Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ ebb9518a

History | View | Annotate | Download (14.1 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "sun4m.h"
26
#include "qemu-timer.h"
27
#include "ptimer.h"
28
#include "sysbus.h"
29
#include "trace.h"
30

    
31
/*
32
 * Registers of hardware timer in sun4m.
33
 *
34
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
35
 * produced as NCR89C105. See
36
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
37
 *
38
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
39
 * are zero. Bit 31 is 1 when count has been reached.
40
 *
41
 * Per-CPU timers interrupt local CPU, system timer uses normal
42
 * interrupt routing.
43
 *
44
 */
45

    
46
#define MAX_CPUS 16
47

    
48
typedef struct CPUTimerState {
49
    qemu_irq irq;
50
    ptimer_state *timer;
51
    uint32_t count, counthigh, reached;
52
    /* processor only */
53
    uint32_t running;
54
    uint64_t limit;
55
} CPUTimerState;
56

    
57
typedef struct SLAVIO_TIMERState {
58
    SysBusDevice busdev;
59
    uint32_t num_cpus;
60
    uint32_t cputimer_mode;
61
    CPUTimerState cputimer[MAX_CPUS + 1];
62
} SLAVIO_TIMERState;
63

    
64
typedef struct TimerContext {
65
    MemoryRegion iomem;
66
    SLAVIO_TIMERState *s;
67
    unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
68
} TimerContext;
69

    
70
#define SYS_TIMER_SIZE 0x14
71
#define CPU_TIMER_SIZE 0x10
72

    
73
#define TIMER_LIMIT         0
74
#define TIMER_COUNTER       1
75
#define TIMER_COUNTER_NORST 2
76
#define TIMER_STATUS        3
77
#define TIMER_MODE          4
78

    
79
#define TIMER_COUNT_MASK32 0xfffffe00
80
#define TIMER_LIMIT_MASK32 0x7fffffff
81
#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
82
#define TIMER_MAX_COUNT32  0x7ffffe00ULL
83
#define TIMER_REACHED      0x80000000
84
#define TIMER_PERIOD       500ULL // 500ns
85
#define LIMIT_TO_PERIODS(l) (((l) >> 9) - 1)
86
#define PERIODS_TO_LIMIT(l) (((l) + 1) << 9)
87

    
88
static int slavio_timer_is_user(TimerContext *tc)
89
{
90
    SLAVIO_TIMERState *s = tc->s;
91
    unsigned int timer_index = tc->timer_index;
92

    
93
    return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
94
}
95

    
96
// Update count, set irq, update expire_time
97
// Convert from ptimer countdown units
98
static void slavio_timer_get_out(CPUTimerState *t)
99
{
100
    uint64_t count, limit;
101

    
102
    if (t->limit == 0) { /* free-run system or processor counter */
103
        limit = TIMER_MAX_COUNT32;
104
    } else {
105
        limit = t->limit;
106
    }
107
    count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
108

    
109
    trace_slavio_timer_get_out(t->limit, t->counthigh, t->count);
110
    t->count = count & TIMER_COUNT_MASK32;
111
    t->counthigh = count >> 32;
112
}
113

    
114
// timer callback
115
static void slavio_timer_irq(void *opaque)
116
{
117
    TimerContext *tc = opaque;
118
    SLAVIO_TIMERState *s = tc->s;
119
    CPUTimerState *t = &s->cputimer[tc->timer_index];
120

    
121
    slavio_timer_get_out(t);
122
    trace_slavio_timer_irq(t->counthigh, t->count);
123
    /* if limit is 0 (free-run), there will be no match */
124
    if (t->limit != 0) {
125
        t->reached = TIMER_REACHED;
126
    }
127
    /* there is no interrupt if user timer or free-run */
128
    if (!slavio_timer_is_user(tc) && t->limit != 0) {
129
        qemu_irq_raise(t->irq);
130
    }
131
}
132

    
133
static uint64_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr,
134
                                       unsigned size)
135
{
136
    TimerContext *tc = opaque;
137
    SLAVIO_TIMERState *s = tc->s;
138
    uint32_t saddr, ret;
139
    unsigned int timer_index = tc->timer_index;
140
    CPUTimerState *t = &s->cputimer[timer_index];
141

    
142
    saddr = addr >> 2;
143
    switch (saddr) {
144
    case TIMER_LIMIT:
145
        // read limit (system counter mode) or read most signifying
146
        // part of counter (user mode)
147
        if (slavio_timer_is_user(tc)) {
148
            // read user timer MSW
149
            slavio_timer_get_out(t);
150
            ret = t->counthigh | t->reached;
151
        } else {
152
            // read limit
153
            // clear irq
154
            qemu_irq_lower(t->irq);
155
            t->reached = 0;
156
            ret = t->limit & TIMER_LIMIT_MASK32;
157
        }
158
        break;
159
    case TIMER_COUNTER:
160
        // read counter and reached bit (system mode) or read lsbits
161
        // of counter (user mode)
162
        slavio_timer_get_out(t);
163
        if (slavio_timer_is_user(tc)) { // read user timer LSW
164
            ret = t->count & TIMER_MAX_COUNT64;
165
        } else { // read limit
166
            ret = (t->count & TIMER_MAX_COUNT32) |
167
                t->reached;
168
        }
169
        break;
170
    case TIMER_STATUS:
171
        // only available in processor counter/timer
172
        // read start/stop status
173
        if (timer_index > 0) {
174
            ret = t->running;
175
        } else {
176
            ret = 0;
177
        }
178
        break;
179
    case TIMER_MODE:
180
        // only available in system counter
181
        // read user/system mode
182
        ret = s->cputimer_mode;
183
        break;
184
    default:
185
        trace_slavio_timer_mem_readl_invalid(addr);
186
        ret = 0;
187
        break;
188
    }
189
    trace_slavio_timer_mem_readl(addr, ret);
190
    return ret;
191
}
192

