Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ e890261f

History | View | Annotate | Download (40.4 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28
#include "hw/apic.h"
29
#include "ioport.h"
30
#include "kvm_x86.h"
31

    
32
#ifdef CONFIG_KVM_PARA
33
#include <linux/kvm_para.h>
34
#endif
35
//
36
//#define DEBUG_KVM
37

    
38
#ifdef DEBUG_KVM
39
#define DPRINTF(fmt, ...) \
40
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41
#else
42
#define DPRINTF(fmt, ...) \
43
    do { } while (0)
44
#endif
45

    
46
#define MSR_KVM_WALL_CLOCK  0x11
47
#define MSR_KVM_SYSTEM_TIME 0x12
48

    
49
#ifdef KVM_CAP_EXT_CPUID
50

    
51
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
52
{
53
    struct kvm_cpuid2 *cpuid;
54
    int r, size;
55

    
56
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
57
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
58
    cpuid->nent = max;
59
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
60
    if (r == 0 && cpuid->nent >= max) {
61
        r = -E2BIG;
62
    }
63
    if (r < 0) {
64
        if (r == -E2BIG) {
65
            qemu_free(cpuid);
66
            return NULL;
67
        } else {
68
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
69
                    strerror(-r));
70
            exit(1);
71
        }
72
    }
73
    return cpuid;
74
}
75

    
76
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
77
                                      uint32_t index, int reg)
78
{
79
    struct kvm_cpuid2 *cpuid;
80
    int i, max;
81
    uint32_t ret = 0;
82
    uint32_t cpuid_1_edx;
83

    
84
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
85
        return -1U;
86
    }
87

    
88
    max = 1;
89
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
90
        max *= 2;
91
    }
92

    
93
    for (i = 0; i < cpuid->nent; ++i) {
94
        if (cpuid->entries[i].function == function &&
95
            cpuid->entries[i].index == index) {
96
            switch (reg) {
97
            case R_EAX:
98
                ret = cpuid->entries[i].eax;
99
                break;
100
            case R_EBX:
101
                ret = cpuid->entries[i].ebx;
102
                break;
103
            case R_ECX:
104
                ret = cpuid->entries[i].ecx;
105
                break;
106
            case R_EDX:
107
                ret = cpuid->entries[i].edx;
108
                switch (function) {
109
                case 1:
110
                    /* KVM before 2.6.30 misreports the following features */
111
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
112
                    break;
113
                case 0x80000001:
114
                    /* On Intel, kvm returns cpuid according to the Intel spec,
115
                     * so add missing bits according to the AMD spec:
116
                     */
117
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
118
                    ret |= cpuid_1_edx & 0x183f7ff;
119
                    break;
120
                }
121
                break;
122
            }
123
        }
124
    }
125

    
126
    qemu_free(cpuid);
127

    
128
    return ret;
129
}
130

    
131
#else
132

    
133
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
134
                                      uint32_t index, int reg)
135
{
136
    return -1U;
137
}
138

    
139
#endif
140

    
141
#ifdef CONFIG_KVM_PARA
142
struct kvm_para_features {
143
        int cap;
144
        int feature;
145
} para_features[] = {
146
#ifdef KVM_CAP_CLOCKSOURCE
147
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
148
#endif
149
#ifdef KVM_CAP_NOP_IO_DELAY
150
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
151
#endif
152
#ifdef KVM_CAP_PV_MMU
153
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
154
#endif
155
        { -1, -1 }
156
};
157

    
158
static int get_para_features(CPUState *env)
159
{
160
        int i, features = 0;
161

    
162
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
163
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
164
                        features |= (1 << para_features[i].feature);
165
        }
166

    
167
        return features;
168
}
169
#endif
170

    
171
#ifdef KVM_CAP_MCE
172
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
173
                                     int *max_banks)
174
{
175
    int r;
176

    
177
    r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
178
    if (r > 0) {
179
        *max_banks = r;
180
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
181
    }
182
    return -ENOSYS;
183
}
184

    
185
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
186
{
187
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
188
}
189

    
190
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
191
{
192
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
193
}
194

    
195
struct kvm_x86_mce_data
196
{
197
    CPUState *env;
198
    struct kvm_x86_mce *mce;
199
};
200

    
201
static void kvm_do_inject_x86_mce(void *_data)
202
{
203
    struct kvm_x86_mce_data *data = _data;
204
    int r;
205

    
206
    r = kvm_set_mce(data->env, data->mce);
207
    if (r < 0)
208
        perror("kvm_set_mce FAILED");
209
}
210
#endif
211

    
212
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
213
                        uint64_t mcg_status, uint64_t addr, uint64_t misc)
214
{
215
#ifdef KVM_CAP_MCE
216
    struct kvm_x86_mce mce = {
217
        .bank = bank,
218
        .status = status,
219
        .mcg_status = mcg_status,
220
        .addr = addr,
221
        .misc = misc,
222
    };
223
    struct kvm_x86_mce_data data = {
224
            .env = cenv,
225
            .mce = &mce,
226
    };
227

    
228
    run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
229
#endif
230
}
231

    
232
int kvm_arch_init_vcpu(CPUState *env)
233
{
234
    struct {
235
        struct kvm_cpuid2 cpuid;
236
        struct kvm_cpuid_entry2 entries[100];
237
    } __attribute__((packed)) cpuid_data;
238
    uint32_t limit, i, j, cpuid_i;
239
    uint32_t unused;
240
    struct kvm_cpuid_entry2 *c;
241
#ifdef KVM_CPUID_SIGNATURE
242
    uint32_t signature[3];
243
#endif
244

