Statistics
| Branch: | Revision:

root / hw / ppc.c @ ea3bd56f

History | View | Annotate | Download (38.1 kB)

1
/*
2
 * QEMU generic PowerPC hardware System Emulator
3
 *
4
 * Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "ppc.h"
26
#include "qemu-timer.h"
27
#include "sysemu.h"
28
#include "nvram.h"
29
#include "qemu-log.h"
30
#include "loader.h"
31
#include "kvm.h"
32
#include "kvm_ppc.h"
33

    
34
//#define PPC_DEBUG_IRQ
35
//#define PPC_DEBUG_TB
36

    
37
#ifdef PPC_DEBUG_IRQ
38
#  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
39
#else
40
#  define LOG_IRQ(...) do { } while (0)
41
#endif
42

    
43

    
44
#ifdef PPC_DEBUG_TB
45
#  define LOG_TB(...) qemu_log(__VA_ARGS__)
46
#else
47
#  define LOG_TB(...) do { } while (0)
48
#endif
49

    
50
static void cpu_ppc_tb_stop (CPUState *env);
51
static void cpu_ppc_tb_start (CPUState *env);
52

    
53
static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
54
{
55
    unsigned int old_pending = env->pending_interrupts;
56

    
57
    if (level) {
58
        env->pending_interrupts |= 1 << n_IRQ;
59
        cpu_interrupt(env, CPU_INTERRUPT_HARD);
60
    } else {
61
        env->pending_interrupts &= ~(1 << n_IRQ);
62
        if (env->pending_interrupts == 0)
63
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
64
    }
65

    
66
    if (old_pending != env->pending_interrupts) {
67
#ifdef CONFIG_KVM
68
        kvmppc_set_interrupt(env, n_IRQ, level);
69
#endif
70
    }
71

    
72
    LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
73
                "req %08x\n", __func__, env, n_IRQ, level,
74
                env->pending_interrupts, env->interrupt_request);
75
}
76

    
77
/* PowerPC 6xx / 7xx internal IRQ controller */
78
static void ppc6xx_set_irq (void *opaque, int pin, int level)
79
{
80
    CPUState *env = opaque;
81
    int cur_level;
82

    
83
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
84
                env, pin, level);
85
    cur_level = (env->irq_input_state >> pin) & 1;
86
    /* Don't generate spurious events */
87
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
88
        switch (pin) {
89
        case PPC6xx_INPUT_TBEN:
90
            /* Level sensitive - active high */
91
            LOG_IRQ("%s: %s the time base\n",
92
                        __func__, level ? "start" : "stop");
93
            if (level) {
94
                cpu_ppc_tb_start(env);
95
            } else {
96
                cpu_ppc_tb_stop(env);
97
            }
98
        case PPC6xx_INPUT_INT:
99
            /* Level sensitive - active high */
100
            LOG_IRQ("%s: set the external IRQ state to %d\n",
101
                        __func__, level);
102
            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
103
            break;
104
        case PPC6xx_INPUT_SMI:
105
            /* Level sensitive - active high */
106
            LOG_IRQ("%s: set the SMI IRQ state to %d\n",
107
                        __func__, level);
108
            ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
109
            break;
110
        case PPC6xx_INPUT_MCP:
111
            /* Negative edge sensitive */
112
            /* XXX: TODO: actual reaction may depends on HID0 status
113
             *            603/604/740/750: check HID0[EMCP]
114
             */
115
            if (cur_level == 1 && level == 0) {
116
                LOG_IRQ("%s: raise machine check state\n",
117
                            __func__);
118
                ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
119
            }
120
            break;
121
        case PPC6xx_INPUT_CKSTP_IN:
122
            /* Level sensitive - active low */
123
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
124
            /* XXX: Note that the only way to restart the CPU is to reset it */
125
            if (level) {
126
                LOG_IRQ("%s: stop the CPU\n", __func__);
127
                env->halted = 1;
128
            }
129
            break;
130
        case PPC6xx_INPUT_HRESET:
131
            /* Level sensitive - active low */
132
            if (level) {
133
                LOG_IRQ("%s: reset the CPU\n", __func__);
134
                env->interrupt_request |= CPU_INTERRUPT_EXITTB;
135
                /* XXX: TOFIX */
136
#if 0
137
                cpu_reset(env);
138
#else
139
                qemu_system_reset_request();
140
#endif
141
            }
142
            break;
143
        case PPC6xx_INPUT_SRESET:
144
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
145
                        __func__, level);
146
            ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
147
            break;
148
        default:
149
            /* Unknown pin - do nothing */
150
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
151
            return;
152
        }
153
        if (level)
154
            env->irq_input_state |= 1 << pin;
155
        else
156
            env->irq_input_state &= ~(1 << pin);
157
    }
158
}
159

    
160
void ppc6xx_irq_init (CPUState *env)
161
{
162
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
163
                                                  PPC6xx_INPUT_NB);
164
}
165

