Statistics
| Branch: | Revision:

root / target-arm / helper.c @ e9aa6c21

History | View | Annotate | Download (86.6 kB)

1
#include "cpu.h"
2
#include "gdbstub.h"
3
#include "helper.h"
4
#include "host-utils.h"
5
#include "sysemu.h"
6

    
7
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
8
{
9
    int nregs;
10

    
11
    /* VFP data registers are always little-endian.  */
12
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
13
    if (reg < nregs) {
14
        stfq_le_p(buf, env->vfp.regs[reg]);
15
        return 8;
16
    }
17
    if (arm_feature(env, ARM_FEATURE_NEON)) {
18
        /* Aliases for Q regs.  */
19
        nregs += 16;
20
        if (reg < nregs) {
21
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
22
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
23
            return 16;
24
        }
25
    }
26
    switch (reg - nregs) {
27
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
28
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
29
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
30
    }
31
    return 0;
32
}
33

    
34
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
35
{
36
    int nregs;
37

    
38
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
39
    if (reg < nregs) {
40
        env->vfp.regs[reg] = ldfq_le_p(buf);
41
        return 8;
42
    }
43
    if (arm_feature(env, ARM_FEATURE_NEON)) {
44
        nregs += 16;
45
        if (reg < nregs) {
46
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
47
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
48
            return 16;
49
        }
50
    }
51
    switch (reg - nregs) {
52
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
53
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
54
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
55
    }
56
    return 0;
57
}
58

    
59
static const ARMCPRegInfo cp_reginfo[] = {
60
    /* DBGDIDR: just RAZ. In particular this means the "debug architecture
61
     * version" bits will read as a reserved value, which should cause
62
     * Linux to not try to use the debug hardware.
63
     */
64
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
65
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
66
    REGINFO_SENTINEL
67
};
68

    
69
static const ARMCPRegInfo v7_cp_reginfo[] = {
70
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
71
     * debug components
72
     */
73
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
74
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
75
    { .name = "DBGDRAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
76
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
77
    REGINFO_SENTINEL
78
};
79

    
80
void register_cp_regs_for_features(ARMCPU *cpu)
81
{
82
    /* Register all the coprocessor registers based on feature bits */
83
    CPUARMState *env = &cpu->env;
84
    if (arm_feature(env, ARM_FEATURE_M)) {
85
        /* M profile has no coprocessor registers */
86
        return;
87
    }
88

    
89
    define_arm_cp_regs(cpu, cp_reginfo);
90
    if (arm_feature(env, ARM_FEATURE_V7)) {
91
        define_arm_cp_regs(cpu, v7_cp_reginfo);
92
    }
93
}
94

    
95
ARMCPU *cpu_arm_init(const char *cpu_model)
96
{
97
    ARMCPU *cpu;
98
    CPUARMState *env;
99
    static int inited = 0;
100

    
101
    if (!object_class_by_name(cpu_model)) {
102
        return NULL;
103
    }
104
    cpu = ARM_CPU(object_new(cpu_model));
105
    env = &cpu->env;
106
    env->cpu_model_str = cpu_model;
107
    arm_cpu_realize(cpu);
108

    
109
    if (tcg_enabled() && !inited) {
110
        inited = 1;
111
        arm_translate_init();
112
    }
113

    
114
    cpu_reset(CPU(cpu));
115
    if (arm_feature(env, ARM_FEATURE_NEON)) {
116
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
117
                                 51, "arm-neon.xml", 0);
118
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
119
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
120
                                 35, "arm-vfp3.xml", 0);
121
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
122
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
123
                                 19, "arm-vfp.xml", 0);
124
    }
125
    qemu_init_vcpu(env);
126
    return cpu;
127
}
128

    
129
typedef struct ARMCPUListState {
130
    fprintf_function cpu_fprintf;
131
    FILE *file;
132
} ARMCPUListState;
133

    
134
/* Sort alphabetically by type name, except for "any". */
135
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
136
{
137
    ObjectClass *class_a = (ObjectClass *)a;
138
    ObjectClass *class_b = (ObjectClass *)b;
139
    const char *name_a, *name_b;
140

    
141
    name_a = object_class_get_name(class_a);
142
    name_b = object_class_get_name(class_b);
143
    if (strcmp(name_a, "any") == 0) {
144
        return 1;
145
    } else if (strcmp(name_b, "any") == 0) {
146
        return -1;
147
    } else {
148
        return strcmp(name_a, name_b);
149
    }
150
}
151

    
152
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
153
{
154
    ObjectClass *oc = data;
155
    ARMCPUListState *s = user_data;
156

    
157
    (*s->cpu_fprintf)(s->file, "  %s\n",
158
                      object_class_get_name(oc));
159
}
160

    
161
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
162
{
163
    ARMCPUListState s = {
164
        .file = f,
165
        .cpu_fprintf = cpu_fprintf,
166
    };
167
    GSList *list;
168

    
169
    list = object_class_get_list(TYPE_ARM_CPU, false);
170
    list = g_slist_sort(list, arm_cpu_list_compare);
171
    (*cpu_fprintf)(f, "Available CPUs:\n");
172
    g_slist_foreach(list, arm_cpu_list_entry, &s);
173
    g_slist_free(list);
174
}
175

    
176
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
177
                                       const ARMCPRegInfo *r, void *opaque)
178
{
179
    /* Define implementations of coprocessor registers.
180
     * We store these in a hashtable because typically
181
     * there are less than 150 registers in a space which
182
     * is 16*16*16*8*8 = 262144 in size.
183
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
184
     * If a register is defined twice then the second definition is
185
     * used, so this can be used to define some generic registers and
186
     * then override them with implementation specific variations.
187
     * At least one of the original and the second definition should
188
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
189
     * against accidental use.
190
     */
191
    int crm, opc1, opc2;
192
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
193
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
194
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
195
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
196
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
197
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
198
    /* 64 bit registers have only CRm and Opc1 fields */
199
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
200
    /* Check that the register definition has enough info to handle
201
     * reads and writes if they are permitted.
202
     */
203
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
204
        if (r->access & PL3_R) {
205
            assert(r->fieldoffset || r->readfn);
206
        }
207
        if (r->access & PL3_W) {
208
            assert(r->fieldoffset || r->writefn);
209
        }
210
    }
211
    /* Bad type field probably means missing sentinel at end of reg list */
212
    assert(cptype_valid(r->type));
213
    for (crm = crmmin; crm <= crmmax; crm++) {
214
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
215
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
216
                uint32_t *key = g_new(uint32_t, 1);
217
                ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
218
                int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
219
                *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
220
                r2->opaque = opaque;
221
                /* Make sure reginfo passed to helpers for wildcarded regs
222
                 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
223
                 */
224
                r2->crm = crm;
225
                r2->opc1 = opc1;
226
                r2->opc2 = opc2;
227
                /* Overriding of an existing definition must be explicitly
228
                 * requested.
229
                 */
230
                if (!(r->type & ARM_CP_OVERRIDE)) {
231
                    ARMCPRegInfo *oldreg;
232
                    oldreg = g_hash_table_lookup(cpu->cp_regs, key);
233
                    if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
234
                        fprintf(stderr, "Register redefined: cp=%d %d bit "
235
                                "crn=%d crm=%d opc1=%d opc2=%d, "
236
                                "was %s, now %s\n", r2->cp, 32 + 32 * is64,
237
                                r2->crn, r2->crm, r2->opc1, r2->opc2,
238
                                oldreg->name, r2->name);
239
                        assert(0);
240
                    }
241
                }
242
                g_hash_table_insert(cpu->cp_regs, key, r2);
243
            }
244
        }
245
    }
246
}
247

    
248
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
249
                                    const ARMCPRegInfo *regs, void *opaque)
250
{
251
    /* Define a whole list of registers */
252
    const ARMCPRegInfo *r;
253
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
254
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
255
    }
256
}
257

    
258
const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
259
{
260
    return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
261
}
262

    
263
int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
264
                        uint64_t value)
265
{
266
    /* Helper coprocessor write function for write-ignore registers */
267
    return 0;
268
}
269

    
270
int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
271
{
272
    /* Helper coprocessor write function for read-as-zero registers */
273
    *value = 0;
274
    return 0;
275
}
276

    
277
static int bad_mode_switch(CPUARMState *env, int mode)
278
{
279
    /* Return true if it is not valid for us to switch to
280
     * this CPU mode (ie all the UNPREDICTABLE cases in
281
     * the ARM ARM CPSRWriteByInstr pseudocode).
282
     */
283
    switch (mode) {
284
    case ARM_CPU_MODE_USR:
285
    case ARM_CPU_MODE_SYS:
286
    case ARM_CPU_MODE_SVC:
287
    case ARM_CPU_MODE_ABT:
288
    case ARM_CPU_MODE_UND:
289
    case ARM_CPU_MODE_IRQ:
290
    case ARM_CPU_MODE_FIQ:
291
        return 0;
292
    default:
293
        return 1;
294
    }
295
}
296

    
297
uint32_t cpsr_read(CPUARMState *env)
298
{
299
    int ZF;
300
    ZF = (env->ZF == 0);
301
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
302
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
303
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
304
        | ((env->condexec_bits & 0xfc) << 8)
305
        | (env->GE << 16);
306
}
307

    
308
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
309
{
310
    if (mask & CPSR_NZCV) {
311
        env->ZF = (~val) & CPSR_Z;
312
        env->NF = val;
313
        env->CF = (val >> 29) & 1;
314
        env->VF = (val << 3) & 0x80000000;
315
    }
316
    if (mask & CPSR_Q)
317
        env->QF = ((val & CPSR_Q) != 0);
318
    if (mask & CPSR_T)
319
        env->thumb = ((val & CPSR_T) != 0);
320
    if (mask & CPSR_IT_0_1) {
321
        env->condexec_bits &= ~3;
322
        env->condexec_bits |= (val >> 25) & 3;
323
    }
324
    if (mask & CPSR_IT_2_7) {
325
        env->condexec_bits &= 3;
326
        env->condexec_bits |= (val >> 8) & 0xfc;
327
    }
328
    if (mask & CPSR_GE) {
329
        env->GE = (val >> 16) & 0xf;
330
    }
331

    
332
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
333
        if (bad_mode_switch(env, val & CPSR_M)) {
334
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
335
             * We choose to ignore the attempt and leave the CPSR M field
336
             * untouched.
337
             */
338
            mask &= ~CPSR_M;
339
        } else {
340
            switch_mode(env, val & CPSR_M);
341
        }
342
    }
343
    mask &= ~CACHED_CPSR_BITS;
344
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
345
}
346

    
347
/* Sign/zero extend */
348
uint32_t HELPER(sxtb16)(uint32_t x)
349
{
350
    uint32_t res;
351
    res = (uint16_t)(int8_t)x;
352
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
353
    return res;
354
}
355

    
356
uint32_t HELPER(uxtb16)(uint32_t x)
357
{
358
    uint32_t res;
359
    res = (uint16_t)(uint8_t)x;
360
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
361
    return res;
362
}
363

    
364
uint32_t HELPER(clz)(uint32_t x)
365
{
366
    return clz32(x);
367
}
368

    
369
int32_t HELPER(sdiv)(int32_t num, int32_t den)
370
{
371
    if (den == 0)
372
      return 0;
373
    if (num == INT_MIN && den == -1)
374
      return INT_MIN;
375
    return num / den;
376
}
377

    
378
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
379
{
380
    if (den == 0)
381
      return 0;
382
    return num / den;
383
}
384

    
385
uint32_t HELPER(rbit)(uint32_t x)
386
{
387
    x =  ((x & 0xff000000) >> 24)
388
       | ((x & 0x00ff0000) >> 8)
389
       | ((x & 0x0000ff00) << 8)
390
       | ((x & 0x000000ff) << 24);
391
    x =  ((x & 0xf0f0f0f0) >> 4)
392
       | ((x & 0x0f0f0f0f) << 4);
393
    x =  ((x & 0x88888888) >> 3)
394
       | ((x & 0x44444444) >> 1)
395
       | ((x & 0x22222222) << 1)
396
       | ((x & 0x11111111) << 3);
397
    return x;
398
}
399

