Statistics
| Branch: | Revision:

root / hw / ppc.c @ eae7629b

History | View | Annotate | Download (18.4 kB)

1
/*
2
 * QEMU generic PPC hardware System Emulator
3
 * 
4
 * Copyright (c) 2003-2007 Jocelyn Mayer
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
#include "m48t59.h"
26

    
27
extern FILE *logfile;
28
extern int loglevel;
29

    
30
/*****************************************************************************/
31
/* PowerPC internal fake IRQ controller
32
 * used to manage multiple sources hardware events
33
 */
34
/* XXX: should be protected */
35
void ppc_set_irq (void *opaque, int n_IRQ, int level)
36
{
37
    CPUState *env;
38

    
39
    env = opaque;
40
    if (level) {
41
        env->pending_interrupts |= 1 << n_IRQ;
42
        cpu_interrupt(env, CPU_INTERRUPT_HARD);
43
    } else {
44
        env->pending_interrupts &= ~(1 << n_IRQ);
45
        if (env->pending_interrupts == 0)
46
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
47
    }
48
#if 0
49
    printf("%s: %p n_IRQ %d level %d => pending %08x req %08x\n", __func__,
50
           env, n_IRQ, level, env->pending_interrupts, env->interrupt_request);
51
#endif
52
}
53

    
54
/* External IRQ callback from OpenPIC IRQ controller */
55
void ppc_openpic_irq (void *opaque, int n_IRQ, int level)
56
{
57
    switch (n_IRQ) {
58
    case OPENPIC_EVT_INT:
59
        n_IRQ = PPC_INTERRUPT_EXT;
60
        break;
61
    case OPENPIC_EVT_CINT:
62
        /* On PowerPC BookE, critical input use vector 0 */
63
        n_IRQ = PPC_INTERRUPT_RESET;
64
        break;
65
    case OPENPIC_EVT_MCK:
66
        n_IRQ = PPC_INTERRUPT_MCK;
67
        break;
68
    case OPENPIC_EVT_DEBUG:
69
        n_IRQ = PPC_INTERRUPT_DEBUG;
70
        break;
71
    case OPENPIC_EVT_RESET:
72
        qemu_system_reset_request();
73
        return;
74
    }
75
    ppc_set_irq(opaque, n_IRQ, level);
76
}
77

    
78
/*****************************************************************************/
79
/* PPC time base and decrementer emulation */
80
//#define DEBUG_TB
81

    
82
struct ppc_tb_t {
83
    /* Time base management */
84
    int64_t  tb_offset;    /* Compensation               */
85
    uint32_t tb_freq;      /* TB frequency               */
86
    /* Decrementer management */
87
    uint64_t decr_next;    /* Tick for next decr interrupt  */
88
    struct QEMUTimer *decr_timer;
89
    void *opaque;
90
};
91

    
92
static inline uint64_t cpu_ppc_get_tb (ppc_tb_t *tb_env)
93
{
94
    /* TB time in tb periods */
95
    return muldiv64(qemu_get_clock(vm_clock) + tb_env->tb_offset,
96
                    tb_env->tb_freq, ticks_per_sec);
97
}
98

    
99
uint32_t cpu_ppc_load_tbl (CPUState *env)
100
{
101
    ppc_tb_t *tb_env = env->tb_env;
102
    uint64_t tb;
103

    
104
    tb = cpu_ppc_get_tb(tb_env);
105
#ifdef DEBUG_TB
106
    {
107
        static int last_time;
108
        int now;
109
        now = time(NULL);
110
        if (last_time != now) {
111
            last_time = now;
112
            printf("%s: tb=0x%016lx %d %08lx\n",
113
                   __func__, tb, now, tb_env->tb_offset);
114
        }
115
    }
116
#endif
117

