Statistics
| Branch: | Revision:

root / hw / rtl8139.c @ ec48c774

History | View | Annotate | Download (100.7 kB)

1
/**
2
 * QEMU RTL8139 emulation
3
 *
4
 * Copyright (c) 2006 Igor Kovalenko
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23

24
 * Modifications:
25
 *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26
 *
27
 *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28
 *                                  HW revision ID changes for FreeBSD driver
29
 *
30
 *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31
 *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32
 *                                  Rearranged debugging print statements
33
 *                                  Implemented PCI timer interrupt (disabled by default)
34
 *                                  Implemented Tally Counters, increased VM load/save version
35
 *                                  Implemented IP/TCP/UDP checksum task offloading
36
 *
37
 *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38
 *                                  Fixed MTU=1500 for produced ethernet frames
39
 *
40
 *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41
 *                                  segmentation offloading
42
 *                                  Removed slirp.h dependency
43
 *                                  Added rx/tx buffer reset when enabling rx/tx operation
44
 *
45
 *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46
 *                                  when strictly needed (required for for
47
 *                                  Darwin)
48
 *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49
 */
50

    
51
/* For crc32 */
52
#include <zlib.h>
53

    
54
#include "hw.h"
55
#include "pci.h"
56
#include "qemu-timer.h"
57
#include "net.h"
58
#include "loader.h"
59
#include "sysemu.h"
60
#include "iov.h"
61

    
62
/* debug RTL8139 card */
63
//#define DEBUG_RTL8139 1
64

    
65
#define PCI_FREQUENCY 33000000L
66

    
67
/* debug RTL8139 card C+ mode only */
68
//#define DEBUG_RTL8139CP 1
69

    
70
#define SET_MASKED(input, mask, curr) \
71
    ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
72

    
73
/* arg % size for size which is a power of 2 */
74
#define MOD2(input, size) \
75
    ( ( input ) & ( size - 1 )  )
76

    
77
#define ETHER_ADDR_LEN 6
78
#define ETHER_TYPE_LEN 2
79
#define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
80
#define ETH_P_IP    0x0800      /* Internet Protocol packet */
81
#define ETH_P_8021Q 0x8100      /* 802.1Q VLAN Extended Header  */
82
#define ETH_MTU     1500
83

    
84
#define VLAN_TCI_LEN 2
85
#define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
86

    
87
#if defined (DEBUG_RTL8139)
88
#  define DPRINTF(fmt, ...) \
89
    do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
90
#else
91
static inline __attribute__ ((format (printf, 1, 2)))
92
    int DPRINTF(const char *fmt, ...)
93
{
94
    return 0;
95
}
96
#endif
97

    
98
/* Symbolic offsets to registers. */
99
enum RTL8139_registers {
100
    MAC0 = 0,        /* Ethernet hardware address. */
101
    MAR0 = 8,        /* Multicast filter. */
102
    TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
103
                     /* Dump Tally Conter control register(64bit). C+ mode only */
104
    TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
105
    RxBuf = 0x30,
106
    ChipCmd = 0x37,
107
    RxBufPtr = 0x38,
108
    RxBufAddr = 0x3A,
109
    IntrMask = 0x3C,
110
    IntrStatus = 0x3E,
111
    TxConfig = 0x40,
112
    RxConfig = 0x44,
113
    Timer = 0x48,        /* A general-purpose counter. */
114
    RxMissed = 0x4C,    /* 24 bits valid, write clears. */
115
    Cfg9346 = 0x50,
116
    Config0 = 0x51,
117
    Config1 = 0x52,
118
    FlashReg = 0x54,
119
    MediaStatus = 0x58,
120
    Config3 = 0x59,
121
    Config4 = 0x5A,        /* absent on RTL-8139A */
122
    HltClk = 0x5B,
123
    MultiIntr = 0x5C,
124
    PCIRevisionID = 0x5E,
125
    TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
126
    BasicModeCtrl = 0x62,
127
    BasicModeStatus = 0x64,
128
    NWayAdvert = 0x66,
129
    NWayLPAR = 0x68,
130
    NWayExpansion = 0x6A,
131
    /* Undocumented registers, but required for proper operation. */
132
    FIFOTMS = 0x70,        /* FIFO Control and test. */
133
    CSCR = 0x74,        /* Chip Status and Configuration Register. */
134
    PARA78 = 0x78,
135
    PARA7c = 0x7c,        /* Magic transceiver parameter register. */
136
    Config5 = 0xD8,        /* absent on RTL-8139A */
137
    /* C+ mode */
138
    TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
139
    RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
140
    CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
141
    IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
142
    RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
143
    RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
144
    TxThresh    = 0xEC, /* Early Tx threshold */
145
};
146

    
147
enum ClearBitMasks {
148
    MultiIntrClear = 0xF000,
149
    ChipCmdClear = 0xE2,
150
    Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
151
};
152

    
153
enum ChipCmdBits {
154
    CmdReset = 0x10,
155
    CmdRxEnb = 0x08,
156
    CmdTxEnb = 0x04,
157
    RxBufEmpty = 0x01,
158
};
159

    
160
/* C+ mode */
161
enum CplusCmdBits {
162
    CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
163
    CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
164
    CPlusRxEnb    = 0x0002,
165
    CPlusTxEnb    = 0x0001,
166
};
167

    
168
/* Interrupt register bits, using my own meaningful names. */
169
enum IntrStatusBits {
170
    PCIErr = 0x8000,
171
    PCSTimeout = 0x4000,
172
    RxFIFOOver = 0x40,
173
    RxUnderrun = 0x20,
174
    RxOverflow = 0x10,
175
    TxErr = 0x08,
176
    TxOK = 0x04,
177
    RxErr = 0x02,
178
    RxOK = 0x01,
179

    
180
    RxAckBits = RxFIFOOver | RxOverflow | RxOK,
181
};
182

    
183
enum TxStatusBits {
184
    TxHostOwns = 0x2000,
185
    TxUnderrun = 0x4000,
186
    TxStatOK = 0x8000,
187
    TxOutOfWindow = 0x20000000,
188
    TxAborted = 0x40000000,
189
    TxCarrierLost = 0x80000000,
190
};
191
enum RxStatusBits {
192
    RxMulticast = 0x8000,
193
    RxPhysical = 0x4000,
194
    RxBroadcast = 0x2000,
195
    RxBadSymbol = 0x0020,
196
    RxRunt = 0x0010,
197
    RxTooLong = 0x0008,
198
    RxCRCErr = 0x0004,
199
    RxBadAlign = 0x0002,
200
    RxStatusOK = 0x0001,
201
};
202

    
203
/* Bits in RxConfig. */
204
enum rx_mode_bits {
205
    AcceptErr = 0x20,
206
    AcceptRunt = 0x10,
207
    AcceptBroadcast = 0x08,
208
    AcceptMulticast = 0x04,
209
    AcceptMyPhys = 0x02,
210
    AcceptAllPhys = 0x01,
211
};
212

    
213
/* Bits in TxConfig. */
214
enum tx_config_bits {
215

    
216
        /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
217
        TxIFGShift = 24,
218
        TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
219
        TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
220
        TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
221
        TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
222

    
223
    TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
224
    TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
225
    TxClearAbt = (1 << 0),    /* Clear abort (WO) */
226
    TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
227
    TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
228

    
229
    TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
230
};
231

    
232

    
233
/* Transmit Status of All Descriptors (TSAD) Register */
234
enum TSAD_bits {
235
 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
236
 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
237
 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
238
 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
239
 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
240
 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
241
 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
242
 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
243
 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
244
 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
245
 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
246
 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
247
 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
248
 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
249
 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
250
 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
251
};
252

    
253

    
254
/* Bits in Config1 */
255
enum Config1Bits {
256
    Cfg1_PM_Enable = 0x01,
257
    Cfg1_VPD_Enable = 0x02,
258
    Cfg1_PIO = 0x04,
259
    Cfg1_MMIO = 0x08,
260
    LWAKE = 0x10,        /* not on 8139, 8139A */
261
    Cfg1_Driver_Load = 0x20,
262
    Cfg1_LED0 = 0x40,
263
    Cfg1_LED1 = 0x80,
264
    SLEEP = (1 << 1),    /* only on 8139, 8139A */
265
    PWRDN = (1 << 0),    /* only on 8139, 8139A */
266
};
267

    
268
/* Bits in Config3 */
269
enum Config3Bits {
270
    Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
271
    Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
272
    Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
273
    Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
274
    Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
275
    Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
276
    Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
277
    Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
278
};
279

    
280
/* Bits in Config4 */
281
enum Config4Bits {
282
    LWPTN = (1 << 2),    /* not on 8139, 8139A */
283
};
284

    
285
/* Bits in Config5 */
286
enum Config5Bits {
287
    Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
288
    Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
289
    Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
290
    Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
291
    Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
292
    Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
293
    Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
294
};
295

    
296
enum RxConfigBits {
297
    /* rx fifo threshold */
298
    RxCfgFIFOShift = 13,
299
    RxCfgFIFONone = (7 << RxCfgFIFOShift),
300

    
301
    /* Max DMA burst */
302
    RxCfgDMAShift = 8,
303
    RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
304

    
305
    /* rx ring buffer length */
306
    RxCfgRcv8K = 0,
307
    RxCfgRcv16K = (1 << 11),
308
    RxCfgRcv32K = (1 << 12),
309
    RxCfgRcv64K = (1 << 11) | (1 << 12),
310

    
311
    /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
312
    RxNoWrap = (1 << 7),
313
};
314

    
315
/* Twister tuning parameters from RealTek.
316
   Completely undocumented, but required to tune bad links on some boards. */
317
/*
318
enum CSCRBits {
319
    CSCR_LinkOKBit = 0x0400,
320
    CSCR_LinkChangeBit = 0x0800,
321
    CSCR_LinkStatusBits = 0x0f000,
322
    CSCR_LinkDownOffCmd = 0x003c0,
323
    CSCR_LinkDownCmd = 0x0f3c0,
324
*/
325
enum CSCRBits {
326
    CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
327
    CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
328
    CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
329
    CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
330
    CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
331
    CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
332
    CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
333
    CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
334
    CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
335
};
336

    
337
enum Cfg9346Bits {
338
    Cfg9346_Lock = 0x00,
339
    Cfg9346_Unlock = 0xC0,
340
};
341

    
342
typedef enum {
343
    CH_8139 = 0,
344
    CH_8139_K,
345
    CH_8139A,
346
    CH_8139A_G,
347
    CH_8139B,
348
    CH_8130,
349
    CH_8139C,
350
    CH_8100,
351
    CH_8100B_8139D,
352
    CH_8101,
353
} chip_t;
354

    
355
enum chip_flags {
356
    HasHltClk = (1 << 0),
357
    HasLWake = (1 << 1),
358
};
359

    
360
#define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
361
    (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
362
#define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
363

    
364
#define RTL8139_PCI_REVID_8139      0x10
365
#define RTL8139_PCI_REVID_8139CPLUS 0x20
366

    
367
#define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
368

    
369
/* Size is 64 * 16bit words */
370
#define EEPROM_9346_ADDR_BITS 6
371
#define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
372
#define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
373