    
400
uint32_t HELPER(abs)(uint32_t x)
401
{
402
    return ((int32_t)x < 0) ? -x : x;
403
}
404

    
405
#if defined(CONFIG_USER_ONLY)
406

    
407
void do_interrupt (CPUARMState *env)
408
{
409
    env->exception_index = -1;
410
}
411

    
412
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
413
                              int mmu_idx)
414
{
415
    if (rw == 2) {
416
        env->exception_index = EXCP_PREFETCH_ABORT;
417
        env->cp15.c6_insn = address;
418
    } else {
419
        env->exception_index = EXCP_DATA_ABORT;
420
        env->cp15.c6_data = address;
421
    }
422
    return 1;
423
}
424

    
425
void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
426
{
427
    cpu_abort(env, "cp15 insn %08x\n", insn);
428
}
429

    
430
uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
431
{
432
    cpu_abort(env, "cp15 insn %08x\n", insn);
433
}
434

    
435
/* These should probably raise undefined insn exceptions.  */
436
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
437
{
438
    cpu_abort(env, "v7m_mrs %d\n", reg);
439
}
440

    
441
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
442
{
443
    cpu_abort(env, "v7m_mrs %d\n", reg);
444
    return 0;
445
}
446

    
447
void switch_mode(CPUARMState *env, int mode)
448
{
449
    if (mode != ARM_CPU_MODE_USR)
450
        cpu_abort(env, "Tried to switch out of user mode\n");
451
}
452

    
453
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
454
{
455
    cpu_abort(env, "banked r13 write\n");
456
}
457

    
458
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
459
{
460
    cpu_abort(env, "banked r13 read\n");
461
    return 0;
462
}
463

    
464
#else
465

    
466
/* Map CPU modes onto saved register banks.  */
467
static inline int bank_number(CPUARMState *env, int mode)
468
{
469
    switch (mode) {
470
    case ARM_CPU_MODE_USR:
471
    case ARM_CPU_MODE_SYS:
472
        return 0;
473
    case ARM_CPU_MODE_SVC:
474
        return 1;
475
    case ARM_CPU_MODE_ABT:
476
        return 2;
477
    case ARM_CPU_MODE_UND:
478
        return 3;
479
    case ARM_CPU_MODE_IRQ:
480
        return 4;
481
    case ARM_CPU_MODE_FIQ:
482
        return 5;
483
    }
484
    cpu_abort(env, "Bad mode %x\n", mode);
485
    return -1;
486
}
487

    
488
void switch_mode(CPUARMState *env, int mode)
489
{
490
    int old_mode;
491
    int i;
492

    
493
    old_mode = env->uncached_cpsr & CPSR_M;
494
    if (mode == old_mode)
495
        return;
496

    
497
    if (old_mode == ARM_CPU_MODE_FIQ) {
498
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
499
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
500
    } else if (mode == ARM_CPU_MODE_FIQ) {
501
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
502
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
503
    }
504

    
505
    i = bank_number(env, old_mode);
506
    env->banked_r13[i] = env->regs[13];
507
    env->banked_r14[i] = env->regs[14];
508
    env->banked_spsr[i] = env->spsr;
509

    
510
    i = bank_number(env, mode);
511
    env->regs[13] = env->banked_r13[i];
512
    env->regs[14] = env->banked_r14[i];
513
    env->spsr = env->banked_spsr[i];
514
}
515

    
516
static void v7m_push(CPUARMState *env, uint32_t val)
517
{
518
    env->regs[13] -= 4;
519
    stl_phys(env->regs[13], val);
520
}
521

    
522
static uint32_t v7m_pop(CPUARMState *env)
523
{
524
    uint32_t val;
525
    val = ldl_phys(env->regs[13]);
526
    env->regs[13] += 4;
527
    return val;
528
}
529

    
530
/* Switch to V7M main or process stack pointer.  */
531
static void switch_v7m_sp(CPUARMState *env, int process)
532
{
533
    uint32_t tmp;
534
    if (env->v7m.current_sp != process) {
535
        tmp = env->v7m.other_sp;
536
        env->v7m.other_sp = env->regs[13];
537
        env->regs[13] = tmp;
538
        env->v7m.current_sp = process;
539
    }
540
}
541

    
542
static void do_v7m_exception_exit(CPUARMState *env)
543
{
544
    uint32_t type;
545
    uint32_t xpsr;
546

    
547
    type = env->regs[15];
548
    if (env->v7m.exception != 0)
549
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
550

    
551
    /* Switch to the target stack.  */
552
    switch_v7m_sp(env, (type & 4) != 0);
553
    /* Pop registers.  */
554
    env->regs[0] = v7m_pop(env);
555
    env->regs[1] = v7m_pop(env);
556
    env->regs[2] = v7m_pop(env);
557
    env->regs[3] = v7m_pop(env);
558
    env->regs[12] = v7m_pop(env);
559
    env->regs[14] = v7m_pop(env);
560
    env->regs[15] = v7m_pop(env);
561
    xpsr = v7m_pop(env);
562
    xpsr_write(env, xpsr, 0xfffffdff);
563
    /* Undo stack alignment.  */
564
    if (xpsr & 0x200)
565
        env->regs[13] |= 4;
566
    /* ??? The exception return type specifies Thread/Handler mode.  However
567
       this is also implied by the xPSR value. Not sure what to do
568
       if there is a mismatch.  */
569
    /* ??? Likewise for mismatches between the CONTROL register and the stack
570
       pointer.  */
571
}
572

    
573
static void do_interrupt_v7m(CPUARMState *env)
574
{
575
    uint32_t xpsr = xpsr_read(env);
576
    uint32_t lr;
577
    uint32_t addr;
578

    
579
    lr = 0xfffffff1;
580
    if (env->v7m.current_sp)
581
        lr |= 4;
582
    if (env->v7m.exception == 0)
583
        lr |= 8;
584

    
585
    /* For exceptions we just mark as pending on the NVIC, and let that
586
       handle it.  */
587
    /* TODO: Need to escalate if the current priority is higher than the
588
       one we're raising.  */
589
    switch (env->exception_index) {
590
    case EXCP_UDEF:
591
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
592
        return;
593
    case EXCP_SWI:
594
        env->regs[15] += 2;
595
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
596
        return;
597
    case EXCP_PREFETCH_ABORT:
598
    case EXCP_DATA_ABORT:
599
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
600
        return;
601
    case EXCP_BKPT:
602
        if (semihosting_enabled) {
603
            int nr;
604
            nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
605
            if (nr == 0xab) {
606
                env->regs[15] += 2;
607
                env->regs[0] = do_arm_semihosting(env);
608
                return;
609
            }
610
        }
611
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
612
        return;
613
    case EXCP_IRQ:
614
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
615
        break;
616
    case EXCP_EXCEPTION_EXIT:
617
        do_v7m_exception_exit(env);
618
        return;
619
    default:
620
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
621
        return; /* Never happens.  Keep compiler happy.  */
622
    }
623

    
624
    /* Align stack pointer.  */
625
    /* ??? Should only do this if Configuration Control Register
626
       STACKALIGN bit is set.  */
627
    if (env->regs[13] & 4) {
628
        env->regs[13] -= 4;
629
        xpsr |= 0x200;
630
    }
631
    /* Switch to the handler mode.  */
632
    v7m_push(env, xpsr);
633
    v7m_push(env, env->regs[15]);
634
    v7m_push(env, env->regs[14]);
635
    v7m_push(env, env->regs[12]);
636
    v7m_push(env, env->regs[3]);
637
    v7m_push(env, env->regs[2]);
638
    v7m_push(env, env->regs[1]);
639
    v7m_push(env, env->regs[0]);
640
    switch_v7m_sp(env, 0);
641
    /* Clear IT bits */
642
    env->condexec_bits = 0;
643
    env->regs[14] = lr;
644
    addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
645
    env->regs[15] = addr & 0xfffffffe;
646
    env->thumb = addr & 1;
647
}
648

    
649
/* Handle a CPU exception.  */
650
void do_interrupt(CPUARMState *env)
651
{
652
    uint32_t addr;
653
    uint32_t mask;
654
    int new_mode;
655
    uint32_t offset;
656

    
657
    if (IS_M(env)) {
658
        do_interrupt_v7m(env);
659
        return;
660
    }
661
    /* TODO: Vectored interrupt controller.  */
662
    switch (env->exception_index) {
663
    case EXCP_UDEF:
664
        new_mode = ARM_CPU_MODE_UND;
665
        addr = 0x04;
666
        mask = CPSR_I;
667
        if (env->thumb)
668
            offset = 2;
669
        else
670
            offset = 4;
671
        break;
672
    case EXCP_SWI:
673
        if (semihosting_enabled) {
674
            /* Check for semihosting interrupt.  */
675
            if (env->thumb) {
676
                mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
677
            } else {
678
                mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
679
                    & 0xffffff;
680
            }
681
            /* Only intercept calls from privileged modes, to provide some
682
               semblance of security.  */
683
            if (((mask == 0x123456 && !env->thumb)
684
                    || (mask == 0xab && env->thumb))
685
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
686
                env->regs[0] = do_arm_semihosting(env);
687
                return;
688
            }
689
        }
690
        new_mode = ARM_CPU_MODE_SVC;
691
        addr = 0x08;
692
        mask = CPSR_I;
693
        /* The PC already points to the next instruction.  */
694
        offset = 0;
695
        break;
696
    case EXCP_BKPT:
697
        /* See if this is a semihosting syscall.  */
698
        if (env->thumb && semihosting_enabled) {
699
            mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
700
            if (mask == 0xab
701
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
702
                env->regs[15] += 2;
703
                env->regs[0] = do_arm_semihosting(env);
704
                return;
705
            }
706
        }
707
        env->cp15.c5_insn = 2;
708
        /* Fall through to prefetch abort.  */
709
    case EXCP_PREFETCH_ABORT:
710
        new_mode = ARM_CPU_MODE_ABT;
711
        addr = 0x0c;
712
        mask = CPSR_A | CPSR_I;
713
        offset = 4;
714
        break;
715
    case EXCP_DATA_ABORT:
716
        new_mode = ARM_CPU_MODE_ABT;
717
        addr = 0x10;
718
        mask = CPSR_A | CPSR_I;
719
        offset = 8;
720
        break;
721
    case EXCP_IRQ:
722
        new_mode = ARM_CPU_MODE_IRQ;
723
        addr = 0x18;
724
        /* Disable IRQ and imprecise data aborts.  */
725
        mask = CPSR_A | CPSR_I;
726
        offset = 4;
727
        break;
728
    case EXCP_FIQ:
729
        new_mode = ARM_CPU_MODE_FIQ;
730
        addr = 0x1c;
731
        /* Disable FIQ, IRQ and imprecise data aborts.  */
732
        mask = CPSR_A | CPSR_I | CPSR_F;
733
        offset = 4;
734
        break;
735
    default:
736
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
737
        return; /* Never happens.  Keep compiler happy.  */
738
    }
739
    /* High vectors.  */
740
    if (env->cp15.c1_sys & (1 << 13)) {
741
        addr += 0xffff0000;
742
    }
743
    switch_mode (env, new_mode);
744
    env->spsr = cpsr_read(env);
745
    /* Clear IT bits.  */
746
    env->condexec_bits = 0;
747
    /* Switch to the new mode, and to the correct instruction set.  */
748
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
749
    env->uncached_cpsr |= mask;
750
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
751
     * and we should just guard the thumb mode on V4 */
752
    if (arm_feature(env, ARM_FEATURE_V4T)) {
753
        env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
754
    }
755
    env->regs[14] = env->regs[15] + offset;
756
    env->regs[15] = addr;
757
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
758
}
759