    
118
    return tb & 0xFFFFFFFF;
119
}
120

    
121
uint32_t cpu_ppc_load_tbu (CPUState *env)
122
{
123
    ppc_tb_t *tb_env = env->tb_env;
124
    uint64_t tb;
125

    
126
    tb = cpu_ppc_get_tb(tb_env);
127
#ifdef DEBUG_TB
128
    printf("%s: tb=0x%016lx\n", __func__, tb);
129
#endif
130

    
131
    return tb >> 32;
132
}
133

    
134
static void cpu_ppc_store_tb (ppc_tb_t *tb_env, uint64_t value)
135
{
136
    tb_env->tb_offset = muldiv64(value, ticks_per_sec, tb_env->tb_freq)
137
        - qemu_get_clock(vm_clock);
138
#ifdef DEBUG_TB
139
    printf("%s: tb=0x%016lx offset=%08x\n", __func__, value);
140
#endif
141
}
142

    
143
void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
144
{
145
    ppc_tb_t *tb_env = env->tb_env;
146

    
147
    cpu_ppc_store_tb(tb_env,
148
                     ((uint64_t)value << 32) | cpu_ppc_load_tbl(env));
149
}
150

    
151
void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
152
{
153
    ppc_tb_t *tb_env = env->tb_env;
154

    
155
    cpu_ppc_store_tb(tb_env,
156
                     ((uint64_t)cpu_ppc_load_tbu(env) << 32) | value);
157
}
158

    
159
uint32_t cpu_ppc_load_decr (CPUState *env)
160
{
161
    ppc_tb_t *tb_env = env->tb_env;
162
    uint32_t decr;
163
    int64_t diff;
164

    
165
    diff = tb_env->decr_next - qemu_get_clock(vm_clock);
166
    if (diff >= 0)
167
        decr = muldiv64(diff, tb_env->tb_freq, ticks_per_sec);
168
    else
169
        decr = -muldiv64(-diff, tb_env->tb_freq, ticks_per_sec);
170
#if defined(DEBUG_TB)
171
    printf("%s: 0x%08x\n", __func__, decr);
172
#endif
173

    
174
    return decr;
175
}
176

    
177
/* When decrementer expires,
178
 * all we need to do is generate or queue a CPU exception
179
 */
180
static inline void cpu_ppc_decr_excp (CPUState *env)
181
{
182
    /* Raise it */
183
#ifdef DEBUG_TB
184
    printf("raise decrementer exception\n");
185
#endif
186
    ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
187
}
188

    
189
static void _cpu_ppc_store_decr (CPUState *env, uint32_t decr,
190
                                 uint32_t value, int is_excp)
191
{
192
    ppc_tb_t *tb_env = env->tb_env;
193
    uint64_t now, next;
194

    
195
#ifdef DEBUG_TB
196
    printf("%s: 0x%08x => 0x%08x\n", __func__, decr, value);
197
#endif
198
    now = qemu_get_clock(vm_clock);
199
    next = now + muldiv64(value, ticks_per_sec, tb_env->tb_freq);
200
    if (is_excp)
201
        next += tb_env->decr_next - now;
202
    if (next == now)
203
        next++;
204
    tb_env->decr_next = next;
205
    /* Adjust timer */
206
    qemu_mod_timer(tb_env->decr_timer, next);
207
    /* If we set a negative value and the decrementer was positive,
208
     * raise an exception.
209
     */
210
    if ((value & 0x80000000) && !(decr & 0x80000000))
211
        cpu_ppc_decr_excp(env);
212
}
213

    
214
void cpu_ppc_store_decr (CPUState *env, uint32_t value)
215
{
216
    _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
217
}
218

    
219
static void cpu_ppc_decr_cb (void *opaque)
220
{
221
    _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
222
}
223

    
224
/* Set up (once) timebase frequency (in Hz) */
225
ppc_tb_t *cpu_ppc_tb_init (CPUState *env, uint32_t freq)
226
{
227
    ppc_tb_t *tb_env;
228