    
245
    env->mp_state = KVM_MP_STATE_RUNNABLE;
246

    
247
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
248

    
249
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
250
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
251
    env->cpuid_ext_features |= i;
252

    
253
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
254
                                                             0, R_EDX);
255
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
256
                                                             0, R_ECX);
257
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
258
                                                             0, R_EDX);
259

    
260

    
261
    cpuid_i = 0;
262

    
263
#ifdef CONFIG_KVM_PARA
264
    /* Paravirtualization CPUIDs */
265
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
266
    c = &cpuid_data.entries[cpuid_i++];
267
    memset(c, 0, sizeof(*c));
268
    c->function = KVM_CPUID_SIGNATURE;
269
    c->eax = 0;
270
    c->ebx = signature[0];
271
    c->ecx = signature[1];
272
    c->edx = signature[2];
273

    
274
    c = &cpuid_data.entries[cpuid_i++];
275
    memset(c, 0, sizeof(*c));
276
    c->function = KVM_CPUID_FEATURES;
277
    c->eax = env->cpuid_kvm_features & get_para_features(env);
278
#endif
279

    
280
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
281

    
282
    for (i = 0; i <= limit; i++) {
283
        c = &cpuid_data.entries[cpuid_i++];
284

    
285
        switch (i) {
286
        case 2: {
287
            /* Keep reading function 2 till all the input is received */
288
            int times;
289

    
290
            c->function = i;
291
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
292
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
293
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
294
            times = c->eax & 0xff;
295

    
296
            for (j = 1; j < times; ++j) {
297
                c = &cpuid_data.entries[cpuid_i++];
298
                c->function = i;
299
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
300
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
301
            }
302
            break;
303
        }
304
        case 4:
305
        case 0xb:
306
        case 0xd:
307
            for (j = 0; ; j++) {
308
                c->function = i;
309
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
310
                c->index = j;
311
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
312

    
313
                if (i == 4 && c->eax == 0)
314
                    break;
315
                if (i == 0xb && !(c->ecx & 0xff00))
316
                    break;
317
                if (i == 0xd && c->eax == 0)
318
                    break;
319

    
320
                c = &cpuid_data.entries[cpuid_i++];
321
            }
322
            break;
323
        default:
324
            c->function = i;
325
            c->flags = 0;
326
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
327
            break;
328
        }
329
    }
330
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
331

    
332
    for (i = 0x80000000; i <= limit; i++) {
333
        c = &cpuid_data.entries[cpuid_i++];
334

    
335
        c->function = i;
336
        c->flags = 0;
337
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
338
    }
339

    
340
    cpuid_data.cpuid.nent = cpuid_i;
341

    
342
#ifdef KVM_CAP_MCE
343
    if (((env->cpuid_version >> 8)&0xF) >= 6
344
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
345
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
346
        uint64_t mcg_cap;
347
        int banks;
348

    
349
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
350
            perror("kvm_get_mce_cap_supported FAILED");
351
        else {
352
            if (banks > MCE_BANKS_DEF)
353
                banks = MCE_BANKS_DEF;
354
            mcg_cap &= MCE_CAP_DEF;
355
            mcg_cap |= banks;
356
            if (kvm_setup_mce(env, &mcg_cap))
357
                perror("kvm_setup_mce FAILED");
358
            else
359
                env->mcg_cap = mcg_cap;
360
        }
361
    }
362
#endif
363

    
364
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
365
}
366

    
367
void kvm_arch_reset_vcpu(CPUState *env)
368
{
369
    env->exception_injected = -1;
370
    env->interrupt_injected = -1;
371
    env->nmi_injected = 0;
372
    env->nmi_pending = 0;
373
    if (kvm_irqchip_in_kernel()) {
374
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
375
                                          KVM_MP_STATE_UNINITIALIZED;
376
    } else {
377
        env->mp_state = KVM_MP_STATE_RUNNABLE;
378
    }
379
}
380

    
381
static int kvm_has_msr_star(CPUState *env)
382
{
383
    static int has_msr_star;
384
    int ret;
385

    
386
    /* first time */
387
    if (has_msr_star == 0) {        
388
        struct kvm_msr_list msr_list, *kvm_msr_list;
389

    
390
        has_msr_star = -1;
391

    
392
        /* Obtain MSR list from KVM.  These are the MSRs that we must
393
         * save/restore */
394
        msr_list.nmsrs = 0;
395
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
396
        if (ret < 0 && ret != -E2BIG) {
397
            return 0;
398
        }
399
        /* Old kernel modules had a bug and could write beyond the provided
400
           memory. Allocate at least a safe amount of 1K. */
401
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
402
                                              msr_list.nmsrs *
403
                                              sizeof(msr_list.indices[0])));
404

    
405
        kvm_msr_list->nmsrs = msr_list.nmsrs;
406
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
407
        if (ret >= 0) {
408
            int i;
409

    
410
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
411
                if (kvm_msr_list->indices[i] == MSR_STAR) {
412
                    has_msr_star = 1;
413
                    break;
414
                }
415
            }
416
        }
417

    
418
        free(kvm_msr_list);
419
    }
420

    
421
    if (has_msr_star == 1)
422
        return 1;
423
    return 0;
424
}
425

    
426
static int kvm_init_identity_map_page(KVMState *s)
427
{
428
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
429
    int ret;
430
    uint64_t addr = 0xfffbc000;
431