    
760
/* Check section/page access permissions.
761
   Returns the page protection flags, or zero if the access is not
762
   permitted.  */
763
static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
764
                           int access_type, int is_user)
765
{
766
  int prot_ro;
767

    
768
  if (domain_prot == 3) {
769
    return PAGE_READ | PAGE_WRITE;
770
  }
771

    
772
  if (access_type == 1)
773
      prot_ro = 0;
774
  else
775
      prot_ro = PAGE_READ;
776

    
777
  switch (ap) {
778
  case 0:
779
      if (access_type == 1)
780
          return 0;
781
      switch ((env->cp15.c1_sys >> 8) & 3) {
782
      case 1:
783
          return is_user ? 0 : PAGE_READ;
784
      case 2:
785
          return PAGE_READ;
786
      default:
787
          return 0;
788
      }
789
  case 1:
790
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
791
  case 2:
792
      if (is_user)
793
          return prot_ro;
794
      else
795
          return PAGE_READ | PAGE_WRITE;
796
  case 3:
797
      return PAGE_READ | PAGE_WRITE;
798
  case 4: /* Reserved.  */
799
      return 0;
800
  case 5:
801
      return is_user ? 0 : prot_ro;
802
  case 6:
803
      return prot_ro;
804
  case 7:
805
      if (!arm_feature (env, ARM_FEATURE_V6K))
806
          return 0;
807
      return prot_ro;
808
  default:
809
      abort();
810
  }
811
}
812

    
813
static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
814
{
815
    uint32_t table;
816

    
817
    if (address & env->cp15.c2_mask)
818
        table = env->cp15.c2_base1 & 0xffffc000;
819
    else
820
        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
821

    
822
    table |= (address >> 18) & 0x3ffc;
823
    return table;
824
}
825

    
826
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
827
                            int is_user, uint32_t *phys_ptr, int *prot,
828
                            target_ulong *page_size)
829
{
830
    int code;
831
    uint32_t table;
832
    uint32_t desc;
833
    int type;
834
    int ap;
835
    int domain;
836
    int domain_prot;
837
    uint32_t phys_addr;
838

    
839
    /* Pagetable walk.  */
840
    /* Lookup l1 descriptor.  */
841
    table = get_level1_table_address(env, address);
842
    desc = ldl_phys(table);
843
    type = (desc & 3);
844
    domain = (desc >> 5) & 0x0f;
845
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
846
    if (type == 0) {
847
        /* Section translation fault.  */
848
        code = 5;
849
        goto do_fault;
850
    }
851
    if (domain_prot == 0 || domain_prot == 2) {
852
        if (type == 2)
853
            code = 9; /* Section domain fault.  */
854
        else
855
            code = 11; /* Page domain fault.  */
856
        goto do_fault;
857
    }
858
    if (type == 2) {
859
        /* 1Mb section.  */
860
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
861
        ap = (desc >> 10) & 3;
862
        code = 13;
863
        *page_size = 1024 * 1024;
864
    } else {
865
        /* Lookup l2 entry.  */
866
        if (type == 1) {
867
            /* Coarse pagetable.  */
868
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
869
        } else {
870
            /* Fine pagetable.  */
871
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
872
        }
873
        desc = ldl_phys(table);
874
        switch (desc & 3) {
875
        case 0: /* Page translation fault.  */
876
            code = 7;
877
            goto do_fault;
878
        case 1: /* 64k page.  */
879
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
880
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
881
            *page_size = 0x10000;
882
            break;
883
        case 2: /* 4k page.  */
884
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
885
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
886
            *page_size = 0x1000;
887
            break;
888
        case 3: /* 1k page.  */
889
            if (type == 1) {
890
                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
891
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
892
                } else {
893
                    /* Page translation fault.  */
894
                    code = 7;
895
                    goto do_fault;
896
                }
897
            } else {
898
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
899
            }
900
            ap = (desc >> 4) & 3;
901
            *page_size = 0x400;
902
            break;
903
        default:
904
            /* Never happens, but compiler isn't smart enough to tell.  */
905
            abort();
906
        }
907
        code = 15;
908
    }
909
    *prot = check_ap(env, ap, domain_prot, access_type, is_user);
910
    if (!*prot) {
911
        /* Access permission fault.  */
912
        goto do_fault;
913
    }
914
    *prot |= PAGE_EXEC;
915
    *phys_ptr = phys_addr;
916
    return 0;
917
do_fault:
918
    return code | (domain << 4);
919
}
920

    
921
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
922
                            int is_user, uint32_t *phys_ptr, int *prot,
923
                            target_ulong *page_size)
924
{
925
    int code;
926
    uint32_t table;
927
    uint32_t desc;
928
    uint32_t xn;
929
    int type;
930
    int ap;
931
    int domain;
932
    int domain_prot;
933
    uint32_t phys_addr;
934

    
935
    /* Pagetable walk.  */
936
    /* Lookup l1 descriptor.  */
937
    table = get_level1_table_address(env, address);
938
    desc = ldl_phys(table);
939
    type = (desc & 3);
940
    if (type == 0) {
941
        /* Section translation fault.  */
942
        code = 5;
943
        domain = 0;
944
        goto do_fault;
945
    } else if (type == 2 && (desc & (1 << 18))) {
946
        /* Supersection.  */
947
        domain = 0;
948
    } else {
949
        /* Section or page.  */
950
        domain = (desc >> 5) & 0x0f;
951
    }
952
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
953
    if (domain_prot == 0 || domain_prot == 2) {
954
        if (type == 2)
955
            code = 9; /* Section domain fault.  */
956
        else
957
            code = 11; /* Page domain fault.  */
958
        goto do_fault;
959
    }
960
    if (type == 2) {
961
        if (desc & (1 << 18)) {
962
            /* Supersection.  */
963
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
964
            *page_size = 0x1000000;
965
        } else {
966
            /* Section.  */
967
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
968
            *page_size = 0x100000;
969
        }
970
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
971
        xn = desc & (1 << 4);
972
        code = 13;
973
    } else {
974
        /* Lookup l2 entry.  */
975
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
976
        desc = ldl_phys(table);
977
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
978
        switch (desc & 3) {
979
        case 0: /* Page translation fault.  */
980
            code = 7;
981
            goto do_fault;
982
        case 1: /* 64k page.  */
983
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
984
            xn = desc & (1 << 15);
985
            *page_size = 0x10000;
986
            break;
987
        case 2: case 3: /* 4k page.  */
988
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
989
            xn = desc & 1;
990
            *page_size = 0x1000;
991
            break;
992
        default:
993
            /* Never happens, but compiler isn't smart enough to tell.  */
994
            abort();
995
        }
996
        code = 15;
997
    }
998
    if (domain_prot == 3) {
999
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1000
    } else {
1001
        if (xn && access_type == 2)
1002
            goto do_fault;
1003

    
1004
        /* The simplified model uses AP[0] as an access control bit.  */
1005
        if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1006
            /* Access flag fault.  */
1007
            code = (code == 15) ? 6 : 3;
1008
            goto do_fault;
1009
        }
1010
        *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1011
        if (!*prot) {
1012
            /* Access permission fault.  */
1013
            goto do_fault;
1014
        }
1015
        if (!xn) {
1016
            *prot |= PAGE_EXEC;
1017
        }
1018
    }
1019
    *phys_ptr = phys_addr;
1020
    return 0;
1021
do_fault:
1022
    return code | (domain << 4);
1023
}
1024

    
1025
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
1026
                             int is_user, uint32_t *phys_ptr, int *prot)
1027
{
1028
    int n;
1029
    uint32_t mask;
1030
    uint32_t base;
1031

    
1032
    *phys_ptr = address;
1033
    for (n = 7; n >= 0; n--) {
1034
        base = env->cp15.c6_region[n];
1035
        if ((base & 1) == 0)
1036
            continue;
1037
        mask = 1 << ((base >> 1) & 0x1f);
1038
        /* Keep this shift separate from the above to avoid an
1039
           (undefined) << 32.  */
1040
        mask = (mask << 1) - 1;
1041
        if (((base ^ address) & ~mask) == 0)
1042
            break;
1043
    }
1044
    if (n < 0)
1045
        return 2;
1046

    
1047
    if (access_type == 2) {
1048
        mask = env->cp15.c5_insn;
1049
    } else {
1050
        mask = env->cp15.c5_data;
1051
    }
1052
    mask = (mask >> (n * 4)) & 0xf;
1053
    switch (mask) {
1054
    case 0:
1055
        return 1;
1056
    case 1:
1057
        if (is_user)
1058
          return 1;
1059
        *prot = PAGE_READ | PAGE_WRITE;
1060
        break;
1061
    case 2:
1062
        *prot = PAGE_READ;
1063
        if (!is_user)
1064
            *prot |= PAGE_WRITE;
1065
        break;
1066
    case 3:
1067
        *prot = PAGE_READ | PAGE_WRITE;
1068
        break;
1069
    case 5:
1070
        if (is_user)
1071
            return 1;
1072
        *prot = PAGE_READ;
1073
        break;
1074
    case 6:
1075
        *prot = PAGE_READ;
1076
        break;
1077
    default:
1078
        /* Bad permission.  */
1079
        return 1;
1080
    }
1081
    *prot |= PAGE_EXEC;
1082
    return 0;
1083
}
1084

    
1085
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
1086
                                int access_type, int is_user,
1087
                                uint32_t *phys_ptr, int *prot,
1088
                                target_ulong *page_size)
1089
{
1090
    /* Fast Context Switch Extension.  */
1091
    if (address < 0x02000000)
1092
        address += env->cp15.c13_fcse;
1093

    
1094
    if ((env->cp15.c1_sys & 1) == 0) {
1095
        /* MMU/MPU disabled.  */
1096
        *phys_ptr = address;
1097
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1098
        *page_size = TARGET_PAGE_SIZE;
1099
        return 0;
1100
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1101
        *page_size = TARGET_PAGE_SIZE;
1102
        return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1103
                                 prot);
1104
    } else if (env->cp15.c1_sys & (1 << 23)) {
1105
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1106
                                prot, page_size);
1107
    } else {
1108
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1109
                                prot, page_size);
1110
    }
1111
}
1112

    
1113
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
1114
                              int access_type, int mmu_idx)
1115
{
1116
    uint32_t phys_addr;
1117
    target_ulong page_size;
1118
    int prot;
1119
    int ret, is_user;
1120

    
1121
    is_user = mmu_idx == MMU_USER_IDX;
1122
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1123
                        &page_size);
1124
    if (ret == 0) {
1125
        /* Map a single [sub]page.  */
1126
        phys_addr &= ~(uint32_t)0x3ff;
1127
        address &= ~(uint32_t)0x3ff;
1128
        tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1129
        return 0;
1130
    }
1131

    
1132
    if (access_type == 2) {
1133
        env->cp15.c5_insn = ret;
1134
        env->cp15.c6_insn = address;
1135
        env->exception_index = EXCP_PREFETCH_ABORT;
1136
    } else {
1137
        env->cp15.c5_data = ret;
1138
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1139
            env->cp15.c5_data |= (1 << 11);
1140
        env->cp15.c6_data = address;
1141
        env->exception_index = EXCP_DATA_ABORT;
1142
    }
1143
    return 1;
1144
}
1145

    
1146
target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
1147
{
1148
    uint32_t phys_addr;
1149
    target_ulong page_size;
1150
    int prot;
1151
    int ret;
1152

    
1153
    ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1154

    
1155
    if (ret != 0)
1156
        return -1;
1157

    
1158
    return phys_addr;
1159
}
1160

    
1161
/* Return basic MPU access permission bits.  */
1162
static uint32_t simple_mpu_ap_bits(uint32_t val)
1163
{
1164
    uint32_t ret;
1165
    uint32_t mask;
1166
    int i;
1167
    ret = 0;
1168
    mask = 3;
1169
    for (i = 0; i < 16; i += 2) {
1170
        ret |= (val >> i) & mask;
1171
        mask <<= 2;
1172
    }
1173
    return ret;
1174
}
1175