    
229
    tb_env = qemu_mallocz(sizeof(ppc_tb_t));
230
    if (tb_env == NULL)
231
        return NULL;
232
    env->tb_env = tb_env;
233
    if (tb_env->tb_freq == 0 || 1) {
234
        tb_env->tb_freq = freq;
235
        /* Create new timer */
236
        tb_env->decr_timer =
237
            qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
238
        /* There is a bug in Linux 2.4 kernels:
239
         * if a decrementer exception is pending when it enables msr_ee,
240
         * it's not ready to handle it...
241
         */
242
        _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
243
    }
244

    
245
    return tb_env;
246
}
247

    
248
/* Specific helpers for POWER & PowerPC 601 RTC */
249
ppc_tb_t *cpu_ppc601_rtc_init (CPUState *env)
250
{
251
    return cpu_ppc_tb_init(env, 7812500);
252
}
253

    
254
void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
255
__attribute__ (( alias ("cpu_ppc_store_tbu") ));
256

    
257
uint32_t cpu_ppc601_load_rtcu (CPUState *env)
258
__attribute__ (( alias ("cpu_ppc_load_tbu") ));
259

    
260
void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
261
{
262
    cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
263
}
264

    
265
uint32_t cpu_ppc601_load_rtcl (CPUState *env)
266
{
267
    return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
268
}
269

    
270
/*****************************************************************************/
271
/* Embedded PowerPC timers */
272

    
273
/* PIT, FIT & WDT */
274
typedef struct ppcemb_timer_t ppcemb_timer_t;
275
struct ppcemb_timer_t {
276
    uint64_t pit_reload;  /* PIT auto-reload value        */
277
    uint64_t fit_next;    /* Tick for next FIT interrupt  */
278
    struct QEMUTimer *fit_timer;
279
    uint64_t wdt_next;    /* Tick for next WDT interrupt  */
280
    struct QEMUTimer *wdt_timer;
281
};
282
   
283
/* Fixed interval timer */
284
static void cpu_4xx_fit_cb (void *opaque)
285
{
286
    CPUState *env;
287
    ppc_tb_t *tb_env;
288
    ppcemb_timer_t *ppcemb_timer;
289
    uint64_t now, next;
290

    
291
    env = opaque;
292
    tb_env = env->tb_env;
293
    ppcemb_timer = tb_env->opaque;
294
    now = qemu_get_clock(vm_clock);
295
    switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
296
    case 0:
297
        next = 1 << 9;
298
        break;
299
    case 1:
300
        next = 1 << 13;
301
        break;
302
    case 2:
303
        next = 1 << 17;
304
        break;
305
    case 3:
306
        next = 1 << 21;
307
        break;
308
    default:
309
        /* Cannot occur, but makes gcc happy */
310
        return;
311
    }
312
    next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq);
313
    if (next == now)
314
        next++;
315
    qemu_mod_timer(ppcemb_timer->fit_timer, next);
316
    tb_env->decr_next = next;
317
    env->spr[SPR_40x_TSR] |= 1 << 26;
318
    if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
319
        ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
320
    if (loglevel) {
321
        fprintf(logfile, "%s: ir %d TCR %08x TSR %08x\n", __func__,
322
                (env->spr[SPR_40x_TCR] >> 23) & 0x1,
323
                env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
324
    }
325
}
326

    
327
/* Programmable interval timer */
328
static void cpu_4xx_pit_cb (void *opaque)
329
{
330
    CPUState *env;
331
    ppc_tb_t *tb_env;
332
    ppcemb_timer_t *ppcemb_timer;
333
    uint64_t now, next;
334