    
432
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
433
        return 0;
434
    }
435

    
436
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
437
    if (ret < 0) {
438
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
439
        return ret;
440
    }
441
#endif
442
    return 0;
443
}
444

    
445
int kvm_arch_init(KVMState *s, int smp_cpus)
446
{
447
    int ret;
448

    
449
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
450
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
451
     * must be part of guest physical memory, we need to allocate it.  Older
452
     * versions of KVM just assumed that it would be at the end of physical
453
     * memory but that doesn't work with more than 4GB of memory.  We simply
454
     * refuse to work with those older versions of KVM. */
455
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
456
    if (ret <= 0) {
457
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
458
        return ret;
459
    }
460

    
461
    /* this address is 3 pages before the bios, and the bios should present
462
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
463
     * this?
464
     */
465
    /*
466
     * Tell fw_cfg to notify the BIOS to reserve the range.
467
     */
468
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
469
        perror("e820_add_entry() table is full");
470
        exit(1);
471
    }
472
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
473
    if (ret < 0) {
474
        return ret;
475
    }
476

    
477
    return kvm_init_identity_map_page(s);
478
}
479
                    
480
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
481
{
482
    lhs->selector = rhs->selector;
483
    lhs->base = rhs->base;
484
    lhs->limit = rhs->limit;
485
    lhs->type = 3;
486
    lhs->present = 1;
487
    lhs->dpl = 3;
488
    lhs->db = 0;
489
    lhs->s = 1;
490
    lhs->l = 0;
491
    lhs->g = 0;
492
    lhs->avl = 0;
493
    lhs->unusable = 0;
494
}
495

    
496
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
497
{
498
    unsigned flags = rhs->flags;
499
    lhs->selector = rhs->selector;
500
    lhs->base = rhs->base;
501
    lhs->limit = rhs->limit;
502
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
503
    lhs->present = (flags & DESC_P_MASK) != 0;
504
    lhs->dpl = rhs->selector & 3;
505
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
506
    lhs->s = (flags & DESC_S_MASK) != 0;
507
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
508
    lhs->g = (flags & DESC_G_MASK) != 0;
509
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
510
    lhs->unusable = 0;
511
}
512

    
513
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
514
{
515
    lhs->selector = rhs->selector;
516
    lhs->base = rhs->base;
517
    lhs->limit = rhs->limit;
518
    lhs->flags =
519
        (rhs->type << DESC_TYPE_SHIFT)
520
        | (rhs->present * DESC_P_MASK)
521
        | (rhs->dpl << DESC_DPL_SHIFT)
522
        | (rhs->db << DESC_B_SHIFT)
523
        | (rhs->s * DESC_S_MASK)
524
        | (rhs->l << DESC_L_SHIFT)
525
        | (rhs->g * DESC_G_MASK)
526
        | (rhs->avl * DESC_AVL_MASK);
527
}
528

    
529
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
530
{
531
    if (set)
532
        *kvm_reg = *qemu_reg;
533
    else
534
        *qemu_reg = *kvm_reg;
535
}
536

    
537
static int kvm_getput_regs(CPUState *env, int set)
538
{
539
    struct kvm_regs regs;
540
    int ret = 0;
541

    
542
    if (!set) {
543
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
544
        if (ret < 0)
545
            return ret;
546
    }
547

    
548
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
549
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
550
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
551
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
552
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
553
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
554
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
555
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
556
#ifdef TARGET_X86_64
557
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
558
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
559
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
560
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
561
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
562
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
563
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
564
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
565
#endif
566

    
567
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
568
    kvm_getput_reg(&regs.rip, &env->eip, set);
569

    
570
    if (set)
571
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
572

    
573
    return ret;
574
}
575

    
576
static int kvm_put_fpu(CPUState *env)
577
{
578
    struct kvm_fpu fpu;
579
    int i;
580

    
581
    memset(&fpu, 0, sizeof fpu);
582
    fpu.fsw = env->fpus & ~(7 << 11);
583
    fpu.fsw |= (env->fpstt & 7) << 11;
584
    fpu.fcw = env->fpuc;
585
    for (i = 0; i < 8; ++i)
586
        fpu.ftwx |= (!env->fptags[i]) << i;
587
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
588
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
589
    fpu.mxcsr = env->mxcsr;
590

    
591
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
592
}
593

    
594
#ifdef KVM_CAP_XSAVE
595
#define XSAVE_CWD_RIP     2
596
#define XSAVE_CWD_RDP     4
597
#define XSAVE_MXCSR       6
598
#define XSAVE_ST_SPACE    8
599
#define XSAVE_XMM_SPACE   40
600
#define XSAVE_XSTATE_BV   128
601
#define XSAVE_YMMH_SPACE  144
602
#endif
603

    
604
static int kvm_put_xsave(CPUState *env)
605
{
606
#ifdef KVM_CAP_XSAVE
607
    int i;
608
    struct kvm_xsave* xsave;
609
    uint16_t cwd, swd, twd, fop;
610