    
1176
/* Pad basic MPU access permission bits to extended format.  */
1177
static uint32_t extended_mpu_ap_bits(uint32_t val)
1178
{
1179
    uint32_t ret;
1180
    uint32_t mask;
1181
    int i;
1182
    ret = 0;
1183
    mask = 3;
1184
    for (i = 0; i < 16; i += 2) {
1185
        ret |= (val & mask) << i;
1186
        mask <<= 2;
1187
    }
1188
    return ret;
1189
}
1190

    
1191
void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
1192
{
1193
    int op1;
1194
    int op2;
1195
    int crm;
1196

    
1197
    op1 = (insn >> 21) & 7;
1198
    op2 = (insn >> 5) & 7;
1199
    crm = insn & 0xf;
1200
    switch ((insn >> 16) & 0xf) {
1201
    case 0:
1202
        /* ID codes.  */
1203
        if (arm_feature(env, ARM_FEATURE_XSCALE))
1204
            break;
1205
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1206
            break;
1207
        if (arm_feature(env, ARM_FEATURE_V7)
1208
                && op1 == 2 && crm == 0 && op2 == 0) {
1209
            env->cp15.c0_cssel = val & 0xf;
1210
            break;
1211
        }
1212
        goto bad_reg;
1213
    case 1: /* System configuration.  */
1214
        if (arm_feature(env, ARM_FEATURE_V7)
1215
                && op1 == 0 && crm == 1 && op2 == 0) {
1216
            env->cp15.c1_scr = val;
1217
            break;
1218
        }
1219
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1220
            op2 = 0;
1221
        switch (op2) {
1222
        case 0:
1223
            if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1224
                env->cp15.c1_sys = val;
1225
            /* ??? Lots of these bits are not implemented.  */
1226
            /* This may enable/disable the MMU, so do a TLB flush.  */
1227
            tlb_flush(env, 1);
1228
            break;
1229
        case 1: /* Auxiliary control register.  */
1230
            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1231
                env->cp15.c1_xscaleauxcr = val;
1232
                break;
1233
            }
1234
            /* Not implemented.  */
1235
            break;
1236
        case 2:
1237
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1238
                goto bad_reg;
1239
            if (env->cp15.c1_coproc != val) {
1240
                env->cp15.c1_coproc = val;
1241
                /* ??? Is this safe when called from within a TB?  */
1242
                tb_flush(env);
1243
            }
1244
            break;
1245
        default:
1246
            goto bad_reg;
1247
        }
1248
        break;
1249
    case 2: /* MMU Page table control / MPU cache control.  */
1250
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1251
            switch (op2) {
1252
            case 0:
1253
                env->cp15.c2_data = val;
1254
                break;
1255
            case 1:
1256
                env->cp15.c2_insn = val;
1257
                break;
1258
            default:
1259
                goto bad_reg;
1260
            }
1261
        } else {
1262
            switch (op2) {
1263
            case 0:
1264
                env->cp15.c2_base0 = val;
1265
                break;
1266
            case 1:
1267
                env->cp15.c2_base1 = val;
1268
                break;
1269
            case 2:
1270
                val &= 7;
1271
                env->cp15.c2_control = val;
1272
                env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1273
                env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1274
                break;
1275
            default:
1276
                goto bad_reg;
1277
            }
1278
        }
1279
        break;
1280
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1281
        env->cp15.c3 = val;
1282
        tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1283
        break;
1284
    case 4: /* Reserved.  */
1285
        goto bad_reg;
1286
    case 5: /* MMU Fault status / MPU access permission.  */
1287
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1288
            op2 = 0;
1289
        switch (op2) {
1290
        case 0:
1291
            if (arm_feature(env, ARM_FEATURE_MPU))
1292
                val = extended_mpu_ap_bits(val);
1293
            env->cp15.c5_data = val;
1294
            break;
1295
        case 1:
1296
            if (arm_feature(env, ARM_FEATURE_MPU))
1297
                val = extended_mpu_ap_bits(val);
1298
            env->cp15.c5_insn = val;
1299
            break;
1300
        case 2:
1301
            if (!arm_feature(env, ARM_FEATURE_MPU))
1302
                goto bad_reg;
1303
            env->cp15.c5_data = val;
1304
            break;
1305
        case 3:
1306
            if (!arm_feature(env, ARM_FEATURE_MPU))
1307
                goto bad_reg;
1308
            env->cp15.c5_insn = val;
1309
            break;
1310
        default:
1311
            goto bad_reg;
1312
        }
1313
        break;
1314
    case 6: /* MMU Fault address / MPU base/size.  */
1315
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1316
            if (crm >= 8)
1317
                goto bad_reg;
1318
            env->cp15.c6_region[crm] = val;
1319
        } else {
1320
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1321
                op2 = 0;
1322
            switch (op2) {
1323
            case 0:
1324
                env->cp15.c6_data = val;
1325
                break;
1326
            case 1: /* ??? This is WFAR on armv6 */
1327
            case 2:
1328
                env->cp15.c6_insn = val;
1329
                break;
1330
            default:
1331
                goto bad_reg;
1332
            }
1333
        }
1334
        break;
1335
    case 7: /* Cache control.  */
1336
        env->cp15.c15_i_max = 0x000;
1337
        env->cp15.c15_i_min = 0xff0;
1338
        if (op1 != 0) {
1339
            goto bad_reg;
1340
        }
1341
        /* No cache, so nothing to do except VA->PA translations. */
1342
        if (arm_feature(env, ARM_FEATURE_VAPA)) {
1343
            switch (crm) {
1344
            case 4:
1345
                if (arm_feature(env, ARM_FEATURE_V7)) {
1346
                    env->cp15.c7_par = val & 0xfffff6ff;
1347
                } else {
1348
                    env->cp15.c7_par = val & 0xfffff1ff;
1349
                }
1350
                break;
1351
            case 8: {
1352
                uint32_t phys_addr;
1353
                target_ulong page_size;
1354
                int prot;
1355
                int ret, is_user = op2 & 2;
1356
                int access_type = op2 & 1;
1357

    
1358
                if (op2 & 4) {
1359
                    /* Other states are only available with TrustZone */
1360
                    goto bad_reg;
1361
                }
1362
                ret = get_phys_addr(env, val, access_type, is_user,
1363
                                    &phys_addr, &prot, &page_size);
1364
                if (ret == 0) {
1365
                    /* We do not set any attribute bits in the PAR */
1366
                    if (page_size == (1 << 24)
1367
                        && arm_feature(env, ARM_FEATURE_V7)) {
1368
                        env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1369
                    } else {
1370
                        env->cp15.c7_par = phys_addr & 0xfffff000;
1371
                    }
1372
                } else {
1373
                    env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1374
                                       ((ret & (12 << 1)) >> 6) |
1375
                                       ((ret & 0xf) << 1) | 1;
1376
                }
1377
                break;
1378
            }
1379
            }
1380
        }
1381
        break;
1382
    case 8: /* MMU TLB control.  */
1383
        switch (op2) {
1384
        case 0: /* Invalidate all (TLBIALL) */
1385
            tlb_flush(env, 1);
1386
            break;
1387
        case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
1388
            tlb_flush_page(env, val & TARGET_PAGE_MASK);
1389
            break;
1390
        case 2: /* Invalidate by ASID (TLBIASID) */
1391
            tlb_flush(env, val == 0);
1392
            break;
1393
        case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1394
            tlb_flush_page(env, val & TARGET_PAGE_MASK);
1395
            break;
1396
        default:
1397
            goto bad_reg;
1398
        }
1399
        break;
1400
    case 9:
1401
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1402
            break;
1403
        if (arm_feature(env, ARM_FEATURE_STRONGARM))
1404
            break; /* Ignore ReadBuffer access */
1405
        switch (crm) {
1406
        case 0: /* Cache lockdown.  */
1407
            switch (op1) {
1408
            case 0: /* L1 cache.  */
1409
                switch (op2) {
1410
                case 0:
1411
                    env->cp15.c9_data = val;
1412
                    break;
1413
                case 1:
1414
                    env->cp15.c9_insn = val;
1415
                    break;
1416
                default:
1417
                    goto bad_reg;
1418
                }
1419
                break;
1420
            case 1: /* L2 cache.  */
1421
                /* Ignore writes to L2 lockdown/auxiliary registers.  */
1422
                break;
1423
            default:
1424
                goto bad_reg;
1425
            }
1426
            break;
1427
        case 1: /* TCM memory region registers.  */
1428
            /* Not implemented.  */
1429
            goto bad_reg;
1430
        case 12: /* Performance monitor control */
1431
            /* Performance monitors are implementation defined in v7,
1432
             * but with an ARM recommended set of registers, which we
1433
             * follow (although we don't actually implement any counters)
1434
             */
1435
            if (!arm_feature(env, ARM_FEATURE_V7)) {
1436
                goto bad_reg;
1437
            }
1438
            switch (op2) {
1439
            case 0: /* performance monitor control register */
1440
                /* only the DP, X, D and E bits are writable */
1441
                env->cp15.c9_pmcr &= ~0x39;
1442
                env->cp15.c9_pmcr |= (val & 0x39);
1443
                break;
1444
            case 1: /* Count enable set register */
1445
                val &= (1 << 31);
1446
                env->cp15.c9_pmcnten |= val;
1447
                break;
1448
            case 2: /* Count enable clear */
1449
                val &= (1 << 31);
1450
                env->cp15.c9_pmcnten &= ~val;
1451
                break;
1452
            case 3: /* Overflow flag status */
1453
                env->cp15.c9_pmovsr &= ~val;
1454
                break;
1455
            case 4: /* Software increment */
1456
                /* RAZ/WI since we don't implement the software-count event */
1457
                break;
1458
            case 5: /* Event counter selection register */
1459
                /* Since we don't implement any events, writing to this register
1460
                 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1461
                 */
1462
                break;
1463
            default:
1464
                goto bad_reg;
1465
            }
1466
            break;
1467
        case 13: /* Performance counters */
1468
            if (!arm_feature(env, ARM_FEATURE_V7)) {
1469
                goto bad_reg;
1470
            }
1471
            switch (op2) {
1472
            case 0: /* Cycle count register: not implemented, so RAZ/WI */
1473
                break;
1474
            case 1: /* Event type select */
1475
                env->cp15.c9_pmxevtyper = val & 0xff;
1476
                break;
1477
            case 2: /* Event count register */
1478
                /* Unimplemented (we have no events), RAZ/WI */
1479
                break;
1480
            default:
1481
                goto bad_reg;
1482
            }
1483
            break;
1484
        case 14: /* Performance monitor control */
1485
            if (!arm_feature(env, ARM_FEATURE_V7)) {
1486
                goto bad_reg;
1487
            }
1488
            switch (op2) {
1489
            case 0: /* user enable */
1490
                env->cp15.c9_pmuserenr = val & 1;
1491
                /* changes access rights for cp registers, so flush tbs */
1492
                tb_flush(env);
1493
                break;
1494
            case 1: /* interrupt enable set */
1495
                /* We have no event counters so only the C bit can be changed */
1496
                val &= (1 << 31);
1497
                env->cp15.c9_pminten |= val;
1498
                break;
1499
            case 2: /* interrupt enable clear */
1500
                val &= (1 << 31);
1501
                env->cp15.c9_pminten &= ~val;
1502
                break;
1503
            }
1504
            break;
1505
        default:
1506
            goto bad_reg;
1507
        }
1508
        break;
1509
    case 10: /* MMU TLB lockdown.  */
1510
        /* ??? TLB lockdown not implemented.  */
1511
        break;
1512
    case 12: /* Reserved.  */
1513
        goto bad_reg;
1514
    case 13: /* Process ID.  */
1515
        switch (op2) {
1516
        case 0:
1517
            /* Unlike real hardware the qemu TLB uses virtual addresses,
1518
               not modified virtual addresses, so this causes a TLB flush.
1519
             */
1520
            if (env->cp15.c13_fcse != val)
1521
              tlb_flush(env, 1);
1522
            env->cp15.c13_fcse = val;
1523
            break;
1524
        case 1:
1525
            /* This changes the ASID, so do a TLB flush.  */
1526
            if (env->cp15.c13_context != val
1527
                && !arm_feature(env, ARM_FEATURE_MPU))
1528
              tlb_flush(env, 0);
1529
            env->cp15.c13_context = val;
1530
            break;
1531
        default:
1532
            goto bad_reg;
1533
        }
1534
        break;
1535
    case 14: /* Generic timer */
1536
        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1537
            /* Dummy implementation: RAZ/WI for all */
1538
            break;
1539
        }
1540
        goto bad_reg;
1541
    case 15: /* Implementation specific.  */
1542
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1543
            if (op2 == 0 && crm == 1) {
1544
                if (env->cp15.c15_cpar != (val & 0x3fff)) {
1545
                    /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1546
                    tb_flush(env);
1547
                    env->cp15.c15_cpar = val & 0x3fff;
1548
                }
1549
                break;
1550
            }
1551
            goto bad_reg;
1552
        }
1553
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1554
            switch (crm) {
1555
            case 0:
1556
                break;
1557
            case 1: /* Set TI925T configuration.  */
1558
                env->cp15.c15_ticonfig = val & 0xe7;
1559
                env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1560
                        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1561
                break;
1562
            case 2: /* Set I_max.  */
1563
                env->cp15.c15_i_max = val;
1564
                break;
1565
            case 3: /* Set I_min.  */
1566
                env->cp15.c15_i_min = val;
1567
                break;
1568
            case 4: /* Set thread-ID.  */
1569
                env->cp15.c15_threadid = val & 0xffff;
1570
                break;
1571
            case 8: /* Wait-for-interrupt (deprecated).  */
1572
                cpu_interrupt(env, CPU_INTERRUPT_HALT);
1573
                break;
1574
            default:
1575
                goto bad_reg;
1576
            }
1577
        }
1578
        if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1579
            switch (crm) {
1580
            case 0:
1581
                if ((op1 == 0) && (op2 == 0)) {
1582
                    env->cp15.c15_power_control = val;
1583
                } else if ((op1 == 0) && (op2 == 1)) {
1584
                    env->cp15.c15_diagnostic = val;
1585
                } else if ((op1 == 0) && (op2 == 2)) {
1586
                    env->cp15.c15_power_diagnostic = val;
1587
                }
1588
            default:
1589
                break;
1590
            }
1591
        }
1592
        break;
1593
    }
1594
    return;
1595
bad_reg:
1596
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1597
    cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1598
              (insn >> 16) & 0xf, crm, op1, op2);
1599
}
1600