    
166
#if defined(TARGET_PPC64)
167
/* PowerPC 970 internal IRQ controller */
168
static void ppc970_set_irq (void *opaque, int pin, int level)
169
{
170
    CPUState *env = opaque;
171
    int cur_level;
172

    
173
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
174
                env, pin, level);
175
    cur_level = (env->irq_input_state >> pin) & 1;
176
    /* Don't generate spurious events */
177
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
178
        switch (pin) {
179
        case PPC970_INPUT_INT:
180
            /* Level sensitive - active high */
181
            LOG_IRQ("%s: set the external IRQ state to %d\n",
182
                        __func__, level);
183
            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
184
            break;
185
        case PPC970_INPUT_THINT:
186
            /* Level sensitive - active high */
187
            LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
188
                        level);
189
            ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
190
            break;
191
        case PPC970_INPUT_MCP:
192
            /* Negative edge sensitive */
193
            /* XXX: TODO: actual reaction may depends on HID0 status
194
             *            603/604/740/750: check HID0[EMCP]
195
             */
196
            if (cur_level == 1 && level == 0) {
197
                LOG_IRQ("%s: raise machine check state\n",
198
                            __func__);
199
                ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
200
            }
201
            break;
202
        case PPC970_INPUT_CKSTP:
203
            /* Level sensitive - active low */
204
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
205
            if (level) {
206
                LOG_IRQ("%s: stop the CPU\n", __func__);
207
                env->halted = 1;
208
            } else {
209
                LOG_IRQ("%s: restart the CPU\n", __func__);
210
                env->halted = 0;
211
            }
212
            break;
213
        case PPC970_INPUT_HRESET:
214
            /* Level sensitive - active low */
215
            if (level) {
216
#if 0 // XXX: TOFIX
217
                LOG_IRQ("%s: reset the CPU\n", __func__);
218
                cpu_reset(env);
219
#endif
220
            }
221
            break;
222
        case PPC970_INPUT_SRESET:
223
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
224
                        __func__, level);
225
            ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
226
            break;
227
        case PPC970_INPUT_TBEN:
228
            LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
229
                        level);
230
            /* XXX: TODO */
231
            break;
232
        default:
233
            /* Unknown pin - do nothing */
234
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
235
            return;
236
        }
237
        if (level)
238
            env->irq_input_state |= 1 << pin;
239
        else
240
            env->irq_input_state &= ~(1 << pin);
241
    }
242
}
243

    
244
void ppc970_irq_init (CPUState *env)
245
{
246
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
247
                                                  PPC970_INPUT_NB);
248
}
249
#endif /* defined(TARGET_PPC64) */
250

    
251
/* PowerPC 40x internal IRQ controller */
252
static void ppc40x_set_irq (void *opaque, int pin, int level)
253
{
254
    CPUState *env = opaque;
255
    int cur_level;
256

    
257
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
258
                env, pin, level);
259
    cur_level = (env->irq_input_state >> pin) & 1;
260
    /* Don't generate spurious events */
261
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
262
        switch (pin) {
263
        case PPC40x_INPUT_RESET_SYS:
264
            if (level) {
265
                LOG_IRQ("%s: reset the PowerPC system\n",
266
                            __func__);
267
                ppc40x_system_reset(env);
268
            }
269
            break;
270
        case PPC40x_INPUT_RESET_CHIP:
271
            if (level) {
272
                LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
273
                ppc40x_chip_reset(env);
274
            }
275
            break;
276
        case PPC40x_INPUT_RESET_CORE:
277
            /* XXX: TODO: update DBSR[MRR] */
278
            if (level) {
279
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
280
                ppc40x_core_reset(env);
281
            }
282
            break;
283
        case PPC40x_INPUT_CINT:
284
            /* Level sensitive - active high */
285
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
286
                        __func__, level);
287
            ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
288
            break;
289
        case PPC40x_INPUT_INT:
290
            /* Level sensitive - active high */
291
            LOG_IRQ("%s: set the external IRQ state to %d\n",
292
                        __func__, level);
293
            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
294
            break;
295
        case PPC40x_INPUT_HALT:
296
            /* Level sensitive - active low */
297
            if (level) {
298
                LOG_IRQ("%s: stop the CPU\n", __func__);
299
                env->halted = 1;
300
            } else {
301
                LOG_IRQ("%s: restart the CPU\n", __func__);
302
                env->halted = 0;
303
            }
304
            break;
305
        case PPC40x_INPUT_DEBUG:
306
            /* Level sensitive - active high */
307
            LOG_IRQ("%s: set the debug pin state to %d\n",
308
                        __func__, level);
309
            ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
310
            break;
311
        default:
312
            /* Unknown pin - do nothing */
313
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
314
            return;
315
        }
316
        if (level)
317
            env->irq_input_state |= 1 << pin;
318
        else
319
            env->irq_input_state &= ~(1 << pin);
320
    }
321
}
322

    
323
void ppc40x_irq_init (CPUState *env)
324
{
325
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
326
                                                  env, PPC40x_INPUT_NB);
327
}
328