    
193
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
194
                                    uint64_t val, unsigned size)
195
{
196
    TimerContext *tc = opaque;
197
    SLAVIO_TIMERState *s = tc->s;
198
    uint32_t saddr;
199
    unsigned int timer_index = tc->timer_index;
200
    CPUTimerState *t = &s->cputimer[timer_index];
201

    
202
    trace_slavio_timer_mem_writel(addr, val);
203
    saddr = addr >> 2;
204
    switch (saddr) {
205
    case TIMER_LIMIT:
206
        if (slavio_timer_is_user(tc)) {
207
            uint64_t count;
208

    
209
            // set user counter MSW, reset counter
210
            t->limit = TIMER_MAX_COUNT64;
211
            t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
212
            t->reached = 0;
213
            count = ((uint64_t)t->counthigh << 32) | t->count;
214
            trace_slavio_timer_mem_writel_limit(timer_index, count);
215
            ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
216
        } else {
217
            // set limit, reset counter
218
            qemu_irq_lower(t->irq);
219
            t->limit = val & TIMER_MAX_COUNT32;
220
            if (t->timer) {
221
                if (t->limit == 0) { /* free-run */
222
                    ptimer_set_limit(t->timer,
223
                                     LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
224
                } else {
225
                    ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
226
                }
227
            }
228
        }
229
        break;
230
    case TIMER_COUNTER:
231
        if (slavio_timer_is_user(tc)) {
232
            uint64_t count;
233

    
234
            // set user counter LSW, reset counter
235
            t->limit = TIMER_MAX_COUNT64;
236
            t->count = val & TIMER_MAX_COUNT64;
237
            t->reached = 0;
238
            count = ((uint64_t)t->counthigh) << 32 | t->count;
239
            trace_slavio_timer_mem_writel_limit(timer_index, count);
240
            ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
241
        } else {
242
            trace_slavio_timer_mem_writel_counter_invalid();
243
        }
244
        break;
245
    case TIMER_COUNTER_NORST:
246
        // set limit without resetting counter
247
        t->limit = val & TIMER_MAX_COUNT32;
248
        if (t->limit == 0) { /* free-run */
249
            ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
250
        } else {
251
            ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
252
        }
253
        break;
254
    case TIMER_STATUS:
255
        if (slavio_timer_is_user(tc)) {
256
            // start/stop user counter
257
            if ((val & 1) && !t->running) {
258
                trace_slavio_timer_mem_writel_status_start(timer_index);
259
                ptimer_run(t->timer, 0);
260
                t->running = 1;
261
            } else if (!(val & 1) && t->running) {
262
                trace_slavio_timer_mem_writel_status_stop(timer_index);
263
                ptimer_stop(t->timer);
264
                t->running = 0;
265
            }
266
        }
267
        break;
268
    case TIMER_MODE:
269
        if (timer_index == 0) {
270
            unsigned int i;
271

    
272
            for (i = 0; i < s->num_cpus; i++) {
273
                unsigned int processor = 1 << i;
274
                CPUTimerState *curr_timer = &s->cputimer[i + 1];
275

    
276
                // check for a change in timer mode for this processor
277
                if ((val & processor) != (s->cputimer_mode & processor)) {
278
                    if (val & processor) { // counter -> user timer
279
                        qemu_irq_lower(curr_timer->irq);
280
                        // counters are always running
281
                        ptimer_stop(curr_timer->timer);
282
                        curr_timer->running = 0;
283
                        // user timer limit is always the same
284
                        curr_timer->limit = TIMER_MAX_COUNT64;
285
                        ptimer_set_limit(curr_timer->timer,
286
                                         LIMIT_TO_PERIODS(curr_timer->limit),
287
                                         1);
288
                        // set this processors user timer bit in config
289
                        // register
290
                        s->cputimer_mode |= processor;
291
                        trace_slavio_timer_mem_writel_mode_user(timer_index);
292
                    } else { // user timer -> counter
293
                        // stop the user timer if it is running
294
                        if (curr_timer->running) {
295
                            ptimer_stop(curr_timer->timer);
296
                        }
297
                        // start the counter
298
                        ptimer_run(curr_timer->timer, 0);
299
                        curr_timer->running = 1;
300
                        // clear this processors user timer bit in config
301
                        // register
302
                        s->cputimer_mode &= ~processor;
303
                        trace_slavio_timer_mem_writel_mode_counter(timer_index);
304
                    }
305
                }
306
            }
307
        } else {
308
            trace_slavio_timer_mem_writel_mode_invalid();
309
        }
310
        break;
311
    default:
312
        trace_slavio_timer_mem_writel_invalid(addr);
313
        break;
314
    }
315
}
316