    
374
enum Chip9346Operation
375
{
376
    Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
377
    Chip9346_op_read = 0x80,          /* 10 AAAAAA */
378
    Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
379
    Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
380
    Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
381
    Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
382
    Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
383
};
384

    
385
enum Chip9346Mode
386
{
387
    Chip9346_none = 0,
388
    Chip9346_enter_command_mode,
389
    Chip9346_read_command,
390
    Chip9346_data_read,      /* from output register */
391
    Chip9346_data_write,     /* to input register, then to contents at specified address */
392
    Chip9346_data_write_all, /* to input register, then filling contents */
393
};
394

    
395
typedef struct EEprom9346
396
{
397
    uint16_t contents[EEPROM_9346_SIZE];
398
    int      mode;
399
    uint32_t tick;
400
    uint8_t  address;
401
    uint16_t input;
402
    uint16_t output;
403

    
404
    uint8_t eecs;
405
    uint8_t eesk;
406
    uint8_t eedi;
407
    uint8_t eedo;
408
} EEprom9346;
409

    
410
typedef struct RTL8139TallyCounters
411
{
412
    /* Tally counters */
413
    uint64_t   TxOk;
414
    uint64_t   RxOk;
415
    uint64_t   TxERR;
416
    uint32_t   RxERR;
417
    uint16_t   MissPkt;
418
    uint16_t   FAE;
419
    uint32_t   Tx1Col;
420
    uint32_t   TxMCol;
421
    uint64_t   RxOkPhy;
422
    uint64_t   RxOkBrd;
423
    uint32_t   RxOkMul;
424
    uint16_t   TxAbt;
425
    uint16_t   TxUndrn;
426
} RTL8139TallyCounters;
427

    
428
/* Clears all tally counters */
429
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
430

    
431
/* Writes tally counters to specified physical memory address */
432
static void RTL8139TallyCounters_physical_memory_write(target_phys_addr_t tc_addr, RTL8139TallyCounters* counters);
433

    
434
typedef struct RTL8139State {
435
    PCIDevice dev;
436
    uint8_t phys[8]; /* mac address */
437
    uint8_t mult[8]; /* multicast mask array */
438

    
439
    uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
440
    uint32_t TxAddr[4];   /* TxAddr0 */
441
    uint32_t RxBuf;       /* Receive buffer */
442
    uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
443
    uint32_t RxBufPtr;
444
    uint32_t RxBufAddr;
445

    
446
    uint16_t IntrStatus;
447
    uint16_t IntrMask;
448

    
449
    uint32_t TxConfig;
450
    uint32_t RxConfig;
451
    uint32_t RxMissed;
452

    
453
    uint16_t CSCR;
454

    
455
    uint8_t  Cfg9346;
456
    uint8_t  Config0;
457
    uint8_t  Config1;
458
    uint8_t  Config3;
459
    uint8_t  Config4;
460
    uint8_t  Config5;
461

    
462
    uint8_t  clock_enabled;
463
    uint8_t  bChipCmdState;
464

    
465
    uint16_t MultiIntr;
466

    
467
    uint16_t BasicModeCtrl;
468
    uint16_t BasicModeStatus;
469
    uint16_t NWayAdvert;
470
    uint16_t NWayLPAR;
471
    uint16_t NWayExpansion;
472

    
473
    uint16_t CpCmd;
474
    uint8_t  TxThresh;
475

    
476
    NICState *nic;
477
    NICConf conf;
478
    int rtl8139_mmio_io_addr;
479

    
480
    /* C ring mode */
481
    uint32_t   currTxDesc;
482

    
483
    /* C+ mode */
484
    uint32_t   cplus_enabled;
485

    
486
    uint32_t   currCPlusRxDesc;
487
    uint32_t   currCPlusTxDesc;
488

    
489
    uint32_t   RxRingAddrLO;
490
    uint32_t   RxRingAddrHI;
491

    
492
    EEprom9346 eeprom;
493

    
494
    uint32_t   TCTR;
495
    uint32_t   TimerInt;
496
    int64_t    TCTR_base;
497

    
498
    /* Tally counters */
499
    RTL8139TallyCounters tally_counters;
500

    
501
    /* Non-persistent data */
502
    uint8_t   *cplus_txbuffer;
503
    int        cplus_txbuffer_len;
504
    int        cplus_txbuffer_offset;
505

    
506
    /* PCI interrupt timer */
507
    QEMUTimer *timer;
508
    int64_t TimerExpire;
509

    
510
    /* Support migration to/from old versions */
511
    int rtl8139_mmio_io_addr_dummy;
512
} RTL8139State;
513

    
514
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
515

    
516
static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
517
{
518
    DPRINTF("eeprom command 0x%02x\n", command);
519

    
520
    switch (command & Chip9346_op_mask)
521
    {
522
        case Chip9346_op_read:
523
        {
524
            eeprom->address = command & EEPROM_9346_ADDR_MASK;
525
            eeprom->output = eeprom->contents[eeprom->address];
526
            eeprom->eedo = 0;
527
            eeprom->tick = 0;
528
            eeprom->mode = Chip9346_data_read;
529
            DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
530
                eeprom->address, eeprom->output);
531
        }
532
        break;
533

    
534
        case Chip9346_op_write:
535
        {
536
            eeprom->address = command & EEPROM_9346_ADDR_MASK;
537
            eeprom->input = 0;
538
            eeprom->tick = 0;
539
            eeprom->mode = Chip9346_none; /* Chip9346_data_write */
540
            DPRINTF("eeprom begin write to address 0x%02x\n",
541
                eeprom->address);
542
        }
543
        break;
544
        default:
545
            eeprom->mode = Chip9346_none;
546
            switch (command & Chip9346_op_ext_mask)
547
            {
548
                case Chip9346_op_write_enable:
549
                    DPRINTF("eeprom write enabled\n");
550
                    break;
551
                case Chip9346_op_write_all:
552
                    DPRINTF("eeprom begin write all\n");
553
                    break;
554
                case Chip9346_op_write_disable:
555
                    DPRINTF("eeprom write disabled\n");
556
                    break;
557
            }
558
            break;
559
    }
560
}
561

    
562
static void prom9346_shift_clock(EEprom9346 *eeprom)
563
{
564
    int bit = eeprom->eedi?1:0;
565

    
566
    ++ eeprom->tick;
567

    
568
    DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
569
        eeprom->eedo);
570

    
571
    switch (eeprom->mode)
572
    {
573
        case Chip9346_enter_command_mode:
574
            if (bit)
575
            {
576
                eeprom->mode = Chip9346_read_command;
577
                eeprom->tick = 0;
578
                eeprom->input = 0;
579
                DPRINTF("eeprom: +++ synchronized, begin command read\n");
580
            }
581
            break;
582

    
583
        case Chip9346_read_command:
584
            eeprom->input = (eeprom->input << 1) | (bit & 1);
585
            if (eeprom->tick == 8)
586
            {
587
                prom9346_decode_command(eeprom, eeprom->input & 0xff);
588
            }
589
            break;
590

    
591
        case Chip9346_data_read:
592
            eeprom->eedo = (eeprom->output & 0x8000)?1:0;
593
            eeprom->output <<= 1;
594
            if (eeprom->tick == 16)
595
            {
596
#if 1
597
        // the FreeBSD drivers (rl and re) don't explicitly toggle
598
        // CS between reads (or does setting Cfg9346 to 0 count too?),
599
        // so we need to enter wait-for-command state here
600
                eeprom->mode = Chip9346_enter_command_mode;
601
                eeprom->input = 0;
602
                eeprom->tick = 0;
603

    
604
                DPRINTF("eeprom: +++ end of read, awaiting next command\n");
605
#else
606
        // original behaviour
607
                ++eeprom->address;
608
                eeprom->address &= EEPROM_9346_ADDR_MASK;
609
                eeprom->output = eeprom->contents[eeprom->address];
610
                eeprom->tick = 0;
611

    
612
                DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
613
                    eeprom->address, eeprom->output);
614
#endif
615
            }
616
            break;
617

    
618
        case Chip9346_data_write:
619
            eeprom->input = (eeprom->input << 1) | (bit & 1);
620
            if (eeprom->tick == 16)
621
            {
622
                DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
623
                    eeprom->address, eeprom->input);
624

    
625
                eeprom->contents[eeprom->address] = eeprom->input;
626
                eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
627
                eeprom->tick = 0;
628
                eeprom->input = 0;
629
            }
630
            break;
631

    
632
        case Chip9346_data_write_all:
633
            eeprom->input = (eeprom->input << 1) | (bit & 1);
634
            if (eeprom->tick == 16)
635
            {
636
                int i;
637
                for (i = 0; i < EEPROM_9346_SIZE; i++)
638
                {
639
                    eeprom->contents[i] = eeprom->input;
640
                }
641
                DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
642

    
643
                eeprom->mode = Chip9346_enter_command_mode;
644
                eeprom->tick = 0;
645
                eeprom->input = 0;
646
            }
647
            break;
648

    
649
        default:
650
            break;
651
    }
652
}
653

    
654
static int prom9346_get_wire(RTL8139State *s)
655
{
656
    EEprom9346 *eeprom = &s->eeprom;
657
    if (!eeprom->eecs)
658
        return 0;
659

    
660
    return eeprom->eedo;
661
}
662

    
663
/* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
664
static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
665
{
666
    EEprom9346 *eeprom = &s->eeprom;
667
    uint8_t old_eecs = eeprom->eecs;
668
    uint8_t old_eesk = eeprom->eesk;
669

    
670
    eeprom->eecs = eecs;
671
    eeprom->eesk = eesk;
672
    eeprom->eedi = eedi;
673

    
674
    DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
675
        eeprom->eesk, eeprom->eedi, eeprom->eedo);
676

    
677
    if (!old_eecs && eecs)
678
    {
679
        /* Synchronize start */
680
        eeprom->tick = 0;
681
        eeprom->input = 0;
682
        eeprom->output = 0;
683
        eeprom->mode = Chip9346_enter_command_mode;
684

    
685
        DPRINTF("=== eeprom: begin access, enter command mode\n");
686
    }
687

    
688
    if (!eecs)
689
    {
690
        DPRINTF("=== eeprom: end access\n");
691
        return;
692
    }
693

    
694
    if (!old_eesk && eesk)
695
    {
696
        /* SK front rules */
697
        prom9346_shift_clock(eeprom);
698
    }
699
}
700

    
701
static void rtl8139_update_irq(RTL8139State *s)
702
{
703
    int isr;
704
    isr = (s->IntrStatus & s->IntrMask) & 0xffff;
705

    
706
    DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
707
        s->IntrMask);
708

    
709
    qemu_set_irq(s->dev.irq[0], (isr != 0));
710
}
711

    
712
#define POLYNOMIAL 0x04c11db6
713

    
714
/* From FreeBSD */
715
/* XXX: optimize */
716
static int compute_mcast_idx(const uint8_t *ep)
717
{
718
    uint32_t crc;
719
    int carry, i, j;
720
    uint8_t b;
721

