Statistics
| Branch: | Revision:

root / hw / lm32_boards.c @ e8b36ba9

History | View | Annotate | Download (9.9 kB)

1
/*
2
 *  QEMU models for LatticeMico32 uclinux and evr32 boards.
3
 *
4
 *  Copyright (c) 2010 Michael Walle <michael@walle.cc>
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "sysbus.h"
21
#include "hw.h"
22
#include "net.h"
23
#include "flash.h"
24
#include "devices.h"
25
#include "boards.h"
26
#include "loader.h"
27
#include "blockdev.h"
28
#include "elf.h"
29
#include "lm32_hwsetup.h"
30
#include "lm32.h"
31

    
32
typedef struct {
33
    CPUState *env;
34
    target_phys_addr_t bootstrap_pc;
35
    target_phys_addr_t flash_base;
36
    target_phys_addr_t hwsetup_base;
37
    target_phys_addr_t initrd_base;
38
    size_t initrd_size;
39
    target_phys_addr_t cmdline_base;
40
} ResetInfo;
41

    
42
static void cpu_irq_handler(void *opaque, int irq, int level)
43
{
44
    CPUState *env = opaque;
45

    
46
    if (level) {
47
        cpu_interrupt(env, CPU_INTERRUPT_HARD);
48
    } else {
49
        cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
50
    }
51
}
52

    
53
static void main_cpu_reset(void *opaque)
54
{
55
    ResetInfo *reset_info = opaque;
56
    CPUState *env = reset_info->env;
57

    
58
    cpu_reset(env);
59

    
60
    /* init defaults */
61
    env->pc = (uint32_t)reset_info->bootstrap_pc;
62
    env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
63
    env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
64
    env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
65
    env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
66
        reset_info->initrd_size);
67
    env->eba = reset_info->flash_base;
68
    env->deba = reset_info->flash_base;
69
}
70

    
71
static void lm32_evr_init(ram_addr_t ram_size_not_used,
72
                          const char *boot_device,
73
                          const char *kernel_filename,
74
                          const char *kernel_cmdline,
75
                          const char *initrd_filename, const char *cpu_model)
76
{
77
    CPUState *env;
78
    DriveInfo *dinfo;
79
    ram_addr_t phys_ram;
80
    ram_addr_t phys_flash;
81
    qemu_irq *cpu_irq, irq[32];
82
    ResetInfo *reset_info;
83
    int i;
84

    
85
    /* memory map */
86
    target_phys_addr_t flash_base  = 0x04000000;
87
    size_t flash_sector_size       = 256 * 1024;
88
    size_t flash_size              = 32 * 1024 * 1024;
89
    target_phys_addr_t ram_base    = 0x08000000;
90
    size_t ram_size                = 64 * 1024 * 1024;
91
    target_phys_addr_t timer0_base = 0x80002000;
92
    target_phys_addr_t uart0_base  = 0x80006000;
93
    target_phys_addr_t timer1_base = 0x8000a000;
94
    int uart0_irq                  = 0;
95
    int timer0_irq                 = 1;
96
    int timer1_irq                 = 3;
97

    
98
    reset_info = qemu_mallocz(sizeof(ResetInfo));
99

    
100
    if (cpu_model == NULL) {
101
        cpu_model = "lm32-full";
102
    }
103
    env = cpu_init(cpu_model);
104
    reset_info->env = env;
105

    
106
    reset_info->flash_base = flash_base;
107

    
108
    phys_ram = qemu_ram_alloc(NULL, "lm32_evr.sdram", ram_size);
109
    cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
110

    
111
    phys_flash = qemu_ram_alloc(NULL, "lm32_evr.flash", flash_size);
112
    dinfo = drive_get(IF_PFLASH, 0, 0);
113
    /* Spansion S29NS128P */
114
    pflash_cfi02_register(flash_base, phys_flash,
115
                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
116
                          flash_size / flash_sector_size, 1, 2,
117
                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
118

    
119
    /* create irq lines */
120
    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
121
    env->pic_state = lm32_pic_init(*cpu_irq);
122
    for (i = 0; i < 32; i++) {
123
        irq[i] = qdev_get_gpio_in(env->pic_state, i);
124
    }
125

    
126
    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
127
    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
128
    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
129

    
130
    /* make sure juart isn't the first chardev */
131
    env->juart_state = lm32_juart_init();
132

    
133
    reset_info->bootstrap_pc = flash_base;
134

    
135
    if (kernel_filename) {
136
        uint64_t entry;
137
        int kernel_size;
138

    
139
        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
140
                               1, ELF_MACHINE, 0);
141
        reset_info->bootstrap_pc = entry;
142

    
143
        if (kernel_size < 0) {
144
            kernel_size = load_image_targphys(kernel_filename, ram_base,
145
                                              ram_size);
146
            reset_info->bootstrap_pc = ram_base;
147
        }
148

    
149
        if (kernel_size < 0) {
150
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
151
                    kernel_filename);
152
            exit(1);
153
        }
154
    }
155