    
335
    env = opaque;
336
    tb_env = env->tb_env;
337
    ppcemb_timer = tb_env->opaque;
338
    now = qemu_get_clock(vm_clock);
339
    if ((env->spr[SPR_40x_TCR] >> 22) & 0x1) {
340
        /* Auto reload */
341
        next = now + muldiv64(ppcemb_timer->pit_reload,
342
                              ticks_per_sec, tb_env->tb_freq);
343
        if (next == now)
344
            next++;
345
        qemu_mod_timer(tb_env->decr_timer, next);
346
        tb_env->decr_next = next;
347
    }
348
    env->spr[SPR_40x_TSR] |= 1 << 27;
349
    if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
350
        ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
351
    if (loglevel) {
352
        fprintf(logfile, "%s: ar %d ir %d TCR %08x TSR %08x %08lx\n", __func__,
353
                (env->spr[SPR_40x_TCR] >> 22) & 0x1,
354
                (env->spr[SPR_40x_TCR] >> 26) & 0x1,
355
                env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
356
                ppcemb_timer->pit_reload);
357
    }
358
}
359

    
360
/* Watchdog timer */
361
static void cpu_4xx_wdt_cb (void *opaque)
362
{
363
    CPUState *env;
364
    ppc_tb_t *tb_env;
365
    ppcemb_timer_t *ppcemb_timer;
366
    uint64_t now, next;
367

    
368
    env = opaque;
369
    tb_env = env->tb_env;
370
    ppcemb_timer = tb_env->opaque;
371
    now = qemu_get_clock(vm_clock);
372
    switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
373
    case 0:
374
        next = 1 << 17;
375
        break;
376
    case 1:
377
        next = 1 << 21;
378
        break;
379
    case 2:
380
        next = 1 << 25;
381
        break;
382
    case 3:
383
        next = 1 << 29;
384
        break;
385
    default:
386
        /* Cannot occur, but makes gcc happy */
387
        return;
388
    }
389
    next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq);
390
    if (next == now)
391
        next++;
392
    if (loglevel) {
393
        fprintf(logfile, "%s: TCR %08x TSR %08x\n", __func__,
394
                env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
395
    }
396
    switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
397
    case 0x0:
398
    case 0x1:
399
        qemu_mod_timer(ppcemb_timer->wdt_timer, next);
400
        ppcemb_timer->wdt_next = next;
401
        env->spr[SPR_40x_TSR] |= 1 << 31;
402
        break;
403
    case 0x2:
404
        qemu_mod_timer(ppcemb_timer->wdt_timer, next);
405
        ppcemb_timer->wdt_next = next;
406
        env->spr[SPR_40x_TSR] |= 1 << 30;
407
        if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
408
            ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
409
        break;
410
    case 0x3:
411
        env->spr[SPR_40x_TSR] &= ~0x30000000;
412
        env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
413
        switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
414
        case 0x0:
415
            /* No reset */
416
            break;
417
        case 0x1: /* Core reset */
418
        case 0x2: /* Chip reset */
419
        case 0x3: /* System reset */
420
            qemu_system_reset_request();
421
            return;
422
        }
423
    }
424
}
425

    
426
void store_40x_pit (CPUState *env, target_ulong val)
427
{
428
    ppc_tb_t *tb_env;
429
    ppcemb_timer_t *ppcemb_timer;
430
    uint64_t now, next;
431

    
432
    tb_env = env->tb_env;
433
    ppcemb_timer = tb_env->opaque;
434
    if (loglevel)
435
        fprintf(logfile, "%s %p %p\n", __func__, tb_env, ppcemb_timer);
436
    ppcemb_timer->pit_reload = val;
437
    if (val == 0) {
438
        /* Stop PIT */
439
        if (loglevel)
440
            fprintf(logfile, "%s: stop PIT\n", __func__);
441
        qemu_del_timer(tb_env->decr_timer);
442
    } else {
443
        if (loglevel)
444
            fprintf(logfile, "%s: start PIT 0x%08x\n", __func__, val);
445
        now = qemu_get_clock(vm_clock);
446
        next = now + muldiv64(val, ticks_per_sec, tb_env->tb_freq);
447
         if (next == now)
448
            next++;
449
        qemu_mod_timer(tb_env->decr_timer, next);
450
        tb_env->decr_next = next;
451
    }
452
}
453