    
317
static const MemoryRegionOps slavio_timer_mem_ops = {
318
    .read = slavio_timer_mem_readl,
319
    .write = slavio_timer_mem_writel,
320
    .endianness = DEVICE_NATIVE_ENDIAN,
321
    .valid = {
322
        .min_access_size = 4,
323
        .max_access_size = 4,
324
    },
325
};
326

    
327
static const VMStateDescription vmstate_timer = {
328
    .name ="timer",
329
    .version_id = 3,
330
    .minimum_version_id = 3,
331
    .minimum_version_id_old = 3,
332
    .fields      = (VMStateField []) {
333
        VMSTATE_UINT64(limit, CPUTimerState),
334
        VMSTATE_UINT32(count, CPUTimerState),
335
        VMSTATE_UINT32(counthigh, CPUTimerState),
336
        VMSTATE_UINT32(reached, CPUTimerState),
337
        VMSTATE_UINT32(running, CPUTimerState),
338
        VMSTATE_PTIMER(timer, CPUTimerState),
339
        VMSTATE_END_OF_LIST()
340
    }
341
};
342

    
343
static const VMStateDescription vmstate_slavio_timer = {
344
    .name ="slavio_timer",
345
    .version_id = 3,
346
    .minimum_version_id = 3,
347
    .minimum_version_id_old = 3,
348
    .fields      = (VMStateField []) {
349
        VMSTATE_STRUCT_ARRAY(cputimer, SLAVIO_TIMERState, MAX_CPUS + 1, 3,
350
                             vmstate_timer, CPUTimerState),
351
        VMSTATE_END_OF_LIST()
352
    }
353
};
354

    
355
static void slavio_timer_reset(DeviceState *d)
356
{
357
    SLAVIO_TIMERState *s = container_of(d, SLAVIO_TIMERState, busdev.qdev);
358
    unsigned int i;
359
    CPUTimerState *curr_timer;
360

    
361
    for (i = 0; i <= MAX_CPUS; i++) {
362
        curr_timer = &s->cputimer[i];
363
        curr_timer->limit = 0;
364
        curr_timer->count = 0;
365
        curr_timer->reached = 0;
366
        if (i <= s->num_cpus) {
367
            ptimer_set_limit(curr_timer->timer,
368
                             LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
369
            ptimer_run(curr_timer->timer, 0);
370
            curr_timer->running = 1;
371
        }
372
    }
373
    s->cputimer_mode = 0;
374
}
375

    
376
static int slavio_timer_init1(SysBusDevice *dev)
377
{
378
    SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev);
379
    QEMUBH *bh;
380
    unsigned int i;
381
    TimerContext *tc;
382

    
383
    for (i = 0; i <= MAX_CPUS; i++) {
384
        uint64_t size;
385
        char timer_name[20];
386

    
387
        tc = g_malloc0(sizeof(TimerContext));
388
        tc->s = s;
389
        tc->timer_index = i;
390

    
391
        bh = qemu_bh_new(slavio_timer_irq, tc);
392
        s->cputimer[i].timer = ptimer_init(bh);
393
        ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
394

    
395
        size = i == 0 ? SYS_TIMER_SIZE : CPU_TIMER_SIZE;
396
        snprintf(timer_name, sizeof(timer_name), "timer-%i", i);
397
        memory_region_init_io(&tc->iomem, &slavio_timer_mem_ops, tc,
398
                              timer_name, size);
399
        sysbus_init_mmio(dev, &tc->iomem);
400

    
401
        sysbus_init_irq(dev, &s->cputimer[i].irq);
402
    }
403

    
404
    return 0;
405
}
406

    
407
static Property slavio_timer_properties[] = {
408
    DEFINE_PROP_UINT32("num_cpus",  SLAVIO_TIMERState, num_cpus,  0),
409
    DEFINE_PROP_END_OF_LIST(),
410
};
411

    
412
static void slavio_timer_class_init(ObjectClass *klass, void *data)
413
{
414
    DeviceClass *dc = DEVICE_CLASS(klass);
415
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
416

    
417
    k->init = slavio_timer_init1;
418
    dc->reset = slavio_timer_reset;
419
    dc->vmsd = &vmstate_slavio_timer;
420
    dc->props = slavio_timer_properties;
421
}
422

    
423
static TypeInfo slavio_timer_info = {
424
    .name          = "slavio_timer",
425
    .parent        = TYPE_SYS_BUS_DEVICE,
426
    .instance_size = sizeof(SLAVIO_TIMERState),
427
    .class_init    = slavio_timer_class_init,
428
};
429

    
430
static void slavio_timer_register_types(void)
431
{
432
    type_register_static(&slavio_timer_info);
433
}
434

    
435
type_init(slavio_timer_register_types)