    
329
/* PowerPC E500 internal IRQ controller */
330
static void ppce500_set_irq (void *opaque, int pin, int level)
331
{
332
    CPUState *env = opaque;
333
    int cur_level;
334

    
335
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
336
                env, pin, level);
337
    cur_level = (env->irq_input_state >> pin) & 1;
338
    /* Don't generate spurious events */
339
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
340
        switch (pin) {
341
        case PPCE500_INPUT_MCK:
342
            if (level) {
343
                LOG_IRQ("%s: reset the PowerPC system\n",
344
                            __func__);
345
                qemu_system_reset_request();
346
            }
347
            break;
348
        case PPCE500_INPUT_RESET_CORE:
349
            if (level) {
350
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
351
                ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
352
            }
353
            break;
354
        case PPCE500_INPUT_CINT:
355
            /* Level sensitive - active high */
356
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
357
                        __func__, level);
358
            ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
359
            break;
360
        case PPCE500_INPUT_INT:
361
            /* Level sensitive - active high */
362
            LOG_IRQ("%s: set the core IRQ state to %d\n",
363
                        __func__, level);
364
            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
365
            break;
366
        case PPCE500_INPUT_DEBUG:
367
            /* Level sensitive - active high */
368
            LOG_IRQ("%s: set the debug pin state to %d\n",
369
                        __func__, level);
370
            ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
371
            break;
372
        default:
373
            /* Unknown pin - do nothing */
374
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
375
            return;
376
        }
377
        if (level)
378
            env->irq_input_state |= 1 << pin;
379
        else
380
            env->irq_input_state &= ~(1 << pin);
381
    }
382
}
383

    
384
void ppce500_irq_init (CPUState *env)
385
{
386
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
387
                                        env, PPCE500_INPUT_NB);
388
}
389
/*****************************************************************************/
390
/* PowerPC time base and decrementer emulation */
391
struct ppc_tb_t {
392
    /* Time base management */
393
    int64_t  tb_offset;    /* Compensation                    */
394
    int64_t  atb_offset;   /* Compensation                    */
395
    uint32_t tb_freq;      /* TB frequency                    */
396
    /* Decrementer management */
397
    uint64_t decr_next;    /* Tick for next decr interrupt    */
398
    uint32_t decr_freq;    /* decrementer frequency           */
399
    struct QEMUTimer *decr_timer;
400
    /* Hypervisor decrementer management */
401
    uint64_t hdecr_next;    /* Tick for next hdecr interrupt  */
402
    struct QEMUTimer *hdecr_timer;
403
    uint64_t purr_load;
404
    uint64_t purr_start;
405
    void *opaque;
406
};
407

    
408
static inline uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk,
409
                                      int64_t tb_offset)
410
{
411
    /* TB time in tb periods */
412
    return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
413
}
414

    
415
uint64_t cpu_ppc_load_tbl (CPUState *env)
416
{
417
    ppc_tb_t *tb_env = env->tb_env;
418
    uint64_t tb;
419

    
420
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
421
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
422

    
423
    return tb;
424
}
425

    
426
static inline uint32_t _cpu_ppc_load_tbu(CPUState *env)
427
{
428
    ppc_tb_t *tb_env = env->tb_env;
429
    uint64_t tb;
430

    
431
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
432
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
433

    
434
    return tb >> 32;
435
}
436

    
437
uint32_t cpu_ppc_load_tbu (CPUState *env)
438
{
439
    return _cpu_ppc_load_tbu(env);
440
}
441

    
442
static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
443
                                    int64_t *tb_offsetp, uint64_t value)
444
{
445
    *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
446
    LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
447
                __func__, value, *tb_offsetp);
448
}
449

    
450
void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
451
{
452
    ppc_tb_t *tb_env = env->tb_env;
453
    uint64_t tb;
454

    
455
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
456
    tb &= 0xFFFFFFFF00000000ULL;
457
    cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
458
                     &tb_env->tb_offset, tb | (uint64_t)value);
459
}
460

    
461
static inline void _cpu_ppc_store_tbu(CPUState *env, uint32_t value)
462
{
463
    ppc_tb_t *tb_env = env->tb_env;
464
    uint64_t tb;
465

    
466
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
467
    tb &= 0x00000000FFFFFFFFULL;
468
    cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
469
                     &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
470
}
471

    
472
void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
473
{
474
    _cpu_ppc_store_tbu(env, value);
475
}
476

    
477
uint64_t cpu_ppc_load_atbl (CPUState *env)
478
{
479
    ppc_tb_t *tb_env = env->tb_env;
480
    uint64_t tb;
481

    
482
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
483
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
484

    
485
    return tb;
486
}
487

    
488
uint32_t cpu_ppc_load_atbu (CPUState *env)
489
{
490
    ppc_tb_t *tb_env = env->tb_env;
491
    uint64_t tb;
492

    
493
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
494
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
495

    
496
    return tb >> 32;
497
}
498

    
499
void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
500
{
501
    ppc_tb_t *tb_env = env->tb_env;
502
    uint64_t tb;
503