    
454
target_ulong load_40x_pit (CPUState *env)
455
{
456
    return cpu_ppc_load_decr(env);
457
}
458

    
459
void store_booke_tsr (CPUState *env, target_ulong val)
460
{
461
    env->spr[SPR_40x_TSR] = val & 0xFC000000;
462
}
463

    
464
void store_booke_tcr (CPUState *env, target_ulong val)
465
{
466
    /* We don't update timers now. Maybe we should... */
467
    env->spr[SPR_40x_TCR] = val & 0xFF800000;
468
}
469

    
470
void ppc_emb_timers_init (CPUState *env)
471
{
472
    ppc_tb_t *tb_env;
473
    ppcemb_timer_t *ppcemb_timer;
474

    
475
    tb_env = env->tb_env;
476
    ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
477
    tb_env->opaque = ppcemb_timer;
478
    if (loglevel)
479
        fprintf(logfile, "%s %p %p\n", __func__, tb_env, ppcemb_timer);
480
    if (ppcemb_timer != NULL) {
481
        /* We use decr timer for PIT */
482
        tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
483
        ppcemb_timer->fit_timer =
484
            qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
485
        ppcemb_timer->wdt_timer =
486
            qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
487
    }
488
}
489

    
490
#if 0
491
/*****************************************************************************/
492
/* Handle system reset (for now, just stop emulation) */
493
void cpu_ppc_reset (CPUState *env)
494
{
495
    printf("Reset asked... Stop emulation\n");
496
    abort();
497
}
498
#endif
499

    
500
/*****************************************************************************/
501
/* Debug port */
502
void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
503
{
504
    addr &= 0xF;
505
    switch (addr) {
506
    case 0:
507
        printf("%c", val);
508
        break;
509
    case 1:
510
        printf("\n");
511
        fflush(stdout);
512
        break;
513
    case 2:
514
        printf("Set loglevel to %04x\n", val);
515
        cpu_set_log(val | 0x100);
516
        break;
517
    }
518
}
519

    
520
/*****************************************************************************/
521
/* NVRAM helpers */
522
void NVRAM_set_byte (m48t59_t *nvram, uint32_t addr, uint8_t value)
523
{
524
    m48t59_write(nvram, addr, value);
525
}
526

    
527
uint8_t NVRAM_get_byte (m48t59_t *nvram, uint32_t addr)
528
{
529
    return m48t59_read(nvram, addr);
530
}
531

    
532
void NVRAM_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value)
533
{
534
    m48t59_write(nvram, addr, value >> 8);
535
    m48t59_write(nvram, addr + 1, value & 0xFF);
536
}
537

    
538
uint16_t NVRAM_get_word (m48t59_t *nvram, uint32_t addr)
539
{
540
    uint16_t tmp;
541

    
542
    tmp = m48t59_read(nvram, addr) << 8;
543
    tmp |= m48t59_read(nvram, addr + 1);
544
    return tmp;
545
}
546

    
547
void NVRAM_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value)
548
{
549
    m48t59_write(nvram, addr, value >> 24);
550
    m48t59_write(nvram, addr + 1, (value >> 16) & 0xFF);
551
    m48t59_write(nvram, addr + 2, (value >> 8) & 0xFF);
552
    m48t59_write(nvram, addr + 3, value & 0xFF);
553
}
554

    
555
uint32_t NVRAM_get_lword (m48t59_t *nvram, uint32_t addr)
556
{
557
    uint32_t tmp;
558

    
559
    tmp = m48t59_read(nvram, addr) << 24;
560
    tmp |= m48t59_read(nvram, addr + 1) << 16;
561
    tmp |= m48t59_read(nvram, addr + 2) << 8;
562
    tmp |= m48t59_read(nvram, addr + 3);
563