    
722
    crc = 0xffffffff;
723
    for (i = 0; i < 6; i++) {
724
        b = *ep++;
725
        for (j = 0; j < 8; j++) {
726
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
727
            crc <<= 1;
728
            b >>= 1;
729
            if (carry)
730
                crc = ((crc ^ POLYNOMIAL) | carry);
731
        }
732
    }
733
    return (crc >> 26);
734
}
735

    
736
static int rtl8139_RxWrap(RTL8139State *s)
737
{
738
    /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
739
    return (s->RxConfig & (1 << 7));
740
}
741

    
742
static int rtl8139_receiver_enabled(RTL8139State *s)
743
{
744
    return s->bChipCmdState & CmdRxEnb;
745
}
746

    
747
static int rtl8139_transmitter_enabled(RTL8139State *s)
748
{
749
    return s->bChipCmdState & CmdTxEnb;
750
}
751

    
752
static int rtl8139_cp_receiver_enabled(RTL8139State *s)
753
{
754
    return s->CpCmd & CPlusRxEnb;
755
}
756

    
757
static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
758
{
759
    return s->CpCmd & CPlusTxEnb;
760
}
761

    
762
static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
763
{
764
    if (s->RxBufAddr + size > s->RxBufferSize)
765
    {
766
        int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
767

    
768
        /* write packet data */
769
        if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
770
        {
771
            DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
772

    
773
            if (size > wrapped)
774
            {
775
                cpu_physical_memory_write( s->RxBuf + s->RxBufAddr,
776
                                           buf, size-wrapped );
777
            }
778

    
779
            /* reset buffer pointer */
780
            s->RxBufAddr = 0;
781

    
782
            cpu_physical_memory_write( s->RxBuf + s->RxBufAddr,
783
                                       buf + (size-wrapped), wrapped );
784

    
785
            s->RxBufAddr = wrapped;
786

    
787
            return;
788
        }
789
    }
790

    
791
    /* non-wrapping path or overwrapping enabled */
792
    cpu_physical_memory_write( s->RxBuf + s->RxBufAddr, buf, size );
793

    
794
    s->RxBufAddr += size;
795
}
796

    
797
#define MIN_BUF_SIZE 60
798
static inline target_phys_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
799
{
800
#if TARGET_PHYS_ADDR_BITS > 32
801
    return low | ((target_phys_addr_t)high << 32);
802
#else
803
    return low;
804
#endif
805
}
806

    
807
static int rtl8139_can_receive(VLANClientState *nc)
808
{
809
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
810
    int avail;
811

    
812
    /* Receive (drop) packets if card is disabled.  */
813
    if (!s->clock_enabled)
814
      return 1;
815
    if (!rtl8139_receiver_enabled(s))
816
      return 1;
817

    
818
    if (rtl8139_cp_receiver_enabled(s)) {
819
        /* ??? Flow control not implemented in c+ mode.
820
           This is a hack to work around slirp deficiencies anyway.  */
821
        return 1;
822
    } else {
823
        avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
824
                     s->RxBufferSize);
825
        return (avail == 0 || avail >= 1514);
826
    }
827
}
828

    
829
static ssize_t rtl8139_do_receive(VLANClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
830
{
831
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
832
    /* size is the length of the buffer passed to the driver */
833
    int size = size_;
834
    const uint8_t *dot1q_buf = NULL;
835

    
836
    uint32_t packet_header = 0;
837

    
838
    uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
839
    static const uint8_t broadcast_macaddr[6] =
840
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
841

    
842
    DPRINTF(">>> received len=%d\n", size);
843

    
844
    /* test if board clock is stopped */
845
    if (!s->clock_enabled)
846
    {
847
        DPRINTF("stopped ==========================\n");
848
        return -1;
849
    }
850

    
851
    /* first check if receiver is enabled */
852

    
853
    if (!rtl8139_receiver_enabled(s))
854
    {
855
        DPRINTF("receiver disabled ================\n");
856
        return -1;
857
    }
858

    
859
    /* XXX: check this */
860
    if (s->RxConfig & AcceptAllPhys) {
861
        /* promiscuous: receive all */
862
        DPRINTF(">>> packet received in promiscuous mode\n");
863

    
864
    } else {
865
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
866
            /* broadcast address */
867
            if (!(s->RxConfig & AcceptBroadcast))
868
            {
869
                DPRINTF(">>> broadcast packet rejected\n");
870

    
871
                /* update tally counter */
872
                ++s->tally_counters.RxERR;
873

    
874
                return size;
875
            }
876

    
877
            packet_header |= RxBroadcast;
878

    
879
            DPRINTF(">>> broadcast packet received\n");
880

    
881
            /* update tally counter */
882
            ++s->tally_counters.RxOkBrd;
883

    
884
        } else if (buf[0] & 0x01) {
885
            /* multicast */
886
            if (!(s->RxConfig & AcceptMulticast))
887
            {
888
                DPRINTF(">>> multicast packet rejected\n");
889

    
890
                /* update tally counter */
891
                ++s->tally_counters.RxERR;
892

    
893
                return size;
894
            }
895

    
896
            int mcast_idx = compute_mcast_idx(buf);
897

    
898
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
899
            {
900
                DPRINTF(">>> multicast address mismatch\n");
901

    
902
                /* update tally counter */
903
                ++s->tally_counters.RxERR;
904

    
905
                return size;
906
            }
907

    
908
            packet_header |= RxMulticast;
909

    
910
            DPRINTF(">>> multicast packet received\n");
911

    
912
            /* update tally counter */
913
            ++s->tally_counters.RxOkMul;
914

    
915
        } else if (s->phys[0] == buf[0] &&
916
                   s->phys[1] == buf[1] &&
917
                   s->phys[2] == buf[2] &&
918
                   s->phys[3] == buf[3] &&
919
                   s->phys[4] == buf[4] &&
920
                   s->phys[5] == buf[5]) {
921
            /* match */
922
            if (!(s->RxConfig & AcceptMyPhys))
923
            {
924
                DPRINTF(">>> rejecting physical address matching packet\n");
925

    
926
                /* update tally counter */
927
                ++s->tally_counters.RxERR;
928

    
929
                return size;
930
            }
931

    
932
            packet_header |= RxPhysical;
933

    
934
            DPRINTF(">>> physical address matching packet received\n");
935

    
936
            /* update tally counter */
937
            ++s->tally_counters.RxOkPhy;
938

    
939
        } else {
940

    
941
            DPRINTF(">>> unknown packet\n");
942

    
943
            /* update tally counter */
944
            ++s->tally_counters.RxERR;
945

    
946
            return size;
947
        }
948
    }
949

    
950
    /* if too small buffer, then expand it
951
     * Include some tailroom in case a vlan tag is later removed. */
952
    if (size < MIN_BUF_SIZE + VLAN_HLEN) {
953
        memcpy(buf1, buf, size);
954
        memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
955
        buf = buf1;
956
        if (size < MIN_BUF_SIZE) {
957
            size = MIN_BUF_SIZE;
958
        }
959
    }
960

    
961
    if (rtl8139_cp_receiver_enabled(s))
962
    {
963
        DPRINTF("in C+ Rx mode ================\n");
964

    
965
        /* begin C+ receiver mode */
966

    
967
/* w0 ownership flag */
968
#define CP_RX_OWN (1<<31)
969
/* w0 end of ring flag */
970
#define CP_RX_EOR (1<<30)
971
/* w0 bits 0...12 : buffer size */
972
#define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
973
/* w1 tag available flag */
974
#define CP_RX_TAVA (1<<16)
975
/* w1 bits 0...15 : VLAN tag */
976
#define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
977
/* w2 low  32bit of Rx buffer ptr */
978
/* w3 high 32bit of Rx buffer ptr */
979

    
980
        int descriptor = s->currCPlusRxDesc;
981
        target_phys_addr_t cplus_rx_ring_desc;
982

    
983
        cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
984
        cplus_rx_ring_desc += 16 * descriptor;
985

    
986
        DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
987
            "%08x %08x = "TARGET_FMT_plx"\n", descriptor, s->RxRingAddrHI,
988
            s->RxRingAddrLO, cplus_rx_ring_desc);
989

    
990
        uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
991

    
992
        cpu_physical_memory_read(cplus_rx_ring_desc,    (uint8_t *)&val, 4);
993
        rxdw0 = le32_to_cpu(val);
994
        cpu_physical_memory_read(cplus_rx_ring_desc+4,  (uint8_t *)&val, 4);
995
        rxdw1 = le32_to_cpu(val);
996
        cpu_physical_memory_read(cplus_rx_ring_desc+8,  (uint8_t *)&val, 4);
997
        rxbufLO = le32_to_cpu(val);
998
        cpu_physical_memory_read(cplus_rx_ring_desc+12, (uint8_t *)&val, 4);
999
        rxbufHI = le32_to_cpu(val);
1000

    
1001
        DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
1002
            descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
1003

    
1004
        if (!(rxdw0 & CP_RX_OWN))
1005
        {
1006
            DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1007
                descriptor);
1008

    
1009
            s->IntrStatus |= RxOverflow;
1010
            ++s->RxMissed;
1011

    
1012
            /* update tally counter */
1013
            ++s->tally_counters.RxERR;
1014
            ++s->tally_counters.MissPkt;
1015

    
1016
            rtl8139_update_irq(s);
1017
            return size_;
1018
        }
1019

    
1020
        uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1021

    
1022
        /* write VLAN info to descriptor variables. */
1023
        if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1024
                &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1025
            dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1026
            size -= VLAN_HLEN;
1027
            /* if too small buffer, use the tailroom added duing expansion */
1028
            if (size < MIN_BUF_SIZE) {
1029
                size = MIN_BUF_SIZE;
1030
            }
1031

    
1032
            rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1033
            /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1034
            rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1035
                &dot1q_buf[ETHER_TYPE_LEN]);
1036

    
1037
            DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1038
                be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1039
        } else {
1040
            /* reset VLAN tag flag */
1041
            rxdw1 &= ~CP_RX_TAVA;
1042
        }
1043

    
1044
        /* TODO: scatter the packet over available receive ring descriptors space */
1045

    
1046
        if (size+4 > rx_space)
1047
        {
1048
            DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1049
                descriptor, rx_space, size);
1050

    
1051
            s->IntrStatus |= RxOverflow;
1052
            ++s->RxMissed;
1053

    
1054
            /* update tally counter */
1055
            ++s->tally_counters.RxERR;
1056
            ++s->tally_counters.MissPkt;
1057

    
1058
            rtl8139_update_irq(s);
1059
            return size_;
1060
        }
1061

    
1062
        target_phys_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1063

    
1064
        /* receive/copy to target memory */
1065
        if (dot1q_buf) {
1066
            cpu_physical_memory_write(rx_addr, buf, 2 * ETHER_ADDR_LEN);
1067
            cpu_physical_memory_write(rx_addr + 2 * ETHER_ADDR_LEN,
1068
                buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1069
                size - 2 * ETHER_ADDR_LEN);
1070
        } else {
1071
            cpu_physical_memory_write(rx_addr, buf, size);
1072
        }
1073