    
1601
uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
1602
{
1603
    int op1;
1604
    int op2;
1605
    int crm;
1606

    
1607
    op1 = (insn >> 21) & 7;
1608
    op2 = (insn >> 5) & 7;
1609
    crm = insn & 0xf;
1610
    switch ((insn >> 16) & 0xf) {
1611
    case 0: /* ID codes.  */
1612
        switch (op1) {
1613
        case 0:
1614
            switch (crm) {
1615
            case 0:
1616
                switch (op2) {
1617
                case 0: /* Device ID.  */
1618
                    return env->cp15.c0_cpuid;
1619
                case 1: /* Cache Type.  */
1620
                    return env->cp15.c0_cachetype;
1621
                case 2: /* TCM status.  */
1622
                    return 0;
1623
                case 3: /* TLB type register.  */
1624
                    return 0; /* No lockable TLB entries.  */
1625
                case 5: /* MPIDR */
1626
                    /* The MPIDR was standardised in v7; prior to
1627
                     * this it was implemented only in the 11MPCore.
1628
                     * For all other pre-v7 cores it does not exist.
1629
                     */
1630
                    if (arm_feature(env, ARM_FEATURE_V7) ||
1631
                        ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1632
                        int mpidr = env->cpu_index;
1633
                        /* We don't support setting cluster ID ([8..11])
1634
                         * so these bits always RAZ.
1635
                         */
1636
                        if (arm_feature(env, ARM_FEATURE_V7MP)) {
1637
                            mpidr |= (1 << 31);
1638
                            /* Cores which are uniprocessor (non-coherent)
1639
                             * but still implement the MP extensions set
1640
                             * bit 30. (For instance, A9UP.) However we do
1641
                             * not currently model any of those cores.
1642
                             */
1643
                        }
1644
                        return mpidr;
1645
                    }
1646
                    /* otherwise fall through to the unimplemented-reg case */
1647
                default:
1648
                    goto bad_reg;
1649
                }
1650
            case 1:
1651
                if (!arm_feature(env, ARM_FEATURE_V6))
1652
                    goto bad_reg;
1653
                return env->cp15.c0_c1[op2];
1654
            case 2:
1655
                if (!arm_feature(env, ARM_FEATURE_V6))
1656
                    goto bad_reg;
1657
                return env->cp15.c0_c2[op2];
1658
            case 3: case 4: case 5: case 6: case 7:
1659
                return 0;
1660
            default:
1661
                goto bad_reg;
1662
            }
1663
        case 1:
1664
            /* These registers aren't documented on arm11 cores.  However
1665
               Linux looks at them anyway.  */
1666
            if (!arm_feature(env, ARM_FEATURE_V6))
1667
                goto bad_reg;
1668
            if (crm != 0)
1669
                goto bad_reg;
1670
            if (!arm_feature(env, ARM_FEATURE_V7))
1671
                return 0;
1672

    
1673
            switch (op2) {
1674
            case 0:
1675
                return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1676
            case 1:
1677
                return env->cp15.c0_clid;
1678
            case 7:
1679
                return 0;
1680
            }
1681
            goto bad_reg;
1682
        case 2:
1683
            if (op2 != 0 || crm != 0)
1684
                goto bad_reg;
1685
            return env->cp15.c0_cssel;
1686
        default:
1687
            goto bad_reg;
1688
        }
1689
    case 1: /* System configuration.  */
1690
        if (arm_feature(env, ARM_FEATURE_V7)
1691
            && op1 == 0 && crm == 1 && op2 == 0) {
1692
            return env->cp15.c1_scr;
1693
        }
1694
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1695
            op2 = 0;
1696
        switch (op2) {
1697
        case 0: /* Control register.  */
1698
            return env->cp15.c1_sys;
1699
        case 1: /* Auxiliary control register.  */
1700
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1701
                return env->cp15.c1_xscaleauxcr;
1702
            if (!arm_feature(env, ARM_FEATURE_AUXCR))
1703
                goto bad_reg;
1704
            switch (ARM_CPUID(env)) {
1705
            case ARM_CPUID_ARM1026:
1706
                return 1;
1707
            case ARM_CPUID_ARM1136:
1708
            case ARM_CPUID_ARM1136_R2:
1709
            case ARM_CPUID_ARM1176:
1710
                return 7;
1711
            case ARM_CPUID_ARM11MPCORE:
1712
                return 1;
1713
            case ARM_CPUID_CORTEXA8:
1714
                return 2;
1715
            case ARM_CPUID_CORTEXA9:
1716
            case ARM_CPUID_CORTEXA15:
1717
                return 0;
1718
            default:
1719
                goto bad_reg;
1720
            }
1721
        case 2: /* Coprocessor access register.  */
1722
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1723
                goto bad_reg;
1724
            return env->cp15.c1_coproc;
1725
        default:
1726
            goto bad_reg;
1727
        }
1728
    case 2: /* MMU Page table control / MPU cache control.  */
1729
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1730
            switch (op2) {
1731
            case 0:
1732
                return env->cp15.c2_data;
1733
                break;
1734
            case 1:
1735
                return env->cp15.c2_insn;
1736
                break;
1737
            default:
1738
                goto bad_reg;
1739
            }
1740
        } else {
1741
            switch (op2) {
1742
            case 0:
1743
                return env->cp15.c2_base0;
1744
            case 1:
1745
                return env->cp15.c2_base1;
1746
            case 2:
1747
                return env->cp15.c2_control;
1748
            default:
1749
                goto bad_reg;
1750
            }
1751
        }
1752
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1753
        return env->cp15.c3;
1754
    case 4: /* Reserved.  */
1755
        goto bad_reg;
1756
    case 5: /* MMU Fault status / MPU access permission.  */
1757
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1758
            op2 = 0;
1759
        switch (op2) {
1760
        case 0:
1761
            if (arm_feature(env, ARM_FEATURE_MPU))
1762
                return simple_mpu_ap_bits(env->cp15.c5_data);
1763
            return env->cp15.c5_data;
1764
        case 1:
1765
            if (arm_feature(env, ARM_FEATURE_MPU))
1766
                return simple_mpu_ap_bits(env->cp15.c5_insn);
1767
            return env->cp15.c5_insn;
1768
        case 2:
1769
            if (!arm_feature(env, ARM_FEATURE_MPU))
1770
                goto bad_reg;
1771
            return env->cp15.c5_data;
1772
        case 3:
1773
            if (!arm_feature(env, ARM_FEATURE_MPU))
1774
                goto bad_reg;
1775
            return env->cp15.c5_insn;
1776
        default:
1777
            goto bad_reg;
1778
        }
1779
    case 6: /* MMU Fault address.  */
1780
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1781
            if (crm >= 8)
1782
                goto bad_reg;
1783
            return env->cp15.c6_region[crm];
1784
        } else {
1785
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1786
                op2 = 0;
1787
            switch (op2) {
1788
            case 0:
1789
                return env->cp15.c6_data;
1790
            case 1:
1791
                if (arm_feature(env, ARM_FEATURE_V6)) {
1792
                    /* Watchpoint Fault Adrress.  */
1793
                    return 0; /* Not implemented.  */
1794
                } else {
1795
                    /* Instruction Fault Adrress.  */
1796
                    /* Arm9 doesn't have an IFAR, but implementing it anyway
1797
                       shouldn't do any harm.  */
1798
                    return env->cp15.c6_insn;
1799
                }
1800
            case 2:
1801
                if (arm_feature(env, ARM_FEATURE_V6)) {
1802
                    /* Instruction Fault Adrress.  */
1803
                    return env->cp15.c6_insn;
1804
                } else {
1805
                    goto bad_reg;
1806
                }
1807
            default:
1808
                goto bad_reg;
1809
            }
1810
        }
1811
    case 7: /* Cache control.  */
1812
        if (crm == 4 && op1 == 0 && op2 == 0) {
1813
            return env->cp15.c7_par;
1814
        }
1815
        /* FIXME: Should only clear Z flag if destination is r15.  */
1816
        env->ZF = 0;
1817
        return 0;
1818
    case 8: /* MMU TLB control.  */
1819
        goto bad_reg;
1820
    case 9:
1821
        switch (crm) {
1822
        case 0: /* Cache lockdown */
1823
            switch (op1) {
1824
            case 0: /* L1 cache.  */
1825
                if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1826
                    return 0;
1827
                }
1828
                switch (op2) {
1829
                case 0:
1830
                    return env->cp15.c9_data;
1831
                case 1:
1832
                    return env->cp15.c9_insn;
1833
                default:
1834
                    goto bad_reg;
1835
                }
1836
            case 1: /* L2 cache */
1837
                /* L2 Lockdown and Auxiliary control.  */
1838
                switch (op2) {
1839
                case 0:
1840
                    /* L2 cache lockdown (A8 only) */
1841
                    return 0;
1842
                case 2:
1843
                    /* L2 cache auxiliary control (A8) or control (A15) */
1844
                    if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
1845
                        /* Linux wants the number of processors from here.
1846
                         * Might as well set the interrupt-controller bit too.
1847
                         */
1848
                        return ((smp_cpus - 1) << 24) | (1 << 23);
1849
                    }
1850
                    return 0;
1851
                case 3:
1852
                    /* L2 cache extended control (A15) */
1853
                    return 0;
1854
                default:
1855
                    goto bad_reg;
1856
                }
1857
            default:
1858
                goto bad_reg;
1859
            }
1860
            break;
1861
        case 12: /* Performance monitor control */
1862
            if (!arm_feature(env, ARM_FEATURE_V7)) {
1863
                goto bad_reg;
1864
            }
1865
            switch (op2) {
1866
            case 0: /* performance monitor control register */
1867
                return env->cp15.c9_pmcr;
1868
            case 1: /* count enable set */
1869
            case 2: /* count enable clear */
1870
                return env->cp15.c9_pmcnten;
1871
            case 3: /* overflow flag status */
1872
                return env->cp15.c9_pmovsr;
1873
            case 4: /* software increment */
1874
            case 5: /* event counter selection register */
1875
                return 0; /* Unimplemented, RAZ/WI */
1876
            default:
1877
                goto bad_reg;
1878
            }
1879
        case 13: /* Performance counters */
1880
            if (!arm_feature(env, ARM_FEATURE_V7)) {
1881
                goto bad_reg;
1882
            }
1883
            switch (op2) {
1884
            case 1: /* Event type select */
1885
                return env->cp15.c9_pmxevtyper;
1886
            case 0: /* Cycle count register */
1887
            case 2: /* Event count register */
1888
                /* Unimplemented, so RAZ/WI */
1889
                return 0;
1890
            default:
1891
                goto bad_reg;
1892
            }
1893
        case 14: /* Performance monitor control */
1894
            if (!arm_feature(env, ARM_FEATURE_V7)) {
1895
                goto bad_reg;
1896
            }
1897
            switch (op2) {
1898
            case 0: /* user enable */
1899
                return env->cp15.c9_pmuserenr;
1900
            case 1: /* interrupt enable set */
1901
            case 2: /* interrupt enable clear */
1902
                return env->cp15.c9_pminten;
1903
            default:
1904
                goto bad_reg;
1905
            }
1906
        default:
1907
            goto bad_reg;
1908
        }
1909
        break;
1910
    case 10: /* MMU TLB lockdown.  */
1911
        /* ??? TLB lockdown not implemented.  */
1912
        return 0;
1913
    case 11: /* TCM DMA control.  */
1914
    case 12: /* Reserved.  */
1915
        goto bad_reg;
1916
    case 13: /* Process ID.  */
1917
        switch (op2) {
1918
        case 0:
1919
            return env->cp15.c13_fcse;
1920
        case 1:
1921
            return env->cp15.c13_context;
1922
        default:
1923
            goto bad_reg;
1924
        }
1925
    case 14: /* Generic timer */
1926
        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1927
            /* Dummy implementation: RAZ/WI for all */
1928
            return 0;
1929
        }
1930
        goto bad_reg;
1931
    case 15: /* Implementation specific.  */
1932
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1933
            if (op2 == 0 && crm == 1)
1934
                return env->cp15.c15_cpar;
1935