    
611
    if (!kvm_has_xsave())
612
        return kvm_put_fpu(env);
613

    
614
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
615
    memset(xsave, 0, sizeof(struct kvm_xsave));
616
    cwd = swd = twd = fop = 0;
617
    swd = env->fpus & ~(7 << 11);
618
    swd |= (env->fpstt & 7) << 11;
619
    cwd = env->fpuc;
620
    for (i = 0; i < 8; ++i)
621
        twd |= (!env->fptags[i]) << i;
622
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
623
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
624
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
625
            sizeof env->fpregs);
626
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
627
            sizeof env->xmm_regs);
628
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
629
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
630
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
631
            sizeof env->ymmh_regs);
632
    return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
633
#else
634
    return kvm_put_fpu(env);
635
#endif
636
}
637

    
638
static int kvm_put_xcrs(CPUState *env)
639
{
640
#ifdef KVM_CAP_XCRS
641
    struct kvm_xcrs xcrs;
642

    
643
    if (!kvm_has_xcrs())
644
        return 0;
645

    
646
    xcrs.nr_xcrs = 1;
647
    xcrs.flags = 0;
648
    xcrs.xcrs[0].xcr = 0;
649
    xcrs.xcrs[0].value = env->xcr0;
650
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
651
#else
652
    return 0;
653
#endif
654
}
655

    
656
static int kvm_put_sregs(CPUState *env)
657
{
658
    struct kvm_sregs sregs;
659

    
660
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
661
    if (env->interrupt_injected >= 0) {
662
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
663
                (uint64_t)1 << (env->interrupt_injected % 64);
664
    }
665

    
666
    if ((env->eflags & VM_MASK)) {
667
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
668
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
669
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
670
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
671
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
672
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
673
    } else {
674
            set_seg(&sregs.cs, &env->segs[R_CS]);
675
            set_seg(&sregs.ds, &env->segs[R_DS]);
676
            set_seg(&sregs.es, &env->segs[R_ES]);
677
            set_seg(&sregs.fs, &env->segs[R_FS]);
678
            set_seg(&sregs.gs, &env->segs[R_GS]);
679
            set_seg(&sregs.ss, &env->segs[R_SS]);
680

    
681
            if (env->cr[0] & CR0_PE_MASK) {
682
                /* force ss cpl to cs cpl */
683
                sregs.ss.selector = (sregs.ss.selector & ~3) |
684
                        (sregs.cs.selector & 3);
685
                sregs.ss.dpl = sregs.ss.selector & 3;
686
            }
687
    }
688

    
689
    set_seg(&sregs.tr, &env->tr);
690
    set_seg(&sregs.ldt, &env->ldt);
691

    
692
    sregs.idt.limit = env->idt.limit;
693
    sregs.idt.base = env->idt.base;
694
    sregs.gdt.limit = env->gdt.limit;
695
    sregs.gdt.base = env->gdt.base;
696

    
697
    sregs.cr0 = env->cr[0];
698
    sregs.cr2 = env->cr[2];
699
    sregs.cr3 = env->cr[3];
700
    sregs.cr4 = env->cr[4];
701

    
702
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
703
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
704

    
705
    sregs.efer = env->efer;
706

    
707
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
708
}
709

    
710
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
711
                              uint32_t index, uint64_t value)
712
{
713
    entry->index = index;
714
    entry->data = value;
715
}
716

    
717
static int kvm_put_msrs(CPUState *env, int level)
718
{
719
    struct {
720
        struct kvm_msrs info;
721
        struct kvm_msr_entry entries[100];
722
    } msr_data;
723
    struct kvm_msr_entry *msrs = msr_data.entries;
724
    int n = 0;
725

    
726
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
727
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
728
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
729
    if (kvm_has_msr_star(env))
730
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
731
#ifdef TARGET_X86_64
732
    /* FIXME if lm capable */
733
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
734
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
735
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
736
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
737
#endif
738
    if (level == KVM_PUT_FULL_STATE) {
739
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
740
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
741
                          env->system_time_msr);
742
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
743
    }
744

    
745
    msr_data.info.nmsrs = n;
746

    
747
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
748

    
749
}
750

    
751

    
752
static int kvm_get_fpu(CPUState *env)
753
{
754
    struct kvm_fpu fpu;
755
    int i, ret;
756

    
757
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
758
    if (ret < 0)
759
        return ret;
760

    
761
    env->fpstt = (fpu.fsw >> 11) & 7;
762
    env->fpus = fpu.fsw;
763
    env->fpuc = fpu.fcw;
764
    for (i = 0; i < 8; ++i)
765
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
766
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
767
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
768
    env->mxcsr = fpu.mxcsr;
769

    
770
    return 0;
771
}
772

    
773
static int kvm_get_xsave(CPUState *env)
774
{
775
#ifdef KVM_CAP_XSAVE
776
    struct kvm_xsave* xsave;
777
    int ret, i;
778
    uint16_t cwd, swd, twd, fop;
779

    
780
    if (!kvm_has_xsave())
781
        return kvm_get_fpu(env);
782

    
783
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
784
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
785
    if (ret < 0)
786
        return ret;
787

    
788
    cwd = (uint16_t)xsave->region[0];
789
    swd = (uint16_t)(xsave->region[0] >> 16);
790
    twd = (uint16_t)xsave->region[1];
791
    fop = (uint16_t)(xsave->region[1] >> 16);
792
    env->fpstt = (swd >> 11) & 7;
793
    env->fpus = swd;
794
    env->fpuc = cwd;
795
    for (i = 0; i < 8; ++i)
796
        env->fptags[i] = !((twd >> i) & 1);
797
    env->mxcsr = xsave->region[XSAVE_MXCSR];
798
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
799
            sizeof env->fpregs);
800
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
801
            sizeof env->xmm_regs);
802
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
803
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
804
            sizeof env->ymmh_regs);
805
    return 0;
806
#else
807
    return kvm_get_fpu(env);
808
#endif
809
}
810