    
1074
        if (s->CpCmd & CPlusRxChkSum)
1075
        {
1076
            /* do some packet checksumming */
1077
        }
1078

    
1079
        /* write checksum */
1080
        val = cpu_to_le32(crc32(0, buf, size_));
1081
        cpu_physical_memory_write( rx_addr+size, (uint8_t *)&val, 4);
1082

    
1083
/* first segment of received packet flag */
1084
#define CP_RX_STATUS_FS (1<<29)
1085
/* last segment of received packet flag */
1086
#define CP_RX_STATUS_LS (1<<28)
1087
/* multicast packet flag */
1088
#define CP_RX_STATUS_MAR (1<<26)
1089
/* physical-matching packet flag */
1090
#define CP_RX_STATUS_PAM (1<<25)
1091
/* broadcast packet flag */
1092
#define CP_RX_STATUS_BAR (1<<24)
1093
/* runt packet flag */
1094
#define CP_RX_STATUS_RUNT (1<<19)
1095
/* crc error flag */
1096
#define CP_RX_STATUS_CRC (1<<18)
1097
/* IP checksum error flag */
1098
#define CP_RX_STATUS_IPF (1<<15)
1099
/* UDP checksum error flag */
1100
#define CP_RX_STATUS_UDPF (1<<14)
1101
/* TCP checksum error flag */
1102
#define CP_RX_STATUS_TCPF (1<<13)
1103

    
1104
        /* transfer ownership to target */
1105
        rxdw0 &= ~CP_RX_OWN;
1106

    
1107
        /* set first segment bit */
1108
        rxdw0 |= CP_RX_STATUS_FS;
1109

    
1110
        /* set last segment bit */
1111
        rxdw0 |= CP_RX_STATUS_LS;
1112

    
1113
        /* set received packet type flags */
1114
        if (packet_header & RxBroadcast)
1115
            rxdw0 |= CP_RX_STATUS_BAR;
1116
        if (packet_header & RxMulticast)
1117
            rxdw0 |= CP_RX_STATUS_MAR;
1118
        if (packet_header & RxPhysical)
1119
            rxdw0 |= CP_RX_STATUS_PAM;
1120

    
1121
        /* set received size */
1122
        rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1123
        rxdw0 |= (size+4);
1124

    
1125
        /* update ring data */
1126
        val = cpu_to_le32(rxdw0);
1127
        cpu_physical_memory_write(cplus_rx_ring_desc,    (uint8_t *)&val, 4);
1128
        val = cpu_to_le32(rxdw1);
1129
        cpu_physical_memory_write(cplus_rx_ring_desc+4,  (uint8_t *)&val, 4);
1130

    
1131
        /* update tally counter */
1132
        ++s->tally_counters.RxOk;
1133

    
1134
        /* seek to next Rx descriptor */
1135
        if (rxdw0 & CP_RX_EOR)
1136
        {
1137
            s->currCPlusRxDesc = 0;
1138
        }
1139
        else
1140
        {
1141
            ++s->currCPlusRxDesc;
1142
        }
1143

    
1144
        DPRINTF("done C+ Rx mode ----------------\n");
1145

    
1146
    }
1147
    else
1148
    {
1149
        DPRINTF("in ring Rx mode ================\n");
1150

    
1151
        /* begin ring receiver mode */
1152
        int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1153

    
1154
        /* if receiver buffer is empty then avail == 0 */
1155

    
1156
        if (avail != 0 && size + 8 >= avail)
1157
        {
1158
            DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1159
                "read 0x%04x === available 0x%04x need 0x%04x\n",
1160
                s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1161

    
1162
            s->IntrStatus |= RxOverflow;
1163
            ++s->RxMissed;
1164
            rtl8139_update_irq(s);
1165
            return size_;
1166
        }
1167

    
1168
        packet_header |= RxStatusOK;
1169

    
1170
        packet_header |= (((size+4) << 16) & 0xffff0000);
1171

    
1172
        /* write header */
1173
        uint32_t val = cpu_to_le32(packet_header);
1174

    
1175
        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1176

    
1177
        rtl8139_write_buffer(s, buf, size);
1178

    
1179
        /* write checksum */
1180
        val = cpu_to_le32(crc32(0, buf, size));
1181
        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1182

    
1183
        /* correct buffer write pointer */
1184
        s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1185

    
1186
        /* now we can signal we have received something */
1187

    
1188
        DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1189
            s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1190
    }
1191

    
1192
    s->IntrStatus |= RxOK;
1193

    
1194
    if (do_interrupt)
1195
    {
1196
        rtl8139_update_irq(s);
1197
    }
1198

    
1199
    return size_;
1200
}
1201

    
1202
static ssize_t rtl8139_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
1203
{
1204
    return rtl8139_do_receive(nc, buf, size, 1);
1205
}
1206

    
1207
static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1208
{
1209
    s->RxBufferSize = bufferSize;
1210
    s->RxBufPtr  = 0;
1211
    s->RxBufAddr = 0;
1212
}
1213

    
1214
static void rtl8139_reset(DeviceState *d)
1215
{
1216
    RTL8139State *s = container_of(d, RTL8139State, dev.qdev);
1217
    int i;
1218

    
1219
    /* restore MAC address */
1220
    memcpy(s->phys, s->conf.macaddr.a, 6);
1221

    
1222
    /* reset interrupt mask */
1223
    s->IntrStatus = 0;
1224
    s->IntrMask = 0;
1225

    
1226
    rtl8139_update_irq(s);
1227

    
1228
    /* mark all status registers as owned by host */
1229
    for (i = 0; i < 4; ++i)
1230
    {
1231
        s->TxStatus[i] = TxHostOwns;
1232
    }
1233

    
1234
    s->currTxDesc = 0;
1235
    s->currCPlusRxDesc = 0;
1236
    s->currCPlusTxDesc = 0;
1237

    
1238
    s->RxRingAddrLO = 0;
1239
    s->RxRingAddrHI = 0;
1240

    
1241
    s->RxBuf = 0;
1242

    
1243
    rtl8139_reset_rxring(s, 8192);
1244

    
1245
    /* ACK the reset */
1246
    s->TxConfig = 0;
1247

    
1248
#if 0
1249
//    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1250
    s->clock_enabled = 0;
1251
#else
1252
    s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1253
    s->clock_enabled = 1;
1254
#endif
1255

    
1256
    s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1257

    
1258
    /* set initial state data */
1259
    s->Config0 = 0x0; /* No boot ROM */
1260
    s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1261
    s->Config3 = 0x1; /* fast back-to-back compatible */
1262
    s->Config5 = 0x0;
1263

    
1264
    s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1265

    
1266
    s->CpCmd   = 0x0; /* reset C+ mode */
1267
    s->cplus_enabled = 0;
1268

    
1269

    
1270
//    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1271
//    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1272
    s->BasicModeCtrl = 0x1000; // autonegotiation
1273

    
1274
    s->BasicModeStatus  = 0x7809;
1275
    //s->BasicModeStatus |= 0x0040; /* UTP medium */
1276
    s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1277
    s->BasicModeStatus |= 0x0004; /* link is up */
1278

    
1279
    s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1280
    s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1281
    s->NWayExpansion = 0x0001; /* autonegotiation supported */
1282

    
1283
    /* also reset timer and disable timer interrupt */
1284
    s->TCTR = 0;
1285
    s->TimerInt = 0;
1286
    s->TCTR_base = 0;
1287

    
1288
    /* reset tally counters */
1289
    RTL8139TallyCounters_clear(&s->tally_counters);
1290
}
1291

    
1292
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1293
{
1294
    counters->TxOk = 0;
1295
    counters->RxOk = 0;
1296
    counters->TxERR = 0;
1297
    counters->RxERR = 0;
1298
    counters->MissPkt = 0;
1299
    counters->FAE = 0;
1300
    counters->Tx1Col = 0;
1301
    counters->TxMCol = 0;
1302
    counters->RxOkPhy = 0;
1303
    counters->RxOkBrd = 0;
1304
    counters->RxOkMul = 0;
1305
    counters->TxAbt = 0;
1306
    counters->TxUndrn = 0;
1307
}
1308

    
1309
static void RTL8139TallyCounters_physical_memory_write(target_phys_addr_t tc_addr, RTL8139TallyCounters* tally_counters)
1310
{
1311
    uint16_t val16;
1312
    uint32_t val32;
1313
    uint64_t val64;
1314

    
1315
    val64 = cpu_to_le64(tally_counters->TxOk);
1316
    cpu_physical_memory_write(tc_addr + 0,    (uint8_t *)&val64, 8);
1317

    
1318
    val64 = cpu_to_le64(tally_counters->RxOk);
1319
    cpu_physical_memory_write(tc_addr + 8,    (uint8_t *)&val64, 8);
1320

    
1321
    val64 = cpu_to_le64(tally_counters->TxERR);
1322
    cpu_physical_memory_write(tc_addr + 16,    (uint8_t *)&val64, 8);
1323

    
1324
    val32 = cpu_to_le32(tally_counters->RxERR);
1325
    cpu_physical_memory_write(tc_addr + 24,    (uint8_t *)&val32, 4);
1326

    
1327
    val16 = cpu_to_le16(tally_counters->MissPkt);
1328
    cpu_physical_memory_write(tc_addr + 28,    (uint8_t *)&val16, 2);
1329

    
1330
    val16 = cpu_to_le16(tally_counters->FAE);
1331
    cpu_physical_memory_write(tc_addr + 30,    (uint8_t *)&val16, 2);
1332

    
1333
    val32 = cpu_to_le32(tally_counters->Tx1Col);
1334
    cpu_physical_memory_write(tc_addr + 32,    (uint8_t *)&val32, 4);
1335

    
1336
    val32 = cpu_to_le32(tally_counters->TxMCol);
1337
    cpu_physical_memory_write(tc_addr + 36,    (uint8_t *)&val32, 4);
1338

    
1339
    val64 = cpu_to_le64(tally_counters->RxOkPhy);
1340
    cpu_physical_memory_write(tc_addr + 40,    (uint8_t *)&val64, 8);
1341

    
1342
    val64 = cpu_to_le64(tally_counters->RxOkBrd);
1343
    cpu_physical_memory_write(tc_addr + 48,    (uint8_t *)&val64, 8);
1344

    
1345
    val32 = cpu_to_le32(tally_counters->RxOkMul);
1346
    cpu_physical_memory_write(tc_addr + 56,    (uint8_t *)&val32, 4);
1347

    
1348
    val16 = cpu_to_le16(tally_counters->TxAbt);
1349
    cpu_physical_memory_write(tc_addr + 60,    (uint8_t *)&val16, 2);
1350

    
1351
    val16 = cpu_to_le16(tally_counters->TxUndrn);
1352
    cpu_physical_memory_write(tc_addr + 62,    (uint8_t *)&val16, 2);
1353
}
1354