    
504
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
505
    tb &= 0xFFFFFFFF00000000ULL;
506
    cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
507
                     &tb_env->atb_offset, tb | (uint64_t)value);
508
}
509

    
510
void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
511
{
512
    ppc_tb_t *tb_env = env->tb_env;
513
    uint64_t tb;
514

    
515
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
516
    tb &= 0x00000000FFFFFFFFULL;
517
    cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
518
                     &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
519
}
520

    
521
static void cpu_ppc_tb_stop (CPUState *env)
522
{
523
    ppc_tb_t *tb_env = env->tb_env;
524
    uint64_t tb, atb, vmclk;
525

    
526
    /* If the time base is already frozen, do nothing */
527
    if (tb_env->tb_freq != 0) {
528
        vmclk = qemu_get_clock(vm_clock);
529
        /* Get the time base */
530
        tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
531
        /* Get the alternate time base */
532
        atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
533
        /* Store the time base value (ie compute the current offset) */
534
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
535
        /* Store the alternate time base value (compute the current offset) */
536
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
537
        /* Set the time base frequency to zero */
538
        tb_env->tb_freq = 0;
539
        /* Now, the time bases are frozen to tb_offset / atb_offset value */
540
    }
541
}
542

    
543
static void cpu_ppc_tb_start (CPUState *env)
544
{
545
    ppc_tb_t *tb_env = env->tb_env;
546
    uint64_t tb, atb, vmclk;
547

    
548
    /* If the time base is not frozen, do nothing */
549
    if (tb_env->tb_freq == 0) {
550
        vmclk = qemu_get_clock(vm_clock);
551
        /* Get the time base from tb_offset */
552
        tb = tb_env->tb_offset;
553
        /* Get the alternate time base from atb_offset */
554
        atb = tb_env->atb_offset;
555
        /* Restore the tb frequency from the decrementer frequency */
556
        tb_env->tb_freq = tb_env->decr_freq;
557
        /* Store the time base value */
558
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
559
        /* Store the alternate time base value */
560
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
561
    }
562
}
563

    
564
static inline uint32_t _cpu_ppc_load_decr(CPUState *env, uint64_t next)
565
{
566
    ppc_tb_t *tb_env = env->tb_env;
567
    uint32_t decr;
568
    int64_t diff;
569

    
570
    diff = next - qemu_get_clock(vm_clock);
571
    if (diff >= 0)
572
        decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
573
    else
574
        decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
575
    LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
576

    
577
    return decr;
578
}
579

    
580
uint32_t cpu_ppc_load_decr (CPUState *env)
581
{
582
    ppc_tb_t *tb_env = env->tb_env;
583

    
584
    return _cpu_ppc_load_decr(env, tb_env->decr_next);
585
}
586

    
587
uint32_t cpu_ppc_load_hdecr (CPUState *env)
588
{
589
    ppc_tb_t *tb_env = env->tb_env;
590

    
591
    return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
592
}
593

    
594
uint64_t cpu_ppc_load_purr (CPUState *env)
595
{
596
    ppc_tb_t *tb_env = env->tb_env;
597
    uint64_t diff;
598

    
599
    diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
600

    
601
    return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
602
}
603

    
604
/* When decrementer expires,
605
 * all we need to do is generate or queue a CPU exception
606
 */
607
static inline void cpu_ppc_decr_excp(CPUState *env)
608
{
609
    /* Raise it */
610
    LOG_TB("raise decrementer exception\n");
611
    ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
612
}
613

    
614
static inline void cpu_ppc_hdecr_excp(CPUState *env)
615
{
616
    /* Raise it */
617
    LOG_TB("raise decrementer exception\n");
618
    ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
619
}
620

    
621
static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
622
                                  struct QEMUTimer *timer,
623
                                  void (*raise_excp)(CPUState *),
624
                                  uint32_t decr, uint32_t value,
625
                                  int is_excp)
626
{
627
    ppc_tb_t *tb_env = env->tb_env;
628
    uint64_t now, next;
629

    
630
    LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
631
                decr, value);
632
    now = qemu_get_clock(vm_clock);
633
    next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
634
    if (is_excp)
635
        next += *nextp - now;
636
    if (next == now)
637
        next++;
638
    *nextp = next;
639
    /* Adjust timer */
640
    qemu_mod_timer(timer, next);
641
    /* If we set a negative value and the decrementer was positive,
642
     * raise an exception.
643
     */
644
    if ((value & 0x80000000) && !(decr & 0x80000000))
645
        (*raise_excp)(env);
646
}
647

    
648
static inline void _cpu_ppc_store_decr(CPUState *env, uint32_t decr,
649
                                       uint32_t value, int is_excp)
650
{
651
    ppc_tb_t *tb_env = env->tb_env;
652

    
653
    __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
654
                         &cpu_ppc_decr_excp, decr, value, is_excp);
655
}
656

    
657
void cpu_ppc_store_decr (CPUState *env, uint32_t value)
658
{
659
    _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
660
}
661