    
811
static int kvm_get_xcrs(CPUState *env)
812
{
813
#ifdef KVM_CAP_XCRS
814
    int i, ret;
815
    struct kvm_xcrs xcrs;
816

    
817
    if (!kvm_has_xcrs())
818
        return 0;
819

    
820
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
821
    if (ret < 0)
822
        return ret;
823

    
824
    for (i = 0; i < xcrs.nr_xcrs; i++)
825
        /* Only support xcr0 now */
826
        if (xcrs.xcrs[0].xcr == 0) {
827
            env->xcr0 = xcrs.xcrs[0].value;
828
            break;
829
        }
830
    return 0;
831
#else
832
    return 0;
833
#endif
834
}
835

    
836
static int kvm_get_sregs(CPUState *env)
837
{
838
    struct kvm_sregs sregs;
839
    uint32_t hflags;
840
    int bit, i, ret;
841

    
842
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
843
    if (ret < 0)
844
        return ret;
845

    
846
    /* There can only be one pending IRQ set in the bitmap at a time, so try
847
       to find it and save its number instead (-1 for none). */
848
    env->interrupt_injected = -1;
849
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
850
        if (sregs.interrupt_bitmap[i]) {
851
            bit = ctz64(sregs.interrupt_bitmap[i]);
852
            env->interrupt_injected = i * 64 + bit;
853
            break;
854
        }
855
    }
856

    
857
    get_seg(&env->segs[R_CS], &sregs.cs);
858
    get_seg(&env->segs[R_DS], &sregs.ds);
859
    get_seg(&env->segs[R_ES], &sregs.es);
860
    get_seg(&env->segs[R_FS], &sregs.fs);
861
    get_seg(&env->segs[R_GS], &sregs.gs);
862
    get_seg(&env->segs[R_SS], &sregs.ss);
863

    
864
    get_seg(&env->tr, &sregs.tr);
865
    get_seg(&env->ldt, &sregs.ldt);
866

    
867
    env->idt.limit = sregs.idt.limit;
868
    env->idt.base = sregs.idt.base;
869
    env->gdt.limit = sregs.gdt.limit;
870
    env->gdt.base = sregs.gdt.base;
871

    
872
    env->cr[0] = sregs.cr0;
873
    env->cr[2] = sregs.cr2;
874
    env->cr[3] = sregs.cr3;
875
    env->cr[4] = sregs.cr4;
876

    
877
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
878

    
879
    env->efer = sregs.efer;
880
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
881

    
882
#define HFLAG_COPY_MASK ~( \
883
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
884
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
885
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
886
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
887

    
888

    
889

    
890
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
891
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
892
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
893
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
894
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
895
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
896
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
897

    
898
    if (env->efer & MSR_EFER_LMA) {
899
        hflags |= HF_LMA_MASK;
900
    }
901

    
902
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
903
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
904
    } else {
905
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
906
                (DESC_B_SHIFT - HF_CS32_SHIFT);
907
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
908
                (DESC_B_SHIFT - HF_SS32_SHIFT);
909
        if (!(env->cr[0] & CR0_PE_MASK) ||
910
                   (env->eflags & VM_MASK) ||
911
                   !(hflags & HF_CS32_MASK)) {
912
                hflags |= HF_ADDSEG_MASK;
913
            } else {
914
                hflags |= ((env->segs[R_DS].base |
915
                                env->segs[R_ES].base |
916
                                env->segs[R_SS].base) != 0) <<
917
                    HF_ADDSEG_SHIFT;
918
            }
919
    }
920
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
921

    
922
    return 0;
923
}
924

    
925
static int kvm_get_msrs(CPUState *env)
926
{
927
    struct {
928
        struct kvm_msrs info;
929
        struct kvm_msr_entry entries[100];
930
    } msr_data;
931
    struct kvm_msr_entry *msrs = msr_data.entries;
932
    int ret, i, n;
933

    
934
    n = 0;
935
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
936
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
937
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
938
    if (kvm_has_msr_star(env))
939
        msrs[n++].index = MSR_STAR;
940
    msrs[n++].index = MSR_IA32_TSC;
941
#ifdef TARGET_X86_64
942
    /* FIXME lm_capable_kernel */
943
    msrs[n++].index = MSR_CSTAR;
944
    msrs[n++].index = MSR_KERNELGSBASE;
945
    msrs[n++].index = MSR_FMASK;
946
    msrs[n++].index = MSR_LSTAR;
947
#endif
948
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
949
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
950

    
951
    msr_data.info.nmsrs = n;
952
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
953
    if (ret < 0)
954
        return ret;
955