    
1355
/* Loads values of tally counters from VM state file */
1356

    
1357
static const VMStateDescription vmstate_tally_counters = {
1358
    .name = "tally_counters",
1359
    .version_id = 1,
1360
    .minimum_version_id = 1,
1361
    .minimum_version_id_old = 1,
1362
    .fields      = (VMStateField []) {
1363
        VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1364
        VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1365
        VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1366
        VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1367
        VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1368
        VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1369
        VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1370
        VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1371
        VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1372
        VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1373
        VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1374
        VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1375
        VMSTATE_END_OF_LIST()
1376
    }
1377
};
1378

    
1379
static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1380
{
1381
    val &= 0xff;
1382

    
1383
    DPRINTF("ChipCmd write val=0x%08x\n", val);
1384

    
1385
    if (val & CmdReset)
1386
    {
1387
        DPRINTF("ChipCmd reset\n");
1388
        rtl8139_reset(&s->dev.qdev);
1389
    }
1390
    if (val & CmdRxEnb)
1391
    {
1392
        DPRINTF("ChipCmd enable receiver\n");
1393

    
1394
        s->currCPlusRxDesc = 0;
1395
    }
1396
    if (val & CmdTxEnb)
1397
    {
1398
        DPRINTF("ChipCmd enable transmitter\n");
1399

    
1400
        s->currCPlusTxDesc = 0;
1401
    }
1402

    
1403
    /* mask unwriteable bits */
1404
    val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1405

    
1406
    /* Deassert reset pin before next read */
1407
    val &= ~CmdReset;
1408

    
1409
    s->bChipCmdState = val;
1410
}
1411

    
1412
static int rtl8139_RxBufferEmpty(RTL8139State *s)
1413
{
1414
    int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1415

    
1416
    if (unread != 0)
1417
    {
1418
        DPRINTF("receiver buffer data available 0x%04x\n", unread);
1419
        return 0;
1420
    }
1421

    
1422
    DPRINTF("receiver buffer is empty\n");
1423

    
1424
    return 1;
1425
}
1426

    
1427
static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1428
{
1429
    uint32_t ret = s->bChipCmdState;
1430

    
1431
    if (rtl8139_RxBufferEmpty(s))
1432
        ret |= RxBufEmpty;
1433

    
1434
    DPRINTF("ChipCmd read val=0x%04x\n", ret);
1435

    
1436
    return ret;
1437
}
1438

    
1439
static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1440
{
1441
    val &= 0xffff;
1442

    
1443
    DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1444

    
1445
    s->cplus_enabled = 1;
1446

    
1447
    /* mask unwriteable bits */
1448
    val = SET_MASKED(val, 0xff84, s->CpCmd);
1449

    
1450
    s->CpCmd = val;
1451
}
1452

    
1453
static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1454
{
1455
    uint32_t ret = s->CpCmd;
1456

    
1457
    DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1458

    
1459
    return ret;
1460
}
1461

    
1462
static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1463
{
1464
    DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1465
}
1466

    
1467
static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1468
{
1469
    uint32_t ret = 0;
1470

    
1471
    DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1472

    
1473
    return ret;
1474
}
1475

    
1476
static int rtl8139_config_writeable(RTL8139State *s)
1477
{
1478
    if (s->Cfg9346 & Cfg9346_Unlock)
1479
    {
1480
        return 1;
1481
    }
1482

    
1483
    DPRINTF("Configuration registers are write-protected\n");
1484

    
1485
    return 0;
1486
}
1487

    
1488
static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1489
{
1490
    val &= 0xffff;
1491

    
1492
    DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1493

    
1494
    /* mask unwriteable bits */
1495
    uint32_t mask = 0x4cff;
1496

    
1497
    if (1 || !rtl8139_config_writeable(s))
1498
    {
1499
        /* Speed setting and autonegotiation enable bits are read-only */
1500
        mask |= 0x3000;
1501
        /* Duplex mode setting is read-only */
1502
        mask |= 0x0100;
1503
    }
1504

    
1505
    val = SET_MASKED(val, mask, s->BasicModeCtrl);
1506

    
1507
    s->BasicModeCtrl = val;
1508
}
1509

    
1510
static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1511
{
1512
    uint32_t ret = s->BasicModeCtrl;
1513

    
1514
    DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1515

    
1516
    return ret;
1517
}
1518

    
1519
static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1520
{
1521
    val &= 0xffff;
1522

    
1523
    DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1524

    
1525
    /* mask unwriteable bits */
1526
    val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1527

    
1528
    s->BasicModeStatus = val;
1529
}
1530

    
1531
static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1532
{
1533
    uint32_t ret = s->BasicModeStatus;
1534

    
1535
    DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1536

    
1537
    return ret;
1538
}
1539

    
1540
static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1541
{
1542
    val &= 0xff;
1543

    
1544
    DPRINTF("Cfg9346 write val=0x%02x\n", val);
1545

    
1546
    /* mask unwriteable bits */
1547
    val = SET_MASKED(val, 0x31, s->Cfg9346);
1548

    
1549
    uint32_t opmode = val & 0xc0;
1550
    uint32_t eeprom_val = val & 0xf;
1551

    
1552
    if (opmode == 0x80) {
1553
        /* eeprom access */
1554
        int eecs = (eeprom_val & 0x08)?1:0;
1555
        int eesk = (eeprom_val & 0x04)?1:0;
1556
        int eedi = (eeprom_val & 0x02)?1:0;
1557
        prom9346_set_wire(s, eecs, eesk, eedi);
1558
    } else if (opmode == 0x40) {
1559
        /* Reset.  */
1560
        val = 0;
1561
        rtl8139_reset(&s->dev.qdev);
1562
    }
1563

    
1564
    s->Cfg9346 = val;
1565
}
1566

    
1567
static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1568
{
1569
    uint32_t ret = s->Cfg9346;
1570

    
1571
    uint32_t opmode = ret & 0xc0;
1572

    
1573
    if (opmode == 0x80)
1574
    {
1575
        /* eeprom access */
1576
        int eedo = prom9346_get_wire(s);
1577
        if (eedo)
1578
        {
1579
            ret |=  0x01;
1580
        }
1581
        else
1582
        {
1583
            ret &= ~0x01;
1584
        }
1585
    }
1586

    
1587
    DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1588

    
1589
    return ret;
1590
}
1591

    
1592
static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1593
{
1594
    val &= 0xff;
1595

    
1596
    DPRINTF("Config0 write val=0x%02x\n", val);
1597

    
1598
    if (!rtl8139_config_writeable(s))
1599
        return;
1600

    
1601
    /* mask unwriteable bits */
1602
    val = SET_MASKED(val, 0xf8, s->Config0);
1603

    
1604
    s->Config0 = val;
1605
}
1606

    
1607
static uint32_t rtl8139_Config0_read(RTL8139State *s)
1608
{
1609
    uint32_t ret = s->Config0;
1610

    
1611
    DPRINTF("Config0 read val=0x%02x\n", ret);
1612

    
1613
    return ret;
1614
}
1615

    
1616
static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1617
{
1618
    val &= 0xff;
1619

    
1620
    DPRINTF("Config1 write val=0x%02x\n", val);
1621

    
1622
    if (!rtl8139_config_writeable(s))
1623
        return;
1624

    
1625
    /* mask unwriteable bits */
1626
    val = SET_MASKED(val, 0xC, s->Config1);
1627

    
1628
    s->Config1 = val;
1629
}
1630

    
1631
static uint32_t rtl8139_Config1_read(RTL8139State *s)
1632
{
1633
    uint32_t ret = s->Config1;
1634

    
1635
    DPRINTF("Config1 read val=0x%02x\n", ret);
1636

    
1637
    return ret;
1638
}
1639

    
1640
static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1641
{
1642
    val &= 0xff;
1643

    
1644
    DPRINTF("Config3 write val=0x%02x\n", val);
1645

    
1646
    if (!rtl8139_config_writeable(s))
1647
        return;
1648

    
1649
    /* mask unwriteable bits */
1650
    val = SET_MASKED(val, 0x8F, s->Config3);
1651

    
1652
    s->Config3 = val;
1653
}
1654

    
1655
static uint32_t rtl8139_Config3_read(RTL8139State *s)
1656
{
1657
    uint32_t ret = s->Config3;
1658

    
1659
    DPRINTF("Config3 read val=0x%02x\n", ret);
1660

    
1661
    return ret;
1662
}
1663

    
1664
static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1665
{
1666
    val &= 0xff;
1667

    
1668
    DPRINTF("Config4 write val=0x%02x\n", val);
1669

    
1670
    if (!rtl8139_config_writeable(s))
1671
        return;
1672

    
1673
    /* mask unwriteable bits */
1674
    val = SET_MASKED(val, 0x0a, s->Config4);
1675

    
1676
    s->Config4 = val;
1677
}
1678

    
1679
static uint32_t rtl8139_Config4_read(RTL8139State *s)
1680
{
1681
    uint32_t ret = s->Config4;
1682

    
1683
    DPRINTF("Config4 read val=0x%02x\n", ret);
1684

    
1685
    return ret;
1686
}
1687

    
1688
static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1689
{
1690
    val &= 0xff;
1691

    
1692
    DPRINTF("Config5 write val=0x%02x\n", val);
1693

    
1694
    /* mask unwriteable bits */
1695
    val = SET_MASKED(val, 0x80, s->Config5);
1696

    
1697
    s->Config5 = val;
1698
}
1699

    
1700
static uint32_t rtl8139_Config5_read(RTL8139State *s)
1701
{
1702
    uint32_t ret = s->Config5;
1703

    
1704
    DPRINTF("Config5 read val=0x%02x\n", ret);
1705

    
1706
    return ret;
1707
}
1708

    
1709
static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1710
{
1711
    if (!rtl8139_transmitter_enabled(s))
1712
    {
1713
        DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1714
        return;
1715
    }
1716

    
1717
    DPRINTF("TxConfig write val=0x%08x\n", val);
1718

    
1719
    val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1720

    
1721
    s->TxConfig = val;
1722
}
1723

    
1724
static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1725
{
1726
    DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1727

    
1728
    uint32_t tc = s->TxConfig;
1729
    tc &= 0xFFFFFF00;
1730
    tc |= (val & 0x000000FF);
1731
    rtl8139_TxConfig_write(s, tc);
1732
}
1733

    
1734
static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1735
{
1736
    uint32_t ret = s->TxConfig;
1737

    
1738
    DPRINTF("TxConfig read val=0x%04x\n", ret);
1739

    
1740
    return ret;
1741
}
1742

    
1743
static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1744
{
1745
    DPRINTF("RxConfig write val=0x%08x\n", val);
1746

    
1747
    /* mask unwriteable bits */
1748
    val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1749

    
1750
    s->RxConfig = val;
1751

    
1752
    /* reset buffer size and read/write pointers */
1753
    rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1754

    
1755
    DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1756
}
1757

    
1758
static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1759
{
1760
    uint32_t ret = s->RxConfig;
1761

    
1762
    DPRINTF("RxConfig read val=0x%08x\n", ret);
1763

    
1764
    return ret;
1765
}
1766

    
1767
static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1768
    int do_interrupt, const uint8_t *dot1q_buf)
1769
{
1770
    struct iovec *iov = NULL;
1771