    
662
static void cpu_ppc_decr_cb (void *opaque)
663
{
664
    _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
665
}
666

    
667
static inline void _cpu_ppc_store_hdecr(CPUState *env, uint32_t hdecr,
668
                                        uint32_t value, int is_excp)
669
{
670
    ppc_tb_t *tb_env = env->tb_env;
671

    
672
    if (tb_env->hdecr_timer != NULL) {
673
        __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
674
                             &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
675
    }
676
}
677

    
678
void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
679
{
680
    _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
681
}
682

    
683
static void cpu_ppc_hdecr_cb (void *opaque)
684
{
685
    _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
686
}
687

    
688
void cpu_ppc_store_purr (CPUState *env, uint64_t value)
689
{
690
    ppc_tb_t *tb_env = env->tb_env;
691

    
692
    tb_env->purr_load = value;
693
    tb_env->purr_start = qemu_get_clock(vm_clock);
694
}
695

    
696
static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
697
{
698
    CPUState *env = opaque;
699
    ppc_tb_t *tb_env = env->tb_env;
700

    
701
    tb_env->tb_freq = freq;
702
    tb_env->decr_freq = freq;
703
    /* There is a bug in Linux 2.4 kernels:
704
     * if a decrementer exception is pending when it enables msr_ee at startup,
705
     * it's not ready to handle it...
706
     */
707
    _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
708
    _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
709
    cpu_ppc_store_purr(env, 0x0000000000000000ULL);
710
}
711

    
712
/* Set up (once) timebase frequency (in Hz) */
713
clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
714
{
715
    ppc_tb_t *tb_env;
716

    
717
    tb_env = qemu_mallocz(sizeof(ppc_tb_t));
718
    env->tb_env = tb_env;
719
    /* Create new timer */
720
    tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
721
    if (0) {
722
        /* XXX: find a suitable condition to enable the hypervisor decrementer
723
         */
724
        tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
725
    } else {
726
        tb_env->hdecr_timer = NULL;
727
    }
728
    cpu_ppc_set_tb_clk(env, freq);
729

    
730
    return &cpu_ppc_set_tb_clk;
731
}
732

    
733
/* Specific helpers for POWER & PowerPC 601 RTC */
734
#if 0
735
static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
736
{
737
    return cpu_ppc_tb_init(env, 7812500);
738
}
739
#endif
740

    
741
void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
742
{
743
    _cpu_ppc_store_tbu(env, value);
744
}
745

    
746
uint32_t cpu_ppc601_load_rtcu (CPUState *env)
747
{
748
    return _cpu_ppc_load_tbu(env);
749
}
750

    
751
void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
752
{
753
    cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
754
}
755

    
756
uint32_t cpu_ppc601_load_rtcl (CPUState *env)
757
{
758
    return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
759
}
760

    
761
/*****************************************************************************/
762
/* Embedded PowerPC timers */
763

    
764
/* PIT, FIT & WDT */
765
typedef struct ppcemb_timer_t ppcemb_timer_t;
766
struct ppcemb_timer_t {
767
    uint64_t pit_reload;  /* PIT auto-reload value        */
768
    uint64_t fit_next;    /* Tick for next FIT interrupt  */
769
    struct QEMUTimer *fit_timer;
770
    uint64_t wdt_next;    /* Tick for next WDT interrupt  */
771
    struct QEMUTimer *wdt_timer;
772

    
773
    /* 405 have the PIT, 440 have a DECR.  */
774
    unsigned int decr_excp;
775
};
776

    
777
/* Fixed interval timer */
778
static void cpu_4xx_fit_cb (void *opaque)
779
{
780
    CPUState *env;
781
    ppc_tb_t *tb_env;
782
    ppcemb_timer_t *ppcemb_timer;
783
    uint64_t now, next;
784

    
785
    env = opaque;
786
    tb_env = env->tb_env;
787
    ppcemb_timer = tb_env->opaque;
788
    now = qemu_get_clock(vm_clock);
789
    switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
790
    case 0:
791
        next = 1 << 9;
792
        break;
793
    case 1:
794
        next = 1 << 13;
795
        break;
796
    case 2:
797
        next = 1 << 17;
798
        break;
799
    case 3:
800
        next = 1 << 21;
801
        break;
802
    default:
803
        /* Cannot occur, but makes gcc happy */
804
        return;
805
    }
806
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
807
    if (next == now)
808
        next++;
809
    qemu_mod_timer(ppcemb_timer->fit_timer, next);
810
    env->spr[SPR_40x_TSR] |= 1 << 26;
811
    if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
812
        ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
813
    LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
814
           (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
815
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
816
}
817

    
818
/* Programmable interval timer */
819
static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
820
{
821
    ppcemb_timer_t *ppcemb_timer;
822
    uint64_t now, next;
823