    
956
    for (i = 0; i < ret; i++) {
957
        switch (msrs[i].index) {
958
        case MSR_IA32_SYSENTER_CS:
959
            env->sysenter_cs = msrs[i].data;
960
            break;
961
        case MSR_IA32_SYSENTER_ESP:
962
            env->sysenter_esp = msrs[i].data;
963
            break;
964
        case MSR_IA32_SYSENTER_EIP:
965
            env->sysenter_eip = msrs[i].data;
966
            break;
967
        case MSR_STAR:
968
            env->star = msrs[i].data;
969
            break;
970
#ifdef TARGET_X86_64
971
        case MSR_CSTAR:
972
            env->cstar = msrs[i].data;
973
            break;
974
        case MSR_KERNELGSBASE:
975
            env->kernelgsbase = msrs[i].data;
976
            break;
977
        case MSR_FMASK:
978
            env->fmask = msrs[i].data;
979
            break;
980
        case MSR_LSTAR:
981
            env->lstar = msrs[i].data;
982
            break;
983
#endif
984
        case MSR_IA32_TSC:
985
            env->tsc = msrs[i].data;
986
            break;
987
        case MSR_KVM_SYSTEM_TIME:
988
            env->system_time_msr = msrs[i].data;
989
            break;
990
        case MSR_KVM_WALL_CLOCK:
991
            env->wall_clock_msr = msrs[i].data;
992
            break;
993
        }
994
    }
995

    
996
    return 0;
997
}
998

    
999
static int kvm_put_mp_state(CPUState *env)
1000
{
1001
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1002

    
1003
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1004
}
1005

    
1006
static int kvm_get_mp_state(CPUState *env)
1007
{
1008
    struct kvm_mp_state mp_state;
1009
    int ret;
1010

    
1011
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1012
    if (ret < 0) {
1013
        return ret;
1014
    }
1015
    env->mp_state = mp_state.mp_state;
1016
    return 0;
1017
}
1018

    
1019
static int kvm_put_vcpu_events(CPUState *env, int level)
1020
{
1021
#ifdef KVM_CAP_VCPU_EVENTS
1022
    struct kvm_vcpu_events events;
1023

    
1024
    if (!kvm_has_vcpu_events()) {
1025
        return 0;
1026
    }
1027

    
1028
    events.exception.injected = (env->exception_injected >= 0);
1029
    events.exception.nr = env->exception_injected;
1030
    events.exception.has_error_code = env->has_error_code;
1031
    events.exception.error_code = env->error_code;
1032

    
1033
    events.interrupt.injected = (env->interrupt_injected >= 0);
1034
    events.interrupt.nr = env->interrupt_injected;
1035
    events.interrupt.soft = env->soft_interrupt;
1036

    
1037
    events.nmi.injected = env->nmi_injected;
1038
    events.nmi.pending = env->nmi_pending;
1039
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1040

    
1041
    events.sipi_vector = env->sipi_vector;
1042

    
1043
    events.flags = 0;
1044
    if (level >= KVM_PUT_RESET_STATE) {
1045
        events.flags |=
1046
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1047
    }
1048

    
1049
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1050
#else
1051
    return 0;
1052
#endif
1053
}
1054

    
1055
static int kvm_get_vcpu_events(CPUState *env)
1056
{
1057
#ifdef KVM_CAP_VCPU_EVENTS
1058
    struct kvm_vcpu_events events;
1059
    int ret;
1060

    
1061
    if (!kvm_has_vcpu_events()) {
1062
        return 0;
1063
    }
1064

    
1065
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1066
    if (ret < 0) {
1067
       return ret;
1068
    }
1069
    env->exception_injected =
1070
       events.exception.injected ? events.exception.nr : -1;
1071
    env->has_error_code = events.exception.has_error_code;
1072
    env->error_code = events.exception.error_code;
1073

    
1074
    env->interrupt_injected =
1075
        events.interrupt.injected ? events.interrupt.nr : -1;
1076
    env->soft_interrupt = events.interrupt.soft;
1077

    
1078
    env->nmi_injected = events.nmi.injected;
1079
    env->nmi_pending = events.nmi.pending;
1080
    if (events.nmi.masked) {
1081
        env->hflags2 |= HF2_NMI_MASK;
1082
    } else {
1083
        env->hflags2 &= ~HF2_NMI_MASK;
1084
    }
1085

    
1086
    env->sipi_vector = events.sipi_vector;
1087
#endif
1088

    
1089
    return 0;
1090
}
1091

    
1092
static int kvm_guest_debug_workarounds(CPUState *env)
1093
{
1094
    int ret = 0;
1095
#ifdef KVM_CAP_SET_GUEST_DEBUG
1096
    unsigned long reinject_trap = 0;
1097

    
1098
    if (!kvm_has_vcpu_events()) {
1099
        if (env->exception_injected == 1) {
1100
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1101
        } else if (env->exception_injected == 3) {
1102
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1103
        }
1104
        env->exception_injected = -1;
1105
    }
1106

    
1107
    /*
1108
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1109
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1110
     * by updating the debug state once again if single-stepping is on.
1111
     * Another reason to call kvm_update_guest_debug here is a pending debug
1112
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1113
     * reinject them via SET_GUEST_DEBUG.
1114
     */
1115
    if (reinject_trap ||
1116
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1117
        ret = kvm_update_guest_debug(env, reinject_trap);
1118
    }
1119
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1120
    return ret;
1121
}
1122

    
1123
static int kvm_put_debugregs(CPUState *env)
1124
{
1125
#ifdef KVM_CAP_DEBUGREGS
1126
    struct kvm_debugregs dbgregs;
1127
    int i;
1128

    
1129
    if (!kvm_has_debugregs()) {
1130
        return 0;
1131
    }
1132

    
1133
    for (i = 0; i < 4; i++) {
1134
        dbgregs.db[i] = env->dr[i];
1135
    }
1136
    dbgregs.dr6 = env->dr[6];
1137
    dbgregs.dr7 = env->dr[7];
1138
    dbgregs.flags = 0;
1139