    
1936
            goto bad_reg;
1937
        }
1938
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1939
            switch (crm) {
1940
            case 0:
1941
                return 0;
1942
            case 1: /* Read TI925T configuration.  */
1943
                return env->cp15.c15_ticonfig;
1944
            case 2: /* Read I_max.  */
1945
                return env->cp15.c15_i_max;
1946
            case 3: /* Read I_min.  */
1947
                return env->cp15.c15_i_min;
1948
            case 4: /* Read thread-ID.  */
1949
                return env->cp15.c15_threadid;
1950
            case 8: /* TI925T_status */
1951
                return 0;
1952
            }
1953
            /* TODO: Peripheral port remap register:
1954
             * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1955
             * controller base address at $rn & ~0xfff and map size of
1956
             * 0x200 << ($rn & 0xfff), when MMU is off.  */
1957
            goto bad_reg;
1958
        }
1959
        if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1960
            switch (crm) {
1961
            case 0:
1962
                if ((op1 == 4) && (op2 == 0)) {
1963
                    /* The config_base_address should hold the value of
1964
                     * the peripheral base. ARM should get this from a CPU
1965
                     * object property, but that support isn't available in
1966
                     * December 2011. Default to 0 for now and board models
1967
                     * that care can set it by a private hook */
1968
                    return env->cp15.c15_config_base_address;
1969
                } else if ((op1 == 0) && (op2 == 0)) {
1970
                    /* power_control should be set to maximum latency. Again,
1971
                       default to 0 and set by private hook */
1972
                    return env->cp15.c15_power_control;
1973
                } else if ((op1 == 0) && (op2 == 1)) {
1974
                    return env->cp15.c15_diagnostic;
1975
                } else if ((op1 == 0) && (op2 == 2)) {
1976
                    return env->cp15.c15_power_diagnostic;
1977
                }
1978
                break;
1979
            case 1: /* NEON Busy */
1980
                return 0;
1981
            case 5: /* tlb lockdown */
1982
            case 6:
1983
            case 7:
1984
                if ((op1 == 5) && (op2 == 2)) {
1985
                    return 0;
1986
                }
1987
                break;
1988
            default:
1989
                break;
1990
            }
1991
            goto bad_reg;
1992
        }
1993
        return 0;
1994
    }
1995
bad_reg:
1996
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1997
    cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1998
              (insn >> 16) & 0xf, crm, op1, op2);
1999
    return 0;
2000
}
2001

    
2002
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2003
{
2004
    if ((env->uncached_cpsr & CPSR_M) == mode) {
2005
        env->regs[13] = val;
2006
    } else {
2007
        env->banked_r13[bank_number(env, mode)] = val;
2008
    }
2009
}
2010

    
2011
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2012
{
2013
    if ((env->uncached_cpsr & CPSR_M) == mode) {
2014
        return env->regs[13];
2015
    } else {
2016
        return env->banked_r13[bank_number(env, mode)];
2017
    }
2018
}
2019

    
2020
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2021
{
2022
    switch (reg) {
2023
    case 0: /* APSR */
2024
        return xpsr_read(env) & 0xf8000000;
2025
    case 1: /* IAPSR */
2026
        return xpsr_read(env) & 0xf80001ff;
2027
    case 2: /* EAPSR */
2028
        return xpsr_read(env) & 0xff00fc00;
2029
    case 3: /* xPSR */
2030
        return xpsr_read(env) & 0xff00fdff;
2031
    case 5: /* IPSR */
2032
        return xpsr_read(env) & 0x000001ff;
2033
    case 6: /* EPSR */
2034
        return xpsr_read(env) & 0x0700fc00;
2035
    case 7: /* IEPSR */
2036
        return xpsr_read(env) & 0x0700edff;
2037
    case 8: /* MSP */
2038
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2039
    case 9: /* PSP */
2040
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2041
    case 16: /* PRIMASK */
2042
        return (env->uncached_cpsr & CPSR_I) != 0;
2043
    case 17: /* BASEPRI */
2044
    case 18: /* BASEPRI_MAX */
2045
        return env->v7m.basepri;
2046
    case 19: /* FAULTMASK */
2047
        return (env->uncached_cpsr & CPSR_F) != 0;
2048
    case 20: /* CONTROL */
2049
        return env->v7m.control;
2050
    default:
2051
        /* ??? For debugging only.  */
2052
        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2053
        return 0;
2054
    }
2055
}
2056

    
2057
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2058
{
2059
    switch (reg) {
2060
    case 0: /* APSR */
2061
        xpsr_write(env, val, 0xf8000000);
2062
        break;
2063
    case 1: /* IAPSR */
2064
        xpsr_write(env, val, 0xf8000000);
2065
        break;
2066
    case 2: /* EAPSR */
2067
        xpsr_write(env, val, 0xfe00fc00);
2068
        break;
2069
    case 3: /* xPSR */
2070
        xpsr_write(env, val, 0xfe00fc00);
2071
        break;
2072
    case 5: /* IPSR */
2073
        /* IPSR bits are readonly.  */
2074
        break;
2075
    case 6: /* EPSR */
2076
        xpsr_write(env, val, 0x0600fc00);
2077
        break;
2078
    case 7: /* IEPSR */
2079
        xpsr_write(env, val, 0x0600fc00);
2080
        break;
2081
    case 8: /* MSP */
2082
        if (env->v7m.current_sp)
2083
            env->v7m.other_sp = val;
2084
        else
2085
            env->regs[13] = val;
2086
        break;
2087
    case 9: /* PSP */
2088
        if (env->v7m.current_sp)
2089
            env->regs[13] = val;
2090
        else
2091
            env->v7m.other_sp = val;
2092
        break;
2093
    case 16: /* PRIMASK */
2094
        if (val & 1)
2095
            env->uncached_cpsr |= CPSR_I;
2096
        else
2097
            env->uncached_cpsr &= ~CPSR_I;
2098
        break;
2099
    case 17: /* BASEPRI */
2100
        env->v7m.basepri = val & 0xff;
2101
        break;
2102
    case 18: /* BASEPRI_MAX */
2103
        val &= 0xff;
2104
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2105
            env->v7m.basepri = val;
2106
        break;
2107
    case 19: /* FAULTMASK */
2108
        if (val & 1)
2109
            env->uncached_cpsr |= CPSR_F;
2110
        else
2111
            env->uncached_cpsr &= ~CPSR_F;
2112
        break;
2113
    case 20: /* CONTROL */
2114
        env->v7m.control = val & 3;
2115
        switch_v7m_sp(env, (val & 2) != 0);
2116
        break;
2117
    default:
2118
        /* ??? For debugging only.  */
2119
        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2120
        return;
2121
    }
2122
}
2123

    
2124
#endif
2125

    
2126
/* Note that signed overflow is undefined in C.  The following routines are
2127
   careful to use unsigned types where modulo arithmetic is required.
2128
   Failure to do so _will_ break on newer gcc.  */
2129

    
2130
/* Signed saturating arithmetic.  */
2131

    
2132
/* Perform 16-bit signed saturating addition.  */
2133
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2134
{
2135
    uint16_t res;
2136

    
2137
    res = a + b;
2138
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2139
        if (a & 0x8000)
2140
            res = 0x8000;
2141
        else
2142
            res = 0x7fff;
2143
    }
2144
    return res;
2145
}
2146

    
2147
/* Perform 8-bit signed saturating addition.  */
2148
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2149
{
2150
    uint8_t res;
2151

    
2152
    res = a + b;
2153
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2154
        if (a & 0x80)
2155
            res = 0x80;
2156
        else
2157
            res = 0x7f;
2158
    }
2159
    return res;
2160
}
2161

    
2162
/* Perform 16-bit signed saturating subtraction.  */
2163
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2164
{
2165
    uint16_t res;
2166

    
2167
    res = a - b;
2168
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2169
        if (a & 0x8000)
2170
            res = 0x8000;
2171
        else
2172
            res = 0x7fff;
2173
    }
2174
    return res;
2175
}
2176

    
2177
/* Perform 8-bit signed saturating subtraction.  */
2178
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2179
{
2180
    uint8_t res;
2181

    
2182
    res = a - b;
2183
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2184
        if (a & 0x80)
2185
            res = 0x80;
2186
        else
2187
            res = 0x7f;
2188
    }
2189
    return res;
2190
}
2191

    
2192
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2193
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2194
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2195
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2196
#define PFX q
2197

    
2198
#include "op_addsub.h"
2199

    
2200
/* Unsigned saturating arithmetic.  */
2201
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2202
{
2203
    uint16_t res;
2204
    res = a + b;
2205
    if (res < a)
2206
        res = 0xffff;
2207
    return res;
2208
}
2209

    
2210
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2211
{
2212
    if (a > b)
2213
        return a - b;
2214
    else
2215
        return 0;
2216
}
2217

    
2218
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2219
{
2220
    uint8_t res;
2221
    res = a + b;
2222
    if (res < a)
2223
        res = 0xff;
2224
    return res;
2225
}
2226