    
1772
    if (!size)
1773
    {
1774
        DPRINTF("+++ empty ethernet frame\n");
1775
        return;
1776
    }
1777

    
1778
    if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1779
        iov = (struct iovec[3]) {
1780
            { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1781
            { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1782
            { .iov_base = buf + ETHER_ADDR_LEN * 2,
1783
                .iov_len = size - ETHER_ADDR_LEN * 2 },
1784
        };
1785
    }
1786

    
1787
    if (TxLoopBack == (s->TxConfig & TxLoopBack))
1788
    {
1789
        size_t buf2_size;
1790
        uint8_t *buf2;
1791

    
1792
        if (iov) {
1793
            buf2_size = iov_size(iov, 3);
1794
            buf2 = qemu_malloc(buf2_size);
1795
            iov_to_buf(iov, 3, buf2, 0, buf2_size);
1796
            buf = buf2;
1797
        }
1798

    
1799
        DPRINTF("+++ transmit loopback mode\n");
1800
        rtl8139_do_receive(&s->nic->nc, buf, size, do_interrupt);
1801

    
1802
        if (iov) {
1803
            qemu_free(buf2);
1804
        }
1805
    }
1806
    else
1807
    {
1808
        if (iov) {
1809
            qemu_sendv_packet(&s->nic->nc, iov, 3);
1810
        } else {
1811
            qemu_send_packet(&s->nic->nc, buf, size);
1812
        }
1813
    }
1814
}
1815

    
1816
static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1817
{
1818
    if (!rtl8139_transmitter_enabled(s))
1819
    {
1820
        DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1821
            "disabled\n", descriptor);
1822
        return 0;
1823
    }
1824

    
1825
    if (s->TxStatus[descriptor] & TxHostOwns)
1826
    {
1827
        DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1828
            "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1829
        return 0;
1830
    }
1831

    
1832
    DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1833

    
1834
    int txsize = s->TxStatus[descriptor] & 0x1fff;
1835
    uint8_t txbuffer[0x2000];
1836

    
1837
    DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1838
        txsize, s->TxAddr[descriptor]);
1839

    
1840
    cpu_physical_memory_read(s->TxAddr[descriptor], txbuffer, txsize);
1841

    
1842
    /* Mark descriptor as transferred */
1843
    s->TxStatus[descriptor] |= TxHostOwns;
1844
    s->TxStatus[descriptor] |= TxStatOK;
1845

    
1846
    rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1847

    
1848
    DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1849
        descriptor);
1850

    
1851
    /* update interrupt */
1852
    s->IntrStatus |= TxOK;
1853
    rtl8139_update_irq(s);
1854

    
1855
    return 1;
1856
}
1857

    
1858
/* structures and macros for task offloading */
1859
typedef struct ip_header
1860
{
1861
    uint8_t  ip_ver_len;    /* version and header length */
1862
    uint8_t  ip_tos;        /* type of service */
1863
    uint16_t ip_len;        /* total length */
1864
    uint16_t ip_id;         /* identification */
1865
    uint16_t ip_off;        /* fragment offset field */
1866
    uint8_t  ip_ttl;        /* time to live */
1867
    uint8_t  ip_p;          /* protocol */
1868
    uint16_t ip_sum;        /* checksum */
1869
    uint32_t ip_src,ip_dst; /* source and dest address */
1870
} ip_header;
1871

    
1872
#define IP_HEADER_VERSION_4 4
1873
#define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1874
#define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1875

    
1876
typedef struct tcp_header
1877
{
1878
    uint16_t th_sport;                /* source port */
1879
    uint16_t th_dport;                /* destination port */
1880
    uint32_t th_seq;                        /* sequence number */
1881
    uint32_t th_ack;                        /* acknowledgement number */
1882
    uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1883
    uint16_t th_win;                        /* window */
1884
    uint16_t th_sum;                        /* checksum */
1885
    uint16_t th_urp;                        /* urgent pointer */
1886
} tcp_header;
1887

    
1888
typedef struct udp_header
1889
{
1890
    uint16_t uh_sport; /* source port */
1891
    uint16_t uh_dport; /* destination port */
1892
    uint16_t uh_ulen;  /* udp length */
1893
    uint16_t uh_sum;   /* udp checksum */
1894
} udp_header;
1895

    
1896
typedef struct ip_pseudo_header
1897
{
1898
    uint32_t ip_src;
1899
    uint32_t ip_dst;
1900
    uint8_t  zeros;
1901
    uint8_t  ip_proto;
1902
    uint16_t ip_payload;
1903
} ip_pseudo_header;
1904

    
1905
#define IP_PROTO_TCP 6
1906
#define IP_PROTO_UDP 17
1907

    
1908
#define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1909
#define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1910
#define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1911

    
1912
#define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1913

    
1914
#define TCP_FLAG_FIN  0x01
1915
#define TCP_FLAG_PUSH 0x08
1916

    
1917
/* produces ones' complement sum of data */
1918
static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1919
{
1920
    uint32_t result = 0;
1921

    
1922
    for (; len > 1; data+=2, len-=2)
1923
    {
1924
        result += *(uint16_t*)data;
1925
    }
1926

    
1927
    /* add the remainder byte */
1928
    if (len)
1929
    {
1930
        uint8_t odd[2] = {*data, 0};
1931
        result += *(uint16_t*)odd;
1932
    }
1933

    
1934
    while (result>>16)
1935
        result = (result & 0xffff) + (result >> 16);
1936

    
1937
    return result;
1938
}
1939

    
1940
static uint16_t ip_checksum(void *data, size_t len)
1941
{
1942
    return ~ones_complement_sum((uint8_t*)data, len);
1943
}
1944

    
1945
static int rtl8139_cplus_transmit_one(RTL8139State *s)
1946
{
1947
    if (!rtl8139_transmitter_enabled(s))
1948
    {
1949
        DPRINTF("+++ C+ mode: transmitter disabled\n");
1950
        return 0;
1951
    }
1952

    
1953
    if (!rtl8139_cp_transmitter_enabled(s))
1954
    {
1955
        DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1956
        return 0 ;
1957
    }
1958

    
1959
    int descriptor = s->currCPlusTxDesc;
1960

    
1961
    target_phys_addr_t cplus_tx_ring_desc =
1962
        rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1963

    
1964
    /* Normal priority ring */
1965
    cplus_tx_ring_desc += 16 * descriptor;
1966

    
1967
    DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1968
        "%08x0x%08x = 0x"TARGET_FMT_plx"\n", descriptor, s->TxAddr[1],
1969
        s->TxAddr[0], cplus_tx_ring_desc);
1970

    
1971
    uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1972

    
1973
    cpu_physical_memory_read(cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1974
    txdw0 = le32_to_cpu(val);
1975
    cpu_physical_memory_read(cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1976
    txdw1 = le32_to_cpu(val);
1977
    cpu_physical_memory_read(cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1978
    txbufLO = le32_to_cpu(val);
1979
    cpu_physical_memory_read(cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1980
    txbufHI = le32_to_cpu(val);
1981

    
1982
    DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1983
        txdw0, txdw1, txbufLO, txbufHI);
1984

    
1985
/* w0 ownership flag */
1986
#define CP_TX_OWN (1<<31)
1987
/* w0 end of ring flag */
1988
#define CP_TX_EOR (1<<30)
1989
/* first segment of received packet flag */
1990
#define CP_TX_FS (1<<29)
1991
/* last segment of received packet flag */
1992
#define CP_TX_LS (1<<28)
1993
/* large send packet flag */
1994
#define CP_TX_LGSEN (1<<27)
1995
/* large send MSS mask, bits 16...25 */
1996
#define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1997

    
1998
/* IP checksum offload flag */
1999
#define CP_TX_IPCS (1<<18)
2000
/* UDP checksum offload flag */
2001
#define CP_TX_UDPCS (1<<17)
2002
/* TCP checksum offload flag */
2003
#define CP_TX_TCPCS (1<<16)
2004

    
2005
/* w0 bits 0...15 : buffer size */
2006
#define CP_TX_BUFFER_SIZE (1<<16)
2007
#define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
2008
/* w1 add tag flag */
2009
#define CP_TX_TAGC (1<<17)
2010
/* w1 bits 0...15 : VLAN tag (big endian) */
2011
#define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2012
/* w2 low  32bit of Rx buffer ptr */
2013
/* w3 high 32bit of Rx buffer ptr */
2014

    
2015
/* set after transmission */
2016
/* FIFO underrun flag */
2017
#define CP_TX_STATUS_UNF (1<<25)
2018
/* transmit error summary flag, valid if set any of three below */
2019
#define CP_TX_STATUS_TES (1<<23)
2020
/* out-of-window collision flag */
2021
#define CP_TX_STATUS_OWC (1<<22)
2022
/* link failure flag */
2023
#define CP_TX_STATUS_LNKF (1<<21)
2024
/* excessive collisions flag */
2025
#define CP_TX_STATUS_EXC (1<<20)
2026

    
2027
    if (!(txdw0 & CP_TX_OWN))
2028
    {
2029
        DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2030
        return 0 ;
2031
    }
2032

    
2033
    DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2034

    
2035
    if (txdw0 & CP_TX_FS)
2036
    {
2037
        DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2038
            "descriptor\n", descriptor);
2039

    
2040
        /* reset internal buffer offset */
2041
        s->cplus_txbuffer_offset = 0;
2042
    }
2043

    
2044
    int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2045
    target_phys_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2046

    
2047
    /* make sure we have enough space to assemble the packet */
2048
    if (!s->cplus_txbuffer)
2049
    {
2050
        s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2051
        s->cplus_txbuffer = qemu_malloc(s->cplus_txbuffer_len);
2052
        s->cplus_txbuffer_offset = 0;
2053

    
2054
        DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2055
            s->cplus_txbuffer_len);
2056
    }
2057

    
2058
    while (s->cplus_txbuffer && s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2059
    {
2060
        s->cplus_txbuffer_len += CP_TX_BUFFER_SIZE;
2061
        s->cplus_txbuffer = qemu_realloc(s->cplus_txbuffer, s->cplus_txbuffer_len);
2062

    
2063
        DPRINTF("+++ C+ mode transmission buffer space changed to %d\n",
2064
            s->cplus_txbuffer_len);
2065
    }
2066

    
2067
    if (!s->cplus_txbuffer)
2068
    {
2069
        /* out of memory */
2070

    
2071
        DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2072
            s->cplus_txbuffer_len);
2073

    
2074
        /* update tally counter */
2075
        ++s->tally_counters.TxERR;
2076
        ++s->tally_counters.TxAbt;
2077

    
2078
        return 0;
2079
    }
2080

    
2081
    /* append more data to the packet */
2082

    
2083
    DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2084
        TARGET_FMT_plx" to offset %d\n", txsize, tx_addr,
2085
        s->cplus_txbuffer_offset);
2086

    
2087
    cpu_physical_memory_read(tx_addr, s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2088
    s->cplus_txbuffer_offset += txsize;
2089