    
1140
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1141
#else
1142
    return 0;
1143
#endif
1144
}
1145

    
1146
static int kvm_get_debugregs(CPUState *env)
1147
{
1148
#ifdef KVM_CAP_DEBUGREGS
1149
    struct kvm_debugregs dbgregs;
1150
    int i, ret;
1151

    
1152
    if (!kvm_has_debugregs()) {
1153
        return 0;
1154
    }
1155

    
1156
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1157
    if (ret < 0) {
1158
       return ret;
1159
    }
1160
    for (i = 0; i < 4; i++) {
1161
        env->dr[i] = dbgregs.db[i];
1162
    }
1163
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1164
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1165
#endif
1166

    
1167
    return 0;
1168
}
1169

    
1170
int kvm_arch_put_registers(CPUState *env, int level)
1171
{
1172
    int ret;
1173

    
1174
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1175

    
1176
    ret = kvm_getput_regs(env, 1);
1177
    if (ret < 0)
1178
        return ret;
1179

    
1180
    ret = kvm_put_xsave(env);
1181
    if (ret < 0)
1182
        return ret;
1183

    
1184
    ret = kvm_put_xcrs(env);
1185
    if (ret < 0)
1186
        return ret;
1187

    
1188
    ret = kvm_put_sregs(env);
1189
    if (ret < 0)
1190
        return ret;
1191

    
1192
    ret = kvm_put_msrs(env, level);
1193
    if (ret < 0)
1194
        return ret;
1195

    
1196
    if (level >= KVM_PUT_RESET_STATE) {
1197
        ret = kvm_put_mp_state(env);
1198
        if (ret < 0)
1199
            return ret;
1200
    }
1201

    
1202
    ret = kvm_put_vcpu_events(env, level);
1203
    if (ret < 0)
1204
        return ret;
1205

    
1206
    /* must be last */
1207
    ret = kvm_guest_debug_workarounds(env);
1208
    if (ret < 0)
1209
        return ret;
1210

    
1211
    ret = kvm_put_debugregs(env);
1212
    if (ret < 0)
1213
        return ret;
1214

    
1215
    return 0;
1216
}
1217

    
1218
int kvm_arch_get_registers(CPUState *env)
1219
{
1220
    int ret;
1221

    
1222
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1223

    
1224
    ret = kvm_getput_regs(env, 0);
1225
    if (ret < 0)
1226
        return ret;
1227

    
1228
    ret = kvm_get_xsave(env);
1229
    if (ret < 0)
1230
        return ret;
1231

    
1232
    ret = kvm_get_xcrs(env);
1233
    if (ret < 0)
1234
        return ret;
1235

    
1236
    ret = kvm_get_sregs(env);
1237
    if (ret < 0)
1238
        return ret;
1239

    
1240
    ret = kvm_get_msrs(env);
1241
    if (ret < 0)
1242
        return ret;
1243

    
1244
    ret = kvm_get_mp_state(env);
1245
    if (ret < 0)
1246
        return ret;
1247

    
1248
    ret = kvm_get_vcpu_events(env);
1249
    if (ret < 0)
1250
        return ret;
1251

    
1252
    ret = kvm_get_debugregs(env);
1253
    if (ret < 0)
1254
        return ret;
1255

    
1256
    return 0;
1257
}
1258

    
1259
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1260
{
1261
    /* Try to inject an interrupt if the guest can accept it */
1262
    if (run->ready_for_interrupt_injection &&
1263
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1264
        (env->eflags & IF_MASK)) {
1265
        int irq;
1266

    
1267
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1268
        irq = cpu_get_pic_interrupt(env);
1269
        if (irq >= 0) {
1270
            struct kvm_interrupt intr;
1271
            intr.irq = irq;
1272
            /* FIXME: errors */
1273
            DPRINTF("injected interrupt %d\n", irq);
1274
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1275
        }
1276
    }
1277

    
1278
    /* If we have an interrupt but the guest is not ready to receive an
1279
     * interrupt, request an interrupt window exit.  This will
1280
     * cause a return to userspace as soon as the guest is ready to
1281
     * receive interrupts. */
1282
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1283
        run->request_interrupt_window = 1;
1284
    else
1285
        run->request_interrupt_window = 0;
1286

    
1287
    DPRINTF("setting tpr\n");
1288
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1289

    
1290
    return 0;
1291
}
1292

    
1293
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1294
{
1295
    if (run->if_flag)
1296
        env->eflags |= IF_MASK;
1297
    else
1298
        env->eflags &= ~IF_MASK;
1299
    
1300
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1301
    cpu_set_apic_base(env->apic_state, run->apic_base);
1302

    
1303
    return 0;
1304
}
1305

    
1306
int kvm_arch_process_irqchip_events(CPUState *env)
1307
{
1308
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1309
        kvm_cpu_synchronize_state(env);
1310
        do_cpu_init(env);
1311
        env->exception_index = EXCP_HALTED;
1312
    }
1313

    
1314
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1315
        kvm_cpu_synchronize_state(env);
1316
        do_cpu_sipi(env);
1317
    }
1318

    
1319
    return env->halted;
1320
}
1321

    
1322
static int kvm_handle_halt(CPUState *env)
1323
{
1324
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1325
          (env->eflags & IF_MASK)) &&
1326
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1327
        env->halted = 1;
1328
        env->exception_index = EXCP_HLT;
1329
        return 0;
1330
    }
1331