    
2227
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2228
{
2229
    if (a > b)
2230
        return a - b;
2231
    else
2232
        return 0;
2233
}
2234

    
2235
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2236
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2237
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
2238
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
2239
#define PFX uq
2240

    
2241
#include "op_addsub.h"
2242

    
2243
/* Signed modulo arithmetic.  */
2244
#define SARITH16(a, b, n, op) do { \
2245
    int32_t sum; \
2246
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2247
    RESULT(sum, n, 16); \
2248
    if (sum >= 0) \
2249
        ge |= 3 << (n * 2); \
2250
    } while(0)
2251

    
2252
#define SARITH8(a, b, n, op) do { \
2253
    int32_t sum; \
2254
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2255
    RESULT(sum, n, 8); \
2256
    if (sum >= 0) \
2257
        ge |= 1 << n; \
2258
    } while(0)
2259

    
2260

    
2261
#define ADD16(a, b, n) SARITH16(a, b, n, +)
2262
#define SUB16(a, b, n) SARITH16(a, b, n, -)
2263
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
2264
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
2265
#define PFX s
2266
#define ARITH_GE
2267

    
2268
#include "op_addsub.h"
2269

    
2270
/* Unsigned modulo arithmetic.  */
2271
#define ADD16(a, b, n) do { \
2272
    uint32_t sum; \
2273
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2274
    RESULT(sum, n, 16); \
2275
    if ((sum >> 16) == 1) \
2276
        ge |= 3 << (n * 2); \
2277
    } while(0)
2278

    
2279
#define ADD8(a, b, n) do { \
2280
    uint32_t sum; \
2281
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2282
    RESULT(sum, n, 8); \
2283
    if ((sum >> 8) == 1) \
2284
        ge |= 1 << n; \
2285
    } while(0)
2286

    
2287
#define SUB16(a, b, n) do { \
2288
    uint32_t sum; \
2289
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2290
    RESULT(sum, n, 16); \
2291
    if ((sum >> 16) == 0) \
2292
        ge |= 3 << (n * 2); \
2293
    } while(0)
2294

    
2295
#define SUB8(a, b, n) do { \
2296
    uint32_t sum; \
2297
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2298
    RESULT(sum, n, 8); \
2299
    if ((sum >> 8) == 0) \
2300
        ge |= 1 << n; \
2301
    } while(0)
2302

    
2303
#define PFX u
2304
#define ARITH_GE
2305

    
2306
#include "op_addsub.h"
2307

    
2308
/* Halved signed arithmetic.  */
2309
#define ADD16(a, b, n) \
2310
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2311
#define SUB16(a, b, n) \
2312
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2313
#define ADD8(a, b, n) \
2314
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2315
#define SUB8(a, b, n) \
2316
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2317
#define PFX sh
2318

    
2319
#include "op_addsub.h"
2320

    
2321
/* Halved unsigned arithmetic.  */
2322
#define ADD16(a, b, n) \
2323
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2324
#define SUB16(a, b, n) \
2325
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2326
#define ADD8(a, b, n) \
2327
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2328
#define SUB8(a, b, n) \
2329
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2330
#define PFX uh
2331

    
2332
#include "op_addsub.h"
2333

    
2334
static inline uint8_t do_usad(uint8_t a, uint8_t b)
2335
{
2336
    if (a > b)
2337
        return a - b;
2338
    else
2339
        return b - a;
2340
}
2341

    
2342
/* Unsigned sum of absolute byte differences.  */
2343
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2344
{
2345
    uint32_t sum;
2346
    sum = do_usad(a, b);
2347
    sum += do_usad(a >> 8, b >> 8);
2348
    sum += do_usad(a >> 16, b >>16);
2349
    sum += do_usad(a >> 24, b >> 24);
2350
    return sum;
2351
}
2352

    
2353
/* For ARMv6 SEL instruction.  */
2354
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2355
{
2356
    uint32_t mask;
2357

    
2358
    mask = 0;
2359
    if (flags & 1)
2360
        mask |= 0xff;
2361
    if (flags & 2)
2362
        mask |= 0xff00;
2363
    if (flags & 4)
2364
        mask |= 0xff0000;
2365
    if (flags & 8)
2366
        mask |= 0xff000000;
2367
    return (a & mask) | (b & ~mask);
2368
}
2369

    
2370
uint32_t HELPER(logicq_cc)(uint64_t val)
2371
{
2372
    return (val >> 32) | (val != 0);
2373
}
2374

    
2375
/* VFP support.  We follow the convention used for VFP instrunctions:
2376
   Single precition routines have a "s" suffix, double precision a
2377
   "d" suffix.  */
2378

    
2379
/* Convert host exception flags to vfp form.  */
2380
static inline int vfp_exceptbits_from_host(int host_bits)
2381
{
2382
    int target_bits = 0;
2383

    
2384
    if (host_bits & float_flag_invalid)
2385
        target_bits |= 1;
2386
    if (host_bits & float_flag_divbyzero)
2387
        target_bits |= 2;
2388
    if (host_bits & float_flag_overflow)
2389
        target_bits |= 4;
2390
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2391
        target_bits |= 8;
2392
    if (host_bits & float_flag_inexact)
2393
        target_bits |= 0x10;
2394
    if (host_bits & float_flag_input_denormal)
2395
        target_bits |= 0x80;
2396
    return target_bits;
2397
}
2398

    
2399
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2400
{
2401
    int i;
2402
    uint32_t fpscr;
2403

    
2404
    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2405
            | (env->vfp.vec_len << 16)
2406
            | (env->vfp.vec_stride << 20);
2407
    i = get_float_exception_flags(&env->vfp.fp_status);
2408
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2409
    fpscr |= vfp_exceptbits_from_host(i);
2410
    return fpscr;
2411
}
2412

    
2413
uint32_t vfp_get_fpscr(CPUARMState *env)
2414
{
2415
    return HELPER(vfp_get_fpscr)(env);
2416
}
2417

    
2418
/* Convert vfp exception flags to target form.  */
2419
static inline int vfp_exceptbits_to_host(int target_bits)
2420
{
2421
    int host_bits = 0;
2422

    
2423
    if (target_bits & 1)
2424
        host_bits |= float_flag_invalid;
2425
    if (target_bits & 2)
2426
        host_bits |= float_flag_divbyzero;
2427
    if (target_bits & 4)
2428
        host_bits |= float_flag_overflow;
2429
    if (target_bits & 8)
2430
        host_bits |= float_flag_underflow;
2431
    if (target_bits & 0x10)
2432
        host_bits |= float_flag_inexact;
2433
    if (target_bits & 0x80)
2434
        host_bits |= float_flag_input_denormal;
2435
    return host_bits;
2436
}
2437

    
2438
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2439
{
2440
    int i;
2441
    uint32_t changed;
2442

    
2443
    changed = env->vfp.xregs[ARM_VFP_FPSCR];
2444
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2445
    env->vfp.vec_len = (val >> 16) & 7;
2446
    env->vfp.vec_stride = (val >> 20) & 3;
2447

    
2448
    changed ^= val;
2449
    if (changed & (3 << 22)) {
2450
        i = (val >> 22) & 3;
2451
        switch (i) {
2452
        case 0:
2453
            i = float_round_nearest_even;
2454
            break;
2455
        case 1:
2456
            i = float_round_up;
2457
            break;
2458
        case 2:
2459
            i = float_round_down;
2460
            break;
2461
        case 3:
2462
            i = float_round_to_zero;
2463
            break;
2464
        }
2465
        set_float_rounding_mode(i, &env->vfp.fp_status);
2466
    }
2467
    if (changed & (1 << 24)) {
2468
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2469
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2470
    }
2471
    if (changed & (1 << 25))
2472
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2473

    
2474
    i = vfp_exceptbits_to_host(val);
2475
    set_float_exception_flags(i, &env->vfp.fp_status);
2476
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
2477
}
2478

    
2479
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
2480
{
2481
    HELPER(vfp_set_fpscr)(env, val);
2482
}
2483

    
2484
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2485

    
2486
#define VFP_BINOP(name) \
2487
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2488
{ \
2489
    float_status *fpst = fpstp; \
2490
    return float32_ ## name(a, b, fpst); \
2491
} \
2492
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2493
{ \
2494
    float_status *fpst = fpstp; \
2495
    return float64_ ## name(a, b, fpst); \
2496
}
2497
VFP_BINOP(add)
2498
VFP_BINOP(sub)
2499
VFP_BINOP(mul)
2500
VFP_BINOP(div)
2501
#undef VFP_BINOP
2502

    
2503
float32 VFP_HELPER(neg, s)(float32 a)
2504
{
2505
    return float32_chs(a);
2506
}
2507

    
2508
float64 VFP_HELPER(neg, d)(float64 a)
2509
{
2510
    return float64_chs(a);
2511
}
2512

    
2513
float32 VFP_HELPER(abs, s)(float32 a)
2514
{
2515
    return float32_abs(a);
2516
}
2517

    
2518
float64 VFP_HELPER(abs, d)(float64 a)
2519
{
2520
    return float64_abs(a);
2521
}
2522

    
2523
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
2524
{
2525
    return float32_sqrt(a, &env->vfp.fp_status);
2526
}
2527

    
2528
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
2529
{
2530
    return float64_sqrt(a, &env->vfp.fp_status);
2531
}
2532

    
2533
/* XXX: check quiet/signaling case */
2534
#define DO_VFP_cmp(p, type) \
2535
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
2536
{ \
2537
    uint32_t flags; \
2538
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2539
    case 0: flags = 0x6; break; \
2540
    case -1: flags = 0x8; break; \
2541
    case 1: flags = 0x2; break; \
2542
    default: case 2: flags = 0x3; break; \
2543
    } \
2544
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2545
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2546
} \
2547
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2548
{ \
2549
    uint32_t flags; \
2550
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2551
    case 0: flags = 0x6; break; \
2552
    case -1: flags = 0x8; break; \
2553
    case 1: flags = 0x2; break; \
2554
    default: case 2: flags = 0x3; break; \
2555
    } \
2556
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2557
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2558
}
2559
DO_VFP_cmp(s, float32)
2560
DO_VFP_cmp(d, float64)
2561
#undef DO_VFP_cmp
2562

    
2563
/* Integer to float and float to integer conversions */
2564

    
2565
#define CONV_ITOF(name, fsz, sign) \
2566
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2567
{ \
2568
    float_status *fpst = fpstp; \
2569
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2570
}
2571

    
2572
#define CONV_FTOI(name, fsz, sign, round) \
2573
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2574
{ \
2575
    float_status *fpst = fpstp; \
2576
    if (float##fsz##_is_any_nan(x)) { \
2577
        float_raise(float_flag_invalid, fpst); \
2578
        return 0; \
2579
    } \
2580
    return float##fsz##_to_##sign##int32##round(x, fpst); \
2581
}
2582

    
2583
#define FLOAT_CONVS(name, p, fsz, sign) \
2584
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2585
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2586
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2587

    
2588
FLOAT_CONVS(si, s, 32, )
2589
FLOAT_CONVS(si, d, 64, )
2590
FLOAT_CONVS(ui, s, 32, u)
2591
FLOAT_CONVS(ui, d, 64, u)
2592

    
2593
#undef CONV_ITOF
2594
#undef CONV_FTOI
2595
#undef FLOAT_CONVS
2596

    
2597
/* floating point conversion */
2598
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
2599
{
2600
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
2601
    /* ARM requires that S<->D conversion of any kind of NaN generates
2602
     * a quiet NaN by forcing the most significant frac bit to 1.
2603
     */
2604
    return float64_maybe_silence_nan(r);
2605
}
2606

    
2607
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
2608
{
2609
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
2610
    /* ARM requires that S<->D conversion of any kind of NaN generates
2611
     * a quiet NaN by forcing the most significant frac bit to 1.
2612
     */
2613
    return float32_maybe_silence_nan(r);
2614
}
2615