    
564
    return tmp;
565
}
566

    
567
void NVRAM_set_string (m48t59_t *nvram, uint32_t addr,
568
                       const unsigned char *str, uint32_t max)
569
{
570
    int i;
571

    
572
    for (i = 0; i < max && str[i] != '\0'; i++) {
573
        m48t59_write(nvram, addr + i, str[i]);
574
    }
575
    m48t59_write(nvram, addr + max - 1, '\0');
576
}
577

    
578
int NVRAM_get_string (m48t59_t *nvram, uint8_t *dst, uint16_t addr, int max)
579
{
580
    int i;
581

    
582
    memset(dst, 0, max);
583
    for (i = 0; i < max; i++) {
584
        dst[i] = NVRAM_get_byte(nvram, addr + i);
585
        if (dst[i] == '\0')
586
            break;
587
    }
588

    
589
    return i;
590
}
591

    
592
static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
593
{
594
    uint16_t tmp;
595
    uint16_t pd, pd1, pd2;
596

    
597
    tmp = prev >> 8;
598
    pd = prev ^ value;
599
    pd1 = pd & 0x000F;
600
    pd2 = ((pd >> 4) & 0x000F) ^ pd1;
601
    tmp ^= (pd1 << 3) | (pd1 << 8);
602
    tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
603

    
604
    return tmp;
605
}
606

    
607
uint16_t NVRAM_compute_crc (m48t59_t *nvram, uint32_t start, uint32_t count)
608
{
609
    uint32_t i;
610
    uint16_t crc = 0xFFFF;
611
    int odd;
612

    
613
    odd = count & 1;
614
    count &= ~1;
615
    for (i = 0; i != count; i++) {
616
        crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
617
    }
618
    if (odd) {
619
        crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
620
    }
621

    
622
    return crc;
623
}
624

    
625
#define CMDLINE_ADDR 0x017ff000
626

    
627
int PPC_NVRAM_set_params (m48t59_t *nvram, uint16_t NVRAM_size,
628
                          const unsigned char *arch,
629
                          uint32_t RAM_size, int boot_device,
630
                          uint32_t kernel_image, uint32_t kernel_size,
631
                          const char *cmdline,
632
                          uint32_t initrd_image, uint32_t initrd_size,
633
                          uint32_t NVRAM_image,
634
                          int width, int height, int depth)
635
{
636
    uint16_t crc;
637

    
638
    /* Set parameters for Open Hack'Ware BIOS */
639
    NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
640
    NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
641
    NVRAM_set_word(nvram,   0x14, NVRAM_size);
642
    NVRAM_set_string(nvram, 0x20, arch, 16);
643
    NVRAM_set_lword(nvram,  0x30, RAM_size);
644
    NVRAM_set_byte(nvram,   0x34, boot_device);
645
    NVRAM_set_lword(nvram,  0x38, kernel_image);
646
    NVRAM_set_lword(nvram,  0x3C, kernel_size);
647
    if (cmdline) {
648
        /* XXX: put the cmdline in NVRAM too ? */
649
        strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
650
        NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
651
        NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
652
    } else {
653
        NVRAM_set_lword(nvram,  0x40, 0);
654
        NVRAM_set_lword(nvram,  0x44, 0);
655
    }
656
    NVRAM_set_lword(nvram,  0x48, initrd_image);
657
    NVRAM_set_lword(nvram,  0x4C, initrd_size);
658
    NVRAM_set_lword(nvram,  0x50, NVRAM_image);
659

    
660
    NVRAM_set_word(nvram,   0x54, width);
661
    NVRAM_set_word(nvram,   0x56, height);
662
    NVRAM_set_word(nvram,   0x58, depth);
663
    crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
664
    NVRAM_set_word(nvram,  0xFC, crc);
665

    
666
    return 0;
667
}