    
156
    qemu_register_reset(main_cpu_reset, reset_info);
157
}
158

    
159
static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
160
                          const char *boot_device,
161
                          const char *kernel_filename,
162
                          const char *kernel_cmdline,
163
                          const char *initrd_filename, const char *cpu_model)
164
{
165
    CPUState *env;
166
    DriveInfo *dinfo;
167
    ram_addr_t phys_ram;
168
    ram_addr_t phys_flash;
169
    qemu_irq *cpu_irq, irq[32];
170
    HWSetup *hw;
171
    ResetInfo *reset_info;
172
    int i;
173

    
174
    /* memory map */
175
    target_phys_addr_t flash_base   = 0x04000000;
176
    size_t flash_sector_size        = 256 * 1024;
177
    size_t flash_size               = 32 * 1024 * 1024;
178
    target_phys_addr_t ram_base     = 0x08000000;
179
    size_t ram_size                 = 64 * 1024 * 1024;
180
    target_phys_addr_t uart0_base   = 0x80000000;
181
    target_phys_addr_t timer0_base  = 0x80002000;
182
    target_phys_addr_t timer1_base  = 0x80010000;
183
    target_phys_addr_t timer2_base  = 0x80012000;
184
    int uart0_irq                   = 0;
185
    int timer0_irq                  = 1;
186
    int timer1_irq                  = 20;
187
    int timer2_irq                  = 21;
188
    target_phys_addr_t hwsetup_base = 0x0bffe000;
189
    target_phys_addr_t cmdline_base = 0x0bfff000;
190
    target_phys_addr_t initrd_base  = 0x08400000;
191
    size_t initrd_max               = 0x01000000;
192

    
193
    reset_info = qemu_mallocz(sizeof(ResetInfo));
194

    
195
    if (cpu_model == NULL) {
196
        cpu_model = "lm32-full";
197
    }
198
    env = cpu_init(cpu_model);
199
    reset_info->env = env;
200

    
201
    reset_info->flash_base = flash_base;
202

    
203
    phys_ram = qemu_ram_alloc(NULL, "lm32_uclinux.sdram", ram_size);
204
    cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
205

    
206
    phys_flash = qemu_ram_alloc(NULL, "lm32_uclinux.flash", flash_size);
207
    dinfo = drive_get(IF_PFLASH, 0, 0);
208
    /* Spansion S29NS128P */
209
    pflash_cfi02_register(flash_base, phys_flash,
210
                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
211
                          flash_size / flash_sector_size, 1, 2,
212
                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
213

    
214
    /* create irq lines */
215
    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
216
    env->pic_state = lm32_pic_init(*cpu_irq);
217
    for (i = 0; i < 32; i++) {
218
        irq[i] = qdev_get_gpio_in(env->pic_state, i);
219
    }
220

    
221
    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
222
    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
223
    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
224
    sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
225

    
226
    /* make sure juart isn't the first chardev */
227
    env->juart_state = lm32_juart_init();
228

    
229
    reset_info->bootstrap_pc = flash_base;
230

    
231
    if (kernel_filename) {
232
        uint64_t entry;
233
        int kernel_size;
234

    
235
        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
236
                               1, ELF_MACHINE, 0);
237
        reset_info->bootstrap_pc = entry;
238

    
239
        if (kernel_size < 0) {
240
            kernel_size = load_image_targphys(kernel_filename, ram_base,
241
                                              ram_size);
242
            reset_info->bootstrap_pc = ram_base;
243
        }
244

    
245
        if (kernel_size < 0) {
246
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
247
                    kernel_filename);
248
            exit(1);
249
        }
250
    }
251

    
252
    /* generate a rom with the hardware description */
253
    hw = hwsetup_init();
254
    hwsetup_add_cpu(hw, "LM32", 75000000);
255
    hwsetup_add_flash(hw, "flash", flash_base, flash_size);
256
    hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
257
    hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
258
    hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
259
    hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
260
    hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
261
    hwsetup_add_trailer(hw);
262
    hwsetup_create_rom(hw, hwsetup_base);
263
    hwsetup_free(hw);
264

    
265
    reset_info->hwsetup_base = hwsetup_base;
266

    
267
    if (kernel_cmdline && strlen(kernel_cmdline)) {
268
        pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
269
                kernel_cmdline);
270
        reset_info->cmdline_base = cmdline_base;
271
    }
272

    
273
    if (initrd_filename) {
274
        size_t initrd_size;
275
        initrd_size = load_image_targphys(initrd_filename, initrd_base,
276
                initrd_max);
277
        reset_info->initrd_base = initrd_base;
278
        reset_info->initrd_size = initrd_size;
279
    }
280

    
281
    qemu_register_reset(main_cpu_reset, reset_info);
282
}
283

    
284
static QEMUMachine lm32_evr_machine = {
285
    .name = "lm32-evr",
286
    .desc = "LatticeMico32 EVR32 eval system",
287
    .init = lm32_evr_init,
288
    .is_default = 1
289
};
290

    
291
static QEMUMachine lm32_uclinux_machine = {
292
    .name = "lm32-uclinux",
293
    .desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
294
    .init = lm32_uclinux_init,
295
    .is_default = 0
296
};
297

    
298
static void lm32_machine_init(void)
299
{
300
    qemu_register_machine(&lm32_uclinux_machine);
301
    qemu_register_machine(&lm32_evr_machine);
302
}
303

    
304
machine_init(lm32_machine_init);