    
2616
/* VFP3 fixed point conversion.  */
2617
#define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2618
float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t  x, uint32_t shift, \
2619
                                    void *fpstp) \
2620
{ \
2621
    float_status *fpst = fpstp; \
2622
    float##fsz tmp; \
2623
    tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2624
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2625
} \
2626
uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2627
                                       void *fpstp) \
2628
{ \
2629
    float_status *fpst = fpstp; \
2630
    float##fsz tmp; \
2631
    if (float##fsz##_is_any_nan(x)) { \
2632
        float_raise(float_flag_invalid, fpst); \
2633
        return 0; \
2634
    } \
2635
    tmp = float##fsz##_scalbn(x, shift, fpst); \
2636
    return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2637
}
2638

    
2639
VFP_CONV_FIX(sh, d, 64, int16, )
2640
VFP_CONV_FIX(sl, d, 64, int32, )
2641
VFP_CONV_FIX(uh, d, 64, uint16, u)
2642
VFP_CONV_FIX(ul, d, 64, uint32, u)
2643
VFP_CONV_FIX(sh, s, 32, int16, )
2644
VFP_CONV_FIX(sl, s, 32, int32, )
2645
VFP_CONV_FIX(uh, s, 32, uint16, u)
2646
VFP_CONV_FIX(ul, s, 32, uint32, u)
2647
#undef VFP_CONV_FIX
2648

    
2649
/* Half precision conversions.  */
2650
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
2651
{
2652
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2653
    float32 r = float16_to_float32(make_float16(a), ieee, s);
2654
    if (ieee) {
2655
        return float32_maybe_silence_nan(r);
2656
    }
2657
    return r;
2658
}
2659

    
2660
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
2661
{
2662
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2663
    float16 r = float32_to_float16(a, ieee, s);
2664
    if (ieee) {
2665
        r = float16_maybe_silence_nan(r);
2666
    }
2667
    return float16_val(r);
2668
}
2669

    
2670
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2671
{
2672
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2673
}
2674

    
2675
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2676
{
2677
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2678
}
2679

    
2680
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2681
{
2682
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2683
}
2684

    
2685
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2686
{
2687
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2688
}
2689

    
2690
#define float32_two make_float32(0x40000000)
2691
#define float32_three make_float32(0x40400000)
2692
#define float32_one_point_five make_float32(0x3fc00000)
2693

    
2694
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
2695
{
2696
    float_status *s = &env->vfp.standard_fp_status;
2697
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2698
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2699
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
2700
            float_raise(float_flag_input_denormal, s);
2701
        }
2702
        return float32_two;
2703
    }
2704
    return float32_sub(float32_two, float32_mul(a, b, s), s);
2705
}
2706

    
2707
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
2708
{
2709
    float_status *s = &env->vfp.standard_fp_status;
2710
    float32 product;
2711
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2712
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2713
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
2714
            float_raise(float_flag_input_denormal, s);
2715
        }
2716
        return float32_one_point_five;
2717
    }
2718
    product = float32_mul(a, b, s);
2719
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2720
}
2721

    
2722
/* NEON helpers.  */
2723

    
2724
/* Constants 256 and 512 are used in some helpers; we avoid relying on
2725
 * int->float conversions at run-time.  */
2726
#define float64_256 make_float64(0x4070000000000000LL)
2727
#define float64_512 make_float64(0x4080000000000000LL)
2728

    
2729
/* The algorithm that must be used to calculate the estimate
2730
 * is specified by the ARM ARM.
2731
 */
2732
static float64 recip_estimate(float64 a, CPUARMState *env)
2733
{
2734
    /* These calculations mustn't set any fp exception flags,
2735
     * so we use a local copy of the fp_status.
2736
     */
2737
    float_status dummy_status = env->vfp.standard_fp_status;
2738
    float_status *s = &dummy_status;
2739
    /* q = (int)(a * 512.0) */
2740
    float64 q = float64_mul(float64_512, a, s);
2741
    int64_t q_int = float64_to_int64_round_to_zero(q, s);
2742

    
2743
    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2744
    q = int64_to_float64(q_int, s);
2745
    q = float64_add(q, float64_half, s);
2746
    q = float64_div(q, float64_512, s);
2747
    q = float64_div(float64_one, q, s);
2748

    
2749
    /* s = (int)(256.0 * r + 0.5) */
2750
    q = float64_mul(q, float64_256, s);
2751
    q = float64_add(q, float64_half, s);
2752
    q_int = float64_to_int64_round_to_zero(q, s);
2753

    
2754
    /* return (double)s / 256.0 */
2755
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
2756
}
2757

    
2758
float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
2759
{
2760
    float_status *s = &env->vfp.standard_fp_status;
2761
    float64 f64;
2762
    uint32_t val32 = float32_val(a);
2763

    
2764
    int result_exp;
2765
    int a_exp = (val32  & 0x7f800000) >> 23;
2766
    int sign = val32 & 0x80000000;
2767

    
2768
    if (float32_is_any_nan(a)) {
2769
        if (float32_is_signaling_nan(a)) {
2770
            float_raise(float_flag_invalid, s);
2771
        }
2772
        return float32_default_nan;
2773
    } else if (float32_is_infinity(a)) {
2774
        return float32_set_sign(float32_zero, float32_is_neg(a));
2775
    } else if (float32_is_zero_or_denormal(a)) {
2776
        if (!float32_is_zero(a)) {
2777
            float_raise(float_flag_input_denormal, s);
2778
        }
2779
        float_raise(float_flag_divbyzero, s);
2780
        return float32_set_sign(float32_infinity, float32_is_neg(a));
2781
    } else if (a_exp >= 253) {
2782
        float_raise(float_flag_underflow, s);
2783
        return float32_set_sign(float32_zero, float32_is_neg(a));
2784
    }
2785

    
2786
    f64 = make_float64((0x3feULL << 52)
2787
                       | ((int64_t)(val32 & 0x7fffff) << 29));
2788

    
2789
    result_exp = 253 - a_exp;
2790

    
2791
    f64 = recip_estimate(f64, env);
2792

    
2793
    val32 = sign
2794
        | ((result_exp & 0xff) << 23)
2795
        | ((float64_val(f64) >> 29) & 0x7fffff);
2796
    return make_float32(val32);
2797
}
2798

    
2799
/* The algorithm that must be used to calculate the estimate
2800
 * is specified by the ARM ARM.
2801
 */
2802
static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
2803
{
2804
    /* These calculations mustn't set any fp exception flags,
2805
     * so we use a local copy of the fp_status.
2806
     */
2807
    float_status dummy_status = env->vfp.standard_fp_status;
2808
    float_status *s = &dummy_status;
2809
    float64 q;
2810
    int64_t q_int;
2811

    
2812
    if (float64_lt(a, float64_half, s)) {
2813
        /* range 0.25 <= a < 0.5 */
2814

    
2815
        /* a in units of 1/512 rounded down */
2816
        /* q0 = (int)(a * 512.0);  */
2817
        q = float64_mul(float64_512, a, s);
2818
        q_int = float64_to_int64_round_to_zero(q, s);
2819

    
2820
        /* reciprocal root r */
2821
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
2822
        q = int64_to_float64(q_int, s);
2823
        q = float64_add(q, float64_half, s);
2824
        q = float64_div(q, float64_512, s);
2825
        q = float64_sqrt(q, s);
2826
        q = float64_div(float64_one, q, s);
2827
    } else {
2828
        /* range 0.5 <= a < 1.0 */
2829

    
2830
        /* a in units of 1/256 rounded down */
2831
        /* q1 = (int)(a * 256.0); */
2832
        q = float64_mul(float64_256, a, s);
2833
        int64_t q_int = float64_to_int64_round_to_zero(q, s);
2834

    
2835
        /* reciprocal root r */
2836
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2837
        q = int64_to_float64(q_int, s);
2838
        q = float64_add(q, float64_half, s);
2839
        q = float64_div(q, float64_256, s);
2840
        q = float64_sqrt(q, s);
2841
        q = float64_div(float64_one, q, s);
2842
    }
2843
    /* r in units of 1/256 rounded to nearest */
2844
    /* s = (int)(256.0 * r + 0.5); */
2845

    
2846
    q = float64_mul(q, float64_256,s );
2847
    q = float64_add(q, float64_half, s);
2848
    q_int = float64_to_int64_round_to_zero(q, s);
2849

    
2850
    /* return (double)s / 256.0;*/
2851
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
2852
}
2853

    
2854
float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
2855
{
2856
    float_status *s = &env->vfp.standard_fp_status;
2857
    int result_exp;
2858
    float64 f64;
2859
    uint32_t val;
2860
    uint64_t val64;
2861

    
2862
    val = float32_val(a);
2863

    
2864
    if (float32_is_any_nan(a)) {
2865
        if (float32_is_signaling_nan(a)) {
2866
            float_raise(float_flag_invalid, s);
2867
        }
2868
        return float32_default_nan;
2869
    } else if (float32_is_zero_or_denormal(a)) {
2870
        if (!float32_is_zero(a)) {
2871
            float_raise(float_flag_input_denormal, s);
2872
        }
2873
        float_raise(float_flag_divbyzero, s);
2874
        return float32_set_sign(float32_infinity, float32_is_neg(a));
2875
    } else if (float32_is_neg(a)) {
2876
        float_raise(float_flag_invalid, s);
2877
        return float32_default_nan;
2878
    } else if (float32_is_infinity(a)) {
2879
        return float32_zero;
2880
    }
2881

    
2882
    /* Normalize to a double-precision value between 0.25 and 1.0,
2883
     * preserving the parity of the exponent.  */
2884
    if ((val & 0x800000) == 0) {
2885
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2886
                           | (0x3feULL << 52)
2887
                           | ((uint64_t)(val & 0x7fffff) << 29));
2888
    } else {
2889
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2890
                           | (0x3fdULL << 52)
2891
                           | ((uint64_t)(val & 0x7fffff) << 29));
2892
    }
2893

    
2894
    result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
2895

    
2896
    f64 = recip_sqrt_estimate(f64, env);
2897

    
2898
    val64 = float64_val(f64);
2899

    
2900
    val = ((result_exp & 0xff) << 23)
2901
        | ((val64 >> 29)  & 0x7fffff);
2902
    return make_float32(val);
2903
}
2904

    
2905
uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
2906
{
2907
    float64 f64;
2908

    
2909
    if ((a & 0x80000000) == 0) {
2910
        return 0xffffffff;
2911
    }
2912

    
2913
    f64 = make_float64((0x3feULL << 52)
2914
                       | ((int64_t)(a & 0x7fffffff) << 21));
2915

    
2916
    f64 = recip_estimate (f64, env);
2917

    
2918
    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
2919
}
2920

    
2921
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
2922
{
2923
    float64 f64;
2924

    
2925
    if ((a & 0xc0000000) == 0) {
2926
        return 0xffffffff;
2927
    }
2928

    
2929
    if (a & 0x80000000) {
2930
        f64 = make_float64((0x3feULL << 52)
2931
                           | ((uint64_t)(a & 0x7fffffff) << 21));
2932
    } else { /* bits 31-30 == '01' */
2933
        f64 = make_float64((0x3fdULL << 52)
2934
                           | ((uint64_t)(a & 0x3fffffff) << 22));
2935
    }
2936

    
2937
    f64 = recip_sqrt_estimate(f64, env);
2938

    
2939
    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
2940
}
2941

    
2942
/* VFPv4 fused multiply-accumulate */
2943
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
2944
{
2945
    float_status *fpst = fpstp;
2946
    return float32_muladd(a, b, c, 0, fpst);
2947
}
2948

    
2949
float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
2950
{
2951
    float_status *fpst = fpstp;
2952
    return float64_muladd(a, b, c, 0, fpst);
2953
}
2954

    
2955
void HELPER(set_teecr)(CPUARMState *env, uint32_t val)
2956
{
2957
    val &= 1;
2958
    if (env->teecr != val) {
2959
        env->teecr = val;
2960
        tb_flush(env);
2961
    }
2962
}