    
824
    ppcemb_timer = tb_env->opaque;
825
    if (ppcemb_timer->pit_reload <= 1 ||
826
        !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
827
        (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
828
        /* Stop PIT */
829
        LOG_TB("%s: stop PIT\n", __func__);
830
        qemu_del_timer(tb_env->decr_timer);
831
    } else {
832
        LOG_TB("%s: start PIT %016" PRIx64 "\n",
833
                    __func__, ppcemb_timer->pit_reload);
834
        now = qemu_get_clock(vm_clock);
835
        next = now + muldiv64(ppcemb_timer->pit_reload,
836
                              get_ticks_per_sec(), tb_env->decr_freq);
837
        if (is_excp)
838
            next += tb_env->decr_next - now;
839
        if (next == now)
840
            next++;
841
        qemu_mod_timer(tb_env->decr_timer, next);
842
        tb_env->decr_next = next;
843
    }
844
}
845

    
846
static void cpu_4xx_pit_cb (void *opaque)
847
{
848
    CPUState *env;
849
    ppc_tb_t *tb_env;
850
    ppcemb_timer_t *ppcemb_timer;
851

    
852
    env = opaque;
853
    tb_env = env->tb_env;
854
    ppcemb_timer = tb_env->opaque;
855
    env->spr[SPR_40x_TSR] |= 1 << 27;
856
    if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
857
        ppc_set_irq(env, ppcemb_timer->decr_excp, 1);
858
    start_stop_pit(env, tb_env, 1);
859
    LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
860
           "%016" PRIx64 "\n", __func__,
861
           (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
862
           (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
863
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
864
           ppcemb_timer->pit_reload);
865
}
866

    
867
/* Watchdog timer */
868
static void cpu_4xx_wdt_cb (void *opaque)
869
{
870
    CPUState *env;
871
    ppc_tb_t *tb_env;
872
    ppcemb_timer_t *ppcemb_timer;
873
    uint64_t now, next;
874

    
875
    env = opaque;
876
    tb_env = env->tb_env;
877
    ppcemb_timer = tb_env->opaque;
878
    now = qemu_get_clock(vm_clock);
879
    switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
880
    case 0:
881
        next = 1 << 17;
882
        break;
883
    case 1:
884
        next = 1 << 21;
885
        break;
886
    case 2:
887
        next = 1 << 25;
888
        break;
889
    case 3:
890
        next = 1 << 29;
891
        break;
892
    default:
893
        /* Cannot occur, but makes gcc happy */
894
        return;
895
    }
896
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
897
    if (next == now)
898
        next++;
899
    LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
900
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
901
    switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
902
    case 0x0:
903
    case 0x1:
904
        qemu_mod_timer(ppcemb_timer->wdt_timer, next);
905
        ppcemb_timer->wdt_next = next;
906
        env->spr[SPR_40x_TSR] |= 1 << 31;
907
        break;
908
    case 0x2:
909
        qemu_mod_timer(ppcemb_timer->wdt_timer, next);
910
        ppcemb_timer->wdt_next = next;
911
        env->spr[SPR_40x_TSR] |= 1 << 30;
912
        if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
913
            ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
914
        break;
915
    case 0x3:
916
        env->spr[SPR_40x_TSR] &= ~0x30000000;
917
        env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
918
        switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
919
        case 0x0:
920
            /* No reset */
921
            break;
922
        case 0x1: /* Core reset */
923
            ppc40x_core_reset(env);
924
            break;
925
        case 0x2: /* Chip reset */
926
            ppc40x_chip_reset(env);
927
            break;
928
        case 0x3: /* System reset */
929
            ppc40x_system_reset(env);
930
            break;
931
        }
932
    }
933
}
934

    
935
void store_40x_pit (CPUState *env, target_ulong val)
936
{
937
    ppc_tb_t *tb_env;
938
    ppcemb_timer_t *ppcemb_timer;
939

    
940
    tb_env = env->tb_env;
941
    ppcemb_timer = tb_env->opaque;
942
    LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
943
    ppcemb_timer->pit_reload = val;
944
    start_stop_pit(env, tb_env, 0);
945
}
946

    
947
target_ulong load_40x_pit (CPUState *env)
948
{
949
    return cpu_ppc_load_decr(env);
950
}
951

    
952
void store_booke_tsr (CPUState *env, target_ulong val)
953
{
954
    ppc_tb_t *tb_env = env->tb_env;
955
    ppcemb_timer_t *ppcemb_timer;
956

    
957
    ppcemb_timer = tb_env->opaque;
958

    
959
    LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
960
    env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
961
    if (val & 0x80000000)
962
        ppc_set_irq(env, ppcemb_timer->decr_excp, 0);
963
}
964

    
965
void store_booke_tcr (CPUState *env, target_ulong val)
966
{
967
    ppc_tb_t *tb_env;
968

    
969
    tb_env = env->tb_env;
970
    LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
971
    env->spr[SPR_40x_TCR] = val & 0xFFC00000;
972
    start_stop_pit(env, tb_env, 1);
973
    cpu_4xx_wdt_cb(env);
974
}
975

    
976
static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
977
{
978
    CPUState *env = opaque;
979
    ppc_tb_t *tb_env = env->tb_env;
980