    
2090
    /* seek to next Rx descriptor */
2091
    if (txdw0 & CP_TX_EOR)
2092
    {
2093
        s->currCPlusTxDesc = 0;
2094
    }
2095
    else
2096
    {
2097
        ++s->currCPlusTxDesc;
2098
        if (s->currCPlusTxDesc >= 64)
2099
            s->currCPlusTxDesc = 0;
2100
    }
2101

    
2102
    /* transfer ownership to target */
2103
    txdw0 &= ~CP_RX_OWN;
2104

    
2105
    /* reset error indicator bits */
2106
    txdw0 &= ~CP_TX_STATUS_UNF;
2107
    txdw0 &= ~CP_TX_STATUS_TES;
2108
    txdw0 &= ~CP_TX_STATUS_OWC;
2109
    txdw0 &= ~CP_TX_STATUS_LNKF;
2110
    txdw0 &= ~CP_TX_STATUS_EXC;
2111

    
2112
    /* update ring data */
2113
    val = cpu_to_le32(txdw0);
2114
    cpu_physical_memory_write(cplus_tx_ring_desc,    (uint8_t *)&val, 4);
2115

    
2116
    /* Now decide if descriptor being processed is holding the last segment of packet */
2117
    if (txdw0 & CP_TX_LS)
2118
    {
2119
        uint8_t dot1q_buffer_space[VLAN_HLEN];
2120
        uint16_t *dot1q_buffer;
2121

    
2122
        DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2123
            descriptor);
2124

    
2125
        /* can transfer fully assembled packet */
2126

    
2127
        uint8_t *saved_buffer  = s->cplus_txbuffer;
2128
        int      saved_size    = s->cplus_txbuffer_offset;
2129
        int      saved_buffer_len = s->cplus_txbuffer_len;
2130

    
2131
        /* create vlan tag */
2132
        if (txdw1 & CP_TX_TAGC) {
2133
            /* the vlan tag is in BE byte order in the descriptor
2134
             * BE + le_to_cpu() + ~swap()~ = cpu */
2135
            DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2136
                bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2137

    
2138
            dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2139
            dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2140
            /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2141
            dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2142
        } else {
2143
            dot1q_buffer = NULL;
2144
        }
2145

    
2146
        /* reset the card space to protect from recursive call */
2147
        s->cplus_txbuffer = NULL;
2148
        s->cplus_txbuffer_offset = 0;
2149
        s->cplus_txbuffer_len = 0;
2150

    
2151
        if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2152
        {
2153
            DPRINTF("+++ C+ mode offloaded task checksum\n");
2154

    
2155
            /* ip packet header */
2156
            ip_header *ip = NULL;
2157
            int hlen = 0;
2158
            uint8_t  ip_protocol = 0;
2159
            uint16_t ip_data_len = 0;
2160

    
2161
            uint8_t *eth_payload_data = NULL;
2162
            size_t   eth_payload_len  = 0;
2163

    
2164
            int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2165
            if (proto == ETH_P_IP)
2166
            {
2167
                DPRINTF("+++ C+ mode has IP packet\n");
2168

    
2169
                /* not aligned */
2170
                eth_payload_data = saved_buffer + ETH_HLEN;
2171
                eth_payload_len  = saved_size   - ETH_HLEN;
2172

    
2173
                ip = (ip_header*)eth_payload_data;
2174

    
2175
                if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2176
                    DPRINTF("+++ C+ mode packet has bad IP version %d "
2177
                        "expected %d\n", IP_HEADER_VERSION(ip),
2178
                        IP_HEADER_VERSION_4);
2179
                    ip = NULL;
2180
                } else {
2181
                    hlen = IP_HEADER_LENGTH(ip);
2182
                    ip_protocol = ip->ip_p;
2183
                    ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2184
                }
2185
            }
2186

    
2187
            if (ip)
2188
            {
2189
                if (txdw0 & CP_TX_IPCS)
2190
                {
2191
                    DPRINTF("+++ C+ mode need IP checksum\n");
2192

    
2193
                    if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2194
                        /* bad packet header len */
2195
                        /* or packet too short */
2196
                    }
2197
                    else
2198
                    {
2199
                        ip->ip_sum = 0;
2200
                        ip->ip_sum = ip_checksum(ip, hlen);
2201
                        DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2202
                            hlen, ip->ip_sum);
2203
                    }
2204
                }
2205

    
2206
                if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2207
                {
2208
                    int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2209

    
2210
                    DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2211
                        "frame data %d specified MSS=%d\n", ETH_MTU,
2212
                        ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2213

    
2214
                    int tcp_send_offset = 0;
2215
                    int send_count = 0;
2216

    
2217
                    /* maximum IP header length is 60 bytes */
2218
                    uint8_t saved_ip_header[60];
2219

    
2220
                    /* save IP header template; data area is used in tcp checksum calculation */
2221
                    memcpy(saved_ip_header, eth_payload_data, hlen);
2222

    
2223
                    /* a placeholder for checksum calculation routine in tcp case */
2224
                    uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2225
                    //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2226

    
2227
                    /* pointer to TCP header */
2228
                    tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2229

    
2230
                    int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2231

    
2232
                    /* ETH_MTU = ip header len + tcp header len + payload */
2233
                    int tcp_data_len = ip_data_len - tcp_hlen;
2234
                    int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2235

    
2236
                    DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2237
                        "data len %d TCP chunk size %d\n", ip_data_len,
2238
                        tcp_hlen, tcp_data_len, tcp_chunk_size);
2239

    
2240
                    /* note the cycle below overwrites IP header data,
2241
                       but restores it from saved_ip_header before sending packet */
2242

    
2243
                    int is_last_frame = 0;
2244

    
2245
                    for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2246
                    {
2247
                        uint16_t chunk_size = tcp_chunk_size;
2248

    
2249
                        /* check if this is the last frame */
2250
                        if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2251
                        {
2252
                            is_last_frame = 1;
2253
                            chunk_size = tcp_data_len - tcp_send_offset;
2254
                        }
2255

    
2256
                        DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2257
                            be32_to_cpu(p_tcp_hdr->th_seq));
2258

    
2259
                        /* add 4 TCP pseudoheader fields */
2260
                        /* copy IP source and destination fields */
2261
                        memcpy(data_to_checksum, saved_ip_header + 12, 8);
2262

    
2263
                        DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2264
                            "packet with %d bytes data\n", tcp_hlen +
2265
                            chunk_size);
2266

    
2267
                        if (tcp_send_offset)
2268
                        {
2269
                            memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2270
                        }
2271

    
2272
                        /* keep PUSH and FIN flags only for the last frame */
2273
                        if (!is_last_frame)
2274
                        {
2275
                            TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2276
                        }
2277

    
2278
                        /* recalculate TCP checksum */
2279
                        ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2280
                        p_tcpip_hdr->zeros      = 0;
2281
                        p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2282
                        p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2283

    
2284
                        p_tcp_hdr->th_sum = 0;
2285

    
2286
                        int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2287
                        DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2288
                            tcp_checksum);
2289

    
2290
                        p_tcp_hdr->th_sum = tcp_checksum;
2291

    
2292
                        /* restore IP header */
2293
                        memcpy(eth_payload_data, saved_ip_header, hlen);
2294

    
2295
                        /* set IP data length and recalculate IP checksum */
2296
                        ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2297

    
2298
                        /* increment IP id for subsequent frames */
2299
                        ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2300

    
2301
                        ip->ip_sum = 0;
2302
                        ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2303
                        DPRINTF("+++ C+ mode TSO IP header len=%d "
2304
                            "checksum=%04x\n", hlen, ip->ip_sum);
2305

    
2306
                        int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2307
                        DPRINTF("+++ C+ mode TSO transferring packet size "
2308
                            "%d\n", tso_send_size);
2309
                        rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2310
                            0, (uint8_t *) dot1q_buffer);
2311

    
2312
                        /* add transferred count to TCP sequence number */
2313
                        p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2314
                        ++send_count;
2315
                    }
2316

    
2317
                    /* Stop sending this frame */
2318
                    saved_size = 0;
2319
                }
2320
                else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2321
                {
2322
                    DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2323

    
2324
                    /* maximum IP header length is 60 bytes */
2325
                    uint8_t saved_ip_header[60];
2326
                    memcpy(saved_ip_header, eth_payload_data, hlen);
2327

    
2328
                    uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2329
                    //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2330

    
2331
                    /* add 4 TCP pseudoheader fields */
2332
                    /* copy IP source and destination fields */
2333
                    memcpy(data_to_checksum, saved_ip_header + 12, 8);
2334

    
2335
                    if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2336
                    {
2337
                        DPRINTF("+++ C+ mode calculating TCP checksum for "
2338
                            "packet with %d bytes data\n", ip_data_len);
2339

    
2340
                        ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2341
                        p_tcpip_hdr->zeros      = 0;
2342
                        p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2343
                        p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2344

    
2345
                        tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2346

    
2347
                        p_tcp_hdr->th_sum = 0;
2348

    
2349
                        int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2350
                        DPRINTF("+++ C+ mode TCP checksum %04x\n",
2351
                            tcp_checksum);
2352

    
2353
                        p_tcp_hdr->th_sum = tcp_checksum;
2354
                    }
2355
                    else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2356
                    {
2357
                        DPRINTF("+++ C+ mode calculating UDP checksum for "
2358
                            "packet with %d bytes data\n", ip_data_len);
2359

    
2360
                        ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2361
                        p_udpip_hdr->zeros      = 0;
2362
                        p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2363
                        p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2364

    
2365
                        udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2366

    
2367
                        p_udp_hdr->uh_sum = 0;
2368

    
2369
                        int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2370
                        DPRINTF("+++ C+ mode UDP checksum %04x\n",
2371
                            udp_checksum);
2372

    
2373
                        p_udp_hdr->uh_sum = udp_checksum;
2374
                    }
2375

    
2376
                    /* restore IP header */
2377
                    memcpy(eth_payload_data, saved_ip_header, hlen);
2378
                }
2379
            }
2380
        }
2381

    
2382
        /* update tally counter */
2383
        ++s->tally_counters.TxOk;
2384

    
2385
        DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2386

    
2387
        rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2388
            (uint8_t *) dot1q_buffer);
2389

    
2390
        /* restore card space if there was no recursion and reset offset */
2391
        if (!s->cplus_txbuffer)
2392
        {
2393
            s->cplus_txbuffer        = saved_buffer;
2394
            s->cplus_txbuffer_len    = saved_buffer_len;
2395
            s->cplus_txbuffer_offset = 0;
2396
        }
2397
        else
2398
        {
2399
            qemu_free(saved_buffer);
2400
        }
2401
    }
2402
    else
2403
    {
2404
        DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2405
    }
2406

    
2407
    return 1;
2408
}
2409

    
2410
static void rtl8139_cplus_transmit(RTL8139State *s)
2411
{
2412
    int txcount = 0;
2413

    
2414
    while (rtl8139_cplus_transmit_one(s))
2415
    {
2416
        ++txcount;
2417
    }
2418