    
1332
    return 1;
1333
}
1334

    
1335
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1336
{
1337
    int ret = 0;
1338

    
1339
    switch (run->exit_reason) {
1340
    case KVM_EXIT_HLT:
1341
        DPRINTF("handle_hlt\n");
1342
        ret = kvm_handle_halt(env);
1343
        break;
1344
    }
1345

    
1346
    return ret;
1347
}
1348

    
1349
#ifdef KVM_CAP_SET_GUEST_DEBUG
1350
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1351
{
1352
    static const uint8_t int3 = 0xcc;
1353

    
1354
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1355
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1356
        return -EINVAL;
1357
    return 0;
1358
}
1359

    
1360
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1361
{
1362
    uint8_t int3;
1363

    
1364
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1365
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1366
        return -EINVAL;
1367
    return 0;
1368
}
1369

    
1370
static struct {
1371
    target_ulong addr;
1372
    int len;
1373
    int type;
1374
} hw_breakpoint[4];
1375

    
1376
static int nb_hw_breakpoint;
1377

    
1378
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1379
{
1380
    int n;
1381

    
1382
    for (n = 0; n < nb_hw_breakpoint; n++)
1383
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1384
            (hw_breakpoint[n].len == len || len == -1))
1385
            return n;
1386
    return -1;
1387
}
1388

    
1389
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1390
                                  target_ulong len, int type)
1391
{
1392
    switch (type) {
1393
    case GDB_BREAKPOINT_HW:
1394
        len = 1;
1395
        break;
1396
    case GDB_WATCHPOINT_WRITE:
1397
    case GDB_WATCHPOINT_ACCESS:
1398
        switch (len) {
1399
        case 1:
1400
            break;
1401
        case 2:
1402
        case 4:
1403
        case 8:
1404
            if (addr & (len - 1))
1405
                return -EINVAL;
1406
            break;
1407
        default:
1408
            return -EINVAL;
1409
        }
1410
        break;
1411
    default:
1412
        return -ENOSYS;
1413
    }
1414

    
1415
    if (nb_hw_breakpoint == 4)
1416
        return -ENOBUFS;
1417

    
1418
    if (find_hw_breakpoint(addr, len, type) >= 0)
1419
        return -EEXIST;
1420

    
1421
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1422
    hw_breakpoint[nb_hw_breakpoint].len = len;
1423
    hw_breakpoint[nb_hw_breakpoint].type = type;
1424
    nb_hw_breakpoint++;
1425

    
1426
    return 0;
1427
}
1428

    
1429
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1430
                                  target_ulong len, int type)
1431
{
1432
    int n;
1433

    
1434
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1435
    if (n < 0)
1436
        return -ENOENT;
1437

    
1438
    nb_hw_breakpoint--;
1439
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1440

    
1441
    return 0;
1442
}
1443

    
1444
void kvm_arch_remove_all_hw_breakpoints(void)
1445
{
1446
    nb_hw_breakpoint = 0;
1447
}
1448

    
1449
static CPUWatchpoint hw_watchpoint;
1450

    
1451
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1452
{
1453
    int handle = 0;
1454
    int n;
1455

    
1456
    if (arch_info->exception == 1) {
1457
        if (arch_info->dr6 & (1 << 14)) {
1458
            if (cpu_single_env->singlestep_enabled)
1459
                handle = 1;
1460
        } else {
1461
            for (n = 0; n < 4; n++)
1462
                if (arch_info->dr6 & (1 << n))
1463
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1464
                    case 0x0:
1465
                        handle = 1;
1466
                        break;
1467
                    case 0x1:
1468
                        handle = 1;
1469
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1470
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1471
                        hw_watchpoint.flags = BP_MEM_WRITE;
1472
                        break;
1473
                    case 0x3:
1474
                        handle = 1;
1475
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1476
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1477
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1478
                        break;
1479
                    }
1480
        }
1481
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1482
        handle = 1;
1483

    
1484
    if (!handle) {
1485
        cpu_synchronize_state(cpu_single_env);
1486
        assert(cpu_single_env->exception_injected == -1);
1487

    
1488
        cpu_single_env->exception_injected = arch_info->exception;
1489
        cpu_single_env->has_error_code = 0;
1490
    }
1491

    
1492
    return handle;
1493
}
1494

    
1495
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1496
{
1497
    const uint8_t type_code[] = {
1498
        [GDB_BREAKPOINT_HW] = 0x0,
1499
        [GDB_WATCHPOINT_WRITE] = 0x1,
1500
        [GDB_WATCHPOINT_ACCESS] = 0x3
1501
    };
1502
    const uint8_t len_code[] = {
1503
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1504
    };
1505
    int n;
1506

    
1507
    if (kvm_sw_breakpoints_active(env))
1508
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1509

    
1510
    if (nb_hw_breakpoint > 0) {
1511
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1512
        dbg->arch.debugreg[7] = 0x0600;
1513
        for (n = 0; n < nb_hw_breakpoint; n++) {
1514
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1515
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1516
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1517
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1518
        }
1519
    }
1520
    /* Legal xcr0 for loading */
1521
    env->xcr0 = 1;
1522
}
1523
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1524

    
1525
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1526
{
1527
      return !(env->cr[0] & CR0_PE_MASK) ||
1528
              ((env->segs[R_CS].selector  & 3) != 3);
1529
}
1530