    
981
    LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
982
                freq);
983
    tb_env->tb_freq = freq;
984
    tb_env->decr_freq = freq;
985
    /* XXX: we should also update all timers */
986
}
987

    
988
clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq,
989
                                  unsigned int decr_excp)
990
{
991
    ppc_tb_t *tb_env;
992
    ppcemb_timer_t *ppcemb_timer;
993

    
994
    tb_env = qemu_mallocz(sizeof(ppc_tb_t));
995
    env->tb_env = tb_env;
996
    ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
997
    tb_env->tb_freq = freq;
998
    tb_env->decr_freq = freq;
999
    tb_env->opaque = ppcemb_timer;
1000
    LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1001
    if (ppcemb_timer != NULL) {
1002
        /* We use decr timer for PIT */
1003
        tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
1004
        ppcemb_timer->fit_timer =
1005
            qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
1006
        ppcemb_timer->wdt_timer =
1007
            qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
1008
        ppcemb_timer->decr_excp = decr_excp;
1009
    }
1010

    
1011
    return &ppc_emb_set_tb_clk;
1012
}
1013

    
1014
/*****************************************************************************/
1015
/* Embedded PowerPC Device Control Registers */
1016
typedef struct ppc_dcrn_t ppc_dcrn_t;
1017
struct ppc_dcrn_t {
1018
    dcr_read_cb dcr_read;
1019
    dcr_write_cb dcr_write;
1020
    void *opaque;
1021
};
1022

    
1023
/* XXX: on 460, DCR addresses are 32 bits wide,
1024
 *      using DCRIPR to get the 22 upper bits of the DCR address
1025
 */
1026
#define DCRN_NB 1024
1027
struct ppc_dcr_t {
1028
    ppc_dcrn_t dcrn[DCRN_NB];
1029
    int (*read_error)(int dcrn);
1030
    int (*write_error)(int dcrn);
1031
};
1032

    
1033
int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1034
{
1035
    ppc_dcrn_t *dcr;
1036

    
1037
    if (dcrn < 0 || dcrn >= DCRN_NB)
1038
        goto error;
1039
    dcr = &dcr_env->dcrn[dcrn];
1040
    if (dcr->dcr_read == NULL)
1041
        goto error;
1042
    *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1043

    
1044
    return 0;
1045

    
1046
 error:
1047
    if (dcr_env->read_error != NULL)
1048
        return (*dcr_env->read_error)(dcrn);
1049

    
1050
    return -1;
1051
}
1052

    
1053
int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1054
{
1055
    ppc_dcrn_t *dcr;
1056

    
1057
    if (dcrn < 0 || dcrn >= DCRN_NB)
1058
        goto error;
1059
    dcr = &dcr_env->dcrn[dcrn];
1060
    if (dcr->dcr_write == NULL)
1061
        goto error;
1062
    (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1063

    
1064
    return 0;
1065

    
1066
 error:
1067
    if (dcr_env->write_error != NULL)
1068
        return (*dcr_env->write_error)(dcrn);
1069

    
1070
    return -1;
1071
}
1072

    
1073
int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1074
                      dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1075
{
1076
    ppc_dcr_t *dcr_env;
1077
    ppc_dcrn_t *dcr;
1078

    
1079
    dcr_env = env->dcr_env;
1080
    if (dcr_env == NULL)
1081
        return -1;
1082
    if (dcrn < 0 || dcrn >= DCRN_NB)
1083
        return -1;
1084
    dcr = &dcr_env->dcrn[dcrn];
1085
    if (dcr->opaque != NULL ||
1086
        dcr->dcr_read != NULL ||
1087
        dcr->dcr_write != NULL)
1088
        return -1;
1089
    dcr->opaque = opaque;
1090
    dcr->dcr_read = dcr_read;
1091
    dcr->dcr_write = dcr_write;
1092

    
1093
    return 0;
1094
}
1095

    
1096
int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1097
                  int (*write_error)(int dcrn))
1098
{
1099
    ppc_dcr_t *dcr_env;
1100

    
1101
    dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1102
    dcr_env->read_error = read_error;
1103
    dcr_env->write_error = write_error;
1104
    env->dcr_env = dcr_env;
1105

    
1106
    return 0;
1107
}
1108

    
1109
/*****************************************************************************/
1110
/* Debug port */
1111
void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1112
{
1113
    addr &= 0xF;
1114
    switch (addr) {
1115
    case 0:
1116
        printf("%c", val);
1117
        break;
1118
    case 1:
1119
        printf("\n");
1120
        fflush(stdout);
1121
        break;
1122
    case 2:
1123
        printf("Set loglevel to %04" PRIx32 "\n", val);
1124
        cpu_set_log(val | 0x100);
1125
        break;
1126
    }
1127
}
1128

    
1129
/*****************************************************************************/
1130
/* NVRAM helpers */
1131
static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1132
{
1133
    return (*nvram->read_fn)(nvram->opaque, addr);;
1134
}
1135

