = intno;
2861
    if (!(env->def->features & CPU_FEATURE_GL)) {
2862
        switch (intno) {
2863
        case TT_IVEC:
2864
            change_pstate(PS_PEF | PS_PRIV | PS_IG);
2865
            break;
2866
        case TT_TFAULT:
2867
        case TT_TMISS:
2868
        case TT_DFAULT:
2869
        case TT_DMISS:
2870
        case TT_DPROT:
2871
            change_pstate(PS_PEF | PS_PRIV | PS_MG);
2872
            break;
2873
        default:
2874
            change_pstate(PS_PEF | PS_PRIV | PS_AG);
2875
            break;
2876
        }
2877
    }
2878
    if (intno == TT_CLRWIN)
2879
        cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
2880
    else if ((intno & 0x1c0) == TT_SPILL)
2881
        cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
2882
    else if ((intno & 0x1c0) == TT_FILL)
2883
        cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
2884
    env->tbr &= ~0x7fffULL;
2885
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
2886
    env->pc = env->tbr;
2887
    env->npc = env->pc + 4;
2888
    env->exception_index = 0;
2889
}
2890
#else
2891
#ifdef DEBUG_PCALL
2892
static const char * const excp_names[0x80] = {
2893
    [TT_TFAULT] = "Instruction Access Fault",
2894
    [TT_ILL_INSN] = "Illegal Instruction",
2895
    [TT_PRIV_INSN] = "Privileged Instruction",
2896
    [TT_NFPU_INSN] = "FPU Disabled",
2897
    [TT_WIN_OVF] = "Window Overflow",
2898
    [TT_WIN_UNF] = "Window Underflow",
2899
    [TT_UNALIGNED] = "Unaligned Memory Access",
2900
    [TT_FP_EXCP] = "FPU Exception",
2901
    [TT_DFAULT] = "Data Access Fault",
2902
    [TT_TOVF] = "Tag Overflow",
2903
    [TT_EXTINT | 0x1] = "External Interrupt 1",
2904
    [TT_EXTINT | 0x2] = "External Interrupt 2",
2905
    [TT_EXTINT | 0x3] = "External Interrupt 3",
2906
    [TT_EXTINT | 0x4] = "External Interrupt 4",
2907
    [TT_EXTINT | 0x5] = "External Interrupt 5",
2908
    [TT_EXTINT | 0x6] = "External Interrupt 6",
2909
    [TT_EXTINT | 0x7] = "External Interrupt 7",
2910
    [TT_EXTINT | 0x8] = "External Interrupt 8",
2911
    [TT_EXTINT | 0x9] = "External Interrupt 9",
2912
    [TT_EXTINT | 0xa] = "External Interrupt 10",
2913
    [TT_EXTINT | 0xb] = "External Interrupt 11",
2914
    [TT_EXTINT | 0xc] = "External Interrupt 12",
2915
    [TT_EXTINT | 0xd] = "External Interrupt 13",
2916
    [TT_EXTINT | 0xe] = "External Interrupt 14",
2917
    [TT_EXTINT | 0xf] = "External Interrupt 15",
2918
    [TT_TOVF] = "Tag Overflow",
2919
    [TT_CODE_ACCESS] = "Instruction Access Error",
2920
    [TT_DATA_ACCESS] = "Data Access Error",
2921
    [TT_DIV_ZERO] = "Division By Zero",
2922
    [TT_NCP_INSN] = "Coprocessor Disabled",
2923
};
2924
#endif
2925

    
2926
void do_interrupt(CPUState *env)
2927
{
2928
    int cwp, intno = env->exception_index;
2929

    
2930
#ifdef DEBUG_PCALL
2931
    if (loglevel & CPU_LOG_INT) {
2932
        static int count;
2933
        const char *name;
2934

    
2935
        if (intno < 0 || intno >= 0x100)
2936
            name = "Unknown";
2937
        else if (intno >= 0x80)
2938
            name = "Trap Instruction";
2939
        else {
2940
            name = excp_names[intno];
2941
            if (!name)
2942
                name = "Unknown";
2943
        }
2944

    
2945
        fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
2946
                count, name, intno,
2947
                env->pc,
2948
                env->npc, env->regwptr[6]);
2949
        cpu_dump_state(env, logfile, fprintf, 0);
2950
#if 0
2951
        {
2952
            int i;
2953
            uint8_t *ptr;
2954

2955
            fprintf(logfile, "       code=");
2956
            ptr = (uint8_t *)env->pc;
2957
            for(i = 0; i < 16; i++) {
2958
                fprintf(logfile, " %02x", ldub(ptr + i));
2959
            }
2960
            fprintf(logfile, "\n");
2961
        }
2962
#endif
2963
        count++;
2964
    }
2965
#endif
2966
#if !defined(CONFIG_USER_ONLY)
2967
    if (env->psret == 0) {
2968
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
2969
                  env->exception_index);
2970
        return;
2971
    }
2972
#endif
2973
    env->psret = 0;
2974
    cwp = cpu_cwp_dec(env, env->cwp - 1);
2975
    cpu_set_cwp(env, cwp);
2976
    env->regwptr[9] = env->pc;
2977
    env->regwptr[10] = env->npc;
2978
    env->psrps = env->psrs;
2979
    env->psrs = 1;
2980
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
2981
    env->pc = env->tbr;
2982
    env->npc = env->pc + 4;
2983
    env->exception_index = 0;
2984
}
2985
#endif
2986

    
2987
#if !defined(CONFIG_USER_ONLY)
2988

    
2989
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2990
                                void *retaddr);
2991

    
2992
#define MMUSUFFIX _mmu
2993
#define ALIGNED_ONLY
2994

    
2995
#define SHIFT 0
2996
#include "softmmu_template.h"
2997

    
2998
#define SHIFT 1
2999
#include "softmmu_template.h"
3000

    
3001
#define SHIFT 2
3002
#include "softmmu_template.h"
3003

    
3004
#define SHIFT 3
3005
#include "softmmu_template.h"
3006

    
3007
/* XXX: make it generic ? */
3008
static void cpu_restore_state2(void *retaddr)
3009
{
3010
    TranslationBlock *tb;
3011
    unsigned long pc;
3012

    
3013
    if (retaddr) {
3014
        /* now we have a real cpu fault */
3015
        pc = (unsigned long)retaddr;
3016
        tb = tb_find_pc(pc);
3017
        if (tb) {
3018
            /* the PC is inside the translated code. It means that we have
3019
               a virtual CPU fault */
3020
            cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3021
        }
3022
    }
3023
}
3024

    
3025
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3026
                                void *retaddr)
3027
{
3028
#ifdef DEBUG_UNALIGNED
3029
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3030
           "\n", addr, env->pc);
3031
#endif
3032
    cpu_restore_state2(retaddr);
3033
    raise_exception(TT_UNALIGNED);
3034
}
3035

    
3036
/* try to fill the TLB and return an exception if error. If retaddr is
3037
   NULL, it means that the function was called in C code (i.e. not
3038
   from generated code or from helper.c) */
3039
/* XXX: fix it to restore all registers */
3040
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3041
{
3042
    int ret;
3043
    CPUState *saved_env;
3044

    
3045
    /* XXX: hack to restore env in all cases, even if not called from
3046
       generated code */
3047
    saved_env = env;
3048
    env = cpu_single_env;
3049

    
3050
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3051
    if (ret) {
3052
        cpu_restore_state2(retaddr);
3053
        cpu_loop_exit();
3054
    }
3055
    env = saved_env;
3056
}
3057

    
3058
#endif
3059

    
3060
#ifndef TARGET_SPARC64
3061
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3062
                          int is_asi)
3063
{
3064
    CPUState *saved_env;
3065

    
3066
    /* XXX: hack to restore env in all cases, even if not called from
3067
       generated code */
3068
    saved_env = env;
3069
    env = cpu_single_env;
3070
#ifdef DEBUG_UNASSIGNED
3071
    if (is_asi)
3072
        printf("Unassigned mem %s access to " TARGET_FMT_plx
3073
               " asi 0x%02x from " TARGET_FMT_lx "\n",
3074
               is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
3075
               env->pc);
3076
    else
3077
        printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
3078
               TARGET_FMT_lx "\n",
3079
               is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
3080
#endif
3081
    if (env->mmuregs[3]) /* Fault status register */
3082
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
3083
    if (is_asi)
3084
        env->mmuregs[3] |= 1 << 16;
3085
    if (env->psrs)
3086
        env->mmuregs[3] |= 1 << 5;
3087
    if (is_exec)
3088
        env->mmuregs[3] |= 1 << 6;
3089
    if (is_write)
3090
        env->mmuregs[3] |= 1 << 7;
3091
    env->mmuregs[3] |= (5 << 2) | 2;
3092
    env->mmuregs[4] = addr; /* Fault address register */
3093
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3094
        if (is_exec)
3095
            raise_exception(TT_CODE_ACCESS);
3096
        else
3097
            raise_exception(TT_DATA_ACCESS);
3098
    }
3099
    env = saved_env;
3100
}
3101
#else
3102
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3103
                          int is_asi)
3104
{
3105
#ifdef DEBUG_UNASSIGNED
3106
    CPUState *saved_env;
3107

    
3108
    /* XXX: hack to restore env in all cases, even if not called from
3109
       generated code */
3110
    saved_env = env;
3111
    env = cpu_single_env;
3112
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3113
           "\n", addr, env->pc);
3114
    env = saved_env;
3115
#endif
3116
    if (is_exec)
3117
        raise_exception(TT_CODE_ACCESS);
3118
    else
3119
        raise_exception(TT_DATA_ACCESS);
3120
}
3121
#endif
3122