    
1136
static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1137
{
1138
    (*nvram->write_fn)(nvram->opaque, addr, val);
1139
}
1140

    
1141
void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1142
{
1143
    nvram_write(nvram, addr, value);
1144
}
1145

    
1146
uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1147
{
1148
    return nvram_read(nvram, addr);
1149
}
1150

    
1151
void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1152
{
1153
    nvram_write(nvram, addr, value >> 8);
1154
    nvram_write(nvram, addr + 1, value & 0xFF);
1155
}
1156

    
1157
uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1158
{
1159
    uint16_t tmp;
1160

    
1161
    tmp = nvram_read(nvram, addr) << 8;
1162
    tmp |= nvram_read(nvram, addr + 1);
1163

    
1164
    return tmp;
1165
}
1166

    
1167
void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1168
{
1169
    nvram_write(nvram, addr, value >> 24);
1170
    nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1171
    nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1172
    nvram_write(nvram, addr + 3, value & 0xFF);
1173
}
1174

    
1175
uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1176
{
1177
    uint32_t tmp;
1178

    
1179
    tmp = nvram_read(nvram, addr) << 24;
1180
    tmp |= nvram_read(nvram, addr + 1) << 16;
1181
    tmp |= nvram_read(nvram, addr + 2) << 8;
1182
    tmp |= nvram_read(nvram, addr + 3);
1183

    
1184
    return tmp;
1185
}
1186

    
1187
void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1188
                       const char *str, uint32_t max)
1189
{
1190
    int i;
1191

    
1192
    for (i = 0; i < max && str[i] != '\0'; i++) {
1193
        nvram_write(nvram, addr + i, str[i]);
1194
    }
1195
    nvram_write(nvram, addr + i, str[i]);
1196
    nvram_write(nvram, addr + max - 1, '\0');
1197
}
1198

    
1199
int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1200
{
1201
    int i;
1202

    
1203
    memset(dst, 0, max);
1204
    for (i = 0; i < max; i++) {
1205
        dst[i] = NVRAM_get_byte(nvram, addr + i);
1206
        if (dst[i] == '\0')
1207
            break;
1208
    }
1209

    
1210
    return i;
1211
}
1212

    
1213
static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1214
{
1215
    uint16_t tmp;
1216
    uint16_t pd, pd1, pd2;
1217

    
1218
    tmp = prev >> 8;
1219
    pd = prev ^ value;
1220
    pd1 = pd & 0x000F;
1221
    pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1222
    tmp ^= (pd1 << 3) | (pd1 << 8);
1223
    tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1224

    
1225
    return tmp;
1226
}
1227

    
1228
static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1229
{
1230
    uint32_t i;
1231
    uint16_t crc = 0xFFFF;
1232
    int odd;
1233

    
1234
    odd = count & 1;
1235
    count &= ~1;
1236
    for (i = 0; i != count; i++) {
1237
        crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1238
    }
1239
    if (odd) {
1240
        crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1241
    }
1242

    
1243
    return crc;
1244
}
1245

    
1246
#define CMDLINE_ADDR 0x017ff000
1247

    
1248
int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1249
                          const char *arch,
1250
                          uint32_t RAM_size, int boot_device,
1251
                          uint32_t kernel_image, uint32_t kernel_size,
1252
                          const char *cmdline,
1253
                          uint32_t initrd_image, uint32_t initrd_size,
1254
                          uint32_t NVRAM_image,
1255
                          int width, int height, int depth)
1256
{
1257
    uint16_t crc;
1258

    
1259
    /* Set parameters for Open Hack'Ware BIOS */
1260
    NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1261
    NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
1262
    NVRAM_set_word(nvram,   0x14, NVRAM_size);
1263
    NVRAM_set_string(nvram, 0x20, arch, 16);
1264
    NVRAM_set_lword(nvram,  0x30, RAM_size);
1265
    NVRAM_set_byte(nvram,   0x34, boot_device);
1266
    NVRAM_set_lword(nvram,  0x38, kernel_image);
1267
    NVRAM_set_lword(nvram,  0x3C, kernel_size);
1268
    if (cmdline) {
1269
        /* XXX: put the cmdline in NVRAM too ? */
1270
        pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1271
        NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
1272
        NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
1273
    } else {
1274
        NVRAM_set_lword(nvram,  0x40, 0);
1275
        NVRAM_set_lword(nvram,  0x44, 0);
1276
    }
1277
    NVRAM_set_lword(nvram,  0x48, initrd_image);
1278
    NVRAM_set_lword(nvram,  0x4C, initrd_size);
1279
    NVRAM_set_lword(nvram,  0x50, NVRAM_image);
1280

    
1281
    NVRAM_set_word(nvram,   0x54, width);
1282
    NVRAM_set_word(nvram,   0x56, height);
1283
    NVRAM_set_word(nvram,   0x58, depth);
1284
    crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1285
    NVRAM_set_word(nvram,   0xFC, crc);
1286

    
1287
    return 0;
1288
}