    
2419
    /* Mark transfer completed */
2420
    if (!txcount)
2421
    {
2422
        DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2423
            s->currCPlusTxDesc);
2424
    }
2425
    else
2426
    {
2427
        /* update interrupt status */
2428
        s->IntrStatus |= TxOK;
2429
        rtl8139_update_irq(s);
2430
    }
2431
}
2432

    
2433
static void rtl8139_transmit(RTL8139State *s)
2434
{
2435
    int descriptor = s->currTxDesc, txcount = 0;
2436

    
2437
    /*while*/
2438
    if (rtl8139_transmit_one(s, descriptor))
2439
    {
2440
        ++s->currTxDesc;
2441
        s->currTxDesc %= 4;
2442
        ++txcount;
2443
    }
2444

    
2445
    /* Mark transfer completed */
2446
    if (!txcount)
2447
    {
2448
        DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2449
            s->currTxDesc);
2450
    }
2451
}
2452

    
2453
static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2454
{
2455

    
2456
    int descriptor = txRegOffset/4;
2457

    
2458
    /* handle C+ transmit mode register configuration */
2459

    
2460
    if (s->cplus_enabled)
2461
    {
2462
        DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2463
            "descriptor=%d\n", txRegOffset, val, descriptor);
2464

    
2465
        /* handle Dump Tally Counters command */
2466
        s->TxStatus[descriptor] = val;
2467

    
2468
        if (descriptor == 0 && (val & 0x8))
2469
        {
2470
            target_phys_addr_t tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2471

    
2472
            /* dump tally counters to specified memory location */
2473
            RTL8139TallyCounters_physical_memory_write( tc_addr, &s->tally_counters);
2474

    
2475
            /* mark dump completed */
2476
            s->TxStatus[0] &= ~0x8;
2477
        }
2478

    
2479
        return;
2480
    }
2481

    
2482
    DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2483
        txRegOffset, val, descriptor);
2484

    
2485
    /* mask only reserved bits */
2486
    val &= ~0xff00c000; /* these bits are reset on write */
2487
    val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2488

    
2489
    s->TxStatus[descriptor] = val;
2490

    
2491
    /* attempt to start transmission */
2492
    rtl8139_transmit(s);
2493
}
2494

    
2495
static uint32_t rtl8139_TxStatus_read(RTL8139State *s, uint32_t txRegOffset)
2496
{
2497
    uint32_t ret = s->TxStatus[txRegOffset/4];
2498

    
2499
    DPRINTF("TxStatus read offset=0x%x val=0x%08x\n", txRegOffset, ret);
2500

    
2501
    return ret;
2502
}
2503

    
2504
static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2505
{
2506
    uint16_t ret = 0;
2507

    
2508
    /* Simulate TSAD, it is read only anyway */
2509

    
2510
    ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2511
         |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2512
         |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2513
         |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2514

    
2515
         |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2516
         |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2517
         |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2518
         |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2519

    
2520
         |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2521
         |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2522
         |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2523
         |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2524

    
2525
         |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2526
         |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2527
         |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2528
         |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2529

    
2530

    
2531
    DPRINTF("TSAD read val=0x%04x\n", ret);
2532

    
2533
    return ret;
2534
}
2535

    
2536
static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2537
{
2538
    uint16_t ret = s->CSCR;
2539

    
2540
    DPRINTF("CSCR read val=0x%04x\n", ret);
2541

    
2542
    return ret;
2543
}
2544

    
2545
static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2546
{
2547
    DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2548

    
2549
    s->TxAddr[txAddrOffset/4] = val;
2550
}
2551

    
2552
static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2553
{
2554
    uint32_t ret = s->TxAddr[txAddrOffset/4];
2555

    
2556
    DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2557

    
2558
    return ret;
2559
}
2560

    
2561
static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2562
{
2563
    DPRINTF("RxBufPtr write val=0x%04x\n", val);
2564

    
2565
    /* this value is off by 16 */
2566
    s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2567

    
2568
    DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2569
        s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2570
}
2571

    
2572
static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2573
{
2574
    /* this value is off by 16 */
2575
    uint32_t ret = s->RxBufPtr - 0x10;
2576

    
2577
    DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2578

    
2579
    return ret;
2580
}
2581

    
2582
static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2583
{
2584
    /* this value is NOT off by 16 */
2585
    uint32_t ret = s->RxBufAddr;
2586

    
2587
    DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2588

    
2589
    return ret;
2590
}
2591

    
2592
static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2593
{
2594
    DPRINTF("RxBuf write val=0x%08x\n", val);
2595

    
2596
    s->RxBuf = val;
2597

    
2598
    /* may need to reset rxring here */
2599
}
2600

    
2601
static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2602
{
2603
    uint32_t ret = s->RxBuf;
2604

    
2605
    DPRINTF("RxBuf read val=0x%08x\n", ret);
2606

    
2607
    return ret;
2608
}
2609

    
2610
static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2611
{
2612
    DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2613

    
2614
    /* mask unwriteable bits */
2615
    val = SET_MASKED(val, 0x1e00, s->IntrMask);
2616

    
2617
    s->IntrMask = val;
2618

    
2619
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2620
    rtl8139_update_irq(s);
2621

    
2622
}
2623

    
2624
static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2625
{
2626
    uint32_t ret = s->IntrMask;
2627

    
2628
    DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2629

    
2630
    return ret;
2631
}
2632

    
2633
static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2634
{
2635
    DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2636

    
2637
#if 0
2638

2639
    /* writing to ISR has no effect */
2640

2641
    return;
2642

2643
#else
2644
    uint16_t newStatus = s->IntrStatus & ~val;
2645

    
2646
    /* mask unwriteable bits */
2647
    newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2648

    
2649
    /* writing 1 to interrupt status register bit clears it */
2650
    s->IntrStatus = 0;
2651
    rtl8139_update_irq(s);
2652

    
2653
    s->IntrStatus = newStatus;
2654
    /*
2655
     * Computing if we miss an interrupt here is not that correct but
2656
     * considered that we should have had already an interrupt
2657
     * and probably emulated is slower is better to assume this resetting was
2658
     * done before testing on previous rtl8139_update_irq lead to IRQ loosing
2659
     */
2660
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2661
    rtl8139_update_irq(s);
2662

    
2663
#endif
2664
}
2665

    
2666
static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2667
{
2668
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2669

    
2670
    uint32_t ret = s->IntrStatus;
2671

    
2672
    DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2673

    
2674
#if 0
2675

2676
    /* reading ISR clears all interrupts */
2677
    s->IntrStatus = 0;
2678

2679
    rtl8139_update_irq(s);
2680

2681
#endif
2682

    
2683
    return ret;
2684
}
2685

    
2686
static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2687
{
2688
    DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2689

    
2690
    /* mask unwriteable bits */
2691
    val = SET_MASKED(val, 0xf000, s->MultiIntr);
2692

    
2693
    s->MultiIntr = val;
2694
}
2695

    
2696
static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2697
{
2698
    uint32_t ret = s->MultiIntr;
2699

    
2700
    DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2701

    
2702
    return ret;
2703
}
2704

    
2705
static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2706
{
2707
    RTL8139State *s = opaque;
2708

    
2709
    addr &= 0xff;
2710

    
2711
    switch (addr)
2712
    {
2713
        case MAC0 ... MAC0+5:
2714
            s->phys[addr - MAC0] = val;
2715
            break;
2716
        case MAC0+6 ... MAC0+7:
2717
            /* reserved */
2718
            break;
2719
        case MAR0 ... MAR0+7:
2720
            s->mult[addr - MAR0] = val;
2721
            break;
2722
        case ChipCmd:
2723
            rtl8139_ChipCmd_write(s, val);
2724
            break;
2725
        case Cfg9346:
2726
            rtl8139_Cfg9346_write(s, val);
2727
            break;
2728
        case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2729
            rtl8139_TxConfig_writeb(s, val);
2730
            break;
2731
        case Config0:
2732
            rtl8139_Config0_write(s, val);
2733
            break;
2734
        case Config1:
2735
            rtl8139_Config1_write(s, val);
2736
            break;
2737
        case Config3:
2738
            rtl8139_Config3_write(s, val);
2739
            break;
2740
        case Config4:
2741
            rtl8139_Config4_write(s, val);
2742
            break;
2743
        case Config5:
2744
            rtl8139_Config5_write(s, val);
2745
            break;
2746
        case MediaStatus:
2747
            /* ignore */
2748
            DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2749
                val);
2750
            break;
2751

    
2752
        case HltClk:
2753
            DPRINTF("HltClk write val=0x%08x\n", val);
2754
            if (val == 'R')
2755
            {
2756
                s->clock_enabled = 1;
2757
            }
2758
            else if (val == 'H')
2759
            {
2760
                s->clock_enabled = 0;
2761
            }
2762
            break;
2763

    
2764
        case TxThresh:
2765
            DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2766
            s->TxThresh = val;
2767
            break;
2768

    
2769
        case TxPoll:
2770
            DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2771
            if (val & (1 << 7))
2772
            {
2773
                DPRINTF("C+ TxPoll high priority transmission (not "
2774
                    "implemented)\n");
2775
                //rtl8139_cplus_transmit(s);
2776
            }
2777
            if (val & (1 << 6))
2778
            {
2779
                DPRINTF("C+ TxPoll normal priority transmission\n");
2780
                rtl8139_cplus_transmit(s);
2781
            }
2782

    
2783
            break;
2784

    
2785
        default:
2786
            DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2787
                val);
2788
            break;
2789
    }
2790
}
2791

    
2792
static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2793
{
2794
    RTL8139State *s = opaque;
2795

    
2796
    addr &= 0xfe;
2797

    
2798
    switch (addr)
2799
    {
2800
        case IntrMask:
2801
            rtl8139_IntrMask_write(s, val);
2802
            break;
2803

    
2804
        case IntrStatus:
2805
            rtl8139_IntrStatus_write(s, val);
2806
            break;
2807

    
2808
        case MultiIntr:
2809
            rtl8139_MultiIntr_write(s, val);
2810
            break;
2811

    
2812
        case RxBufPtr:
2813
            rtl8139_RxBufPtr_write(s, val);
2814
            break;
2815

    
2816
        case BasicModeCtrl:
2817
            rtl8139_BasicModeCtrl_write(s, val);
2818
            break;
2819
        case BasicModeStatus:
2820
            rtl8139_BasicModeStatus_write(s, val);
2821
            break;
2822
        case NWayAdvert:
2823
            DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2824
            s->NWayAdvert = val;
2825
            break;
2826
        case NWayLPAR:
2827
            DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2828
            break;
2829
        case NWayExpansion:
2830
            DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2831
            s->NWayExpansion = val;
2832
            break;
2833

    
2834
        case CpCmd:
2835
            rtl8139_CpCmd_write(s, val);
2836
            break;
2837

    
2838
        case IntrMitigate:
2839
            rtl8139_IntrMitigate_write(s, val);
2840
            break;
2841

    
2842
        default:
2843
            DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2844
                addr, val);
2845

    
2846
            rtl8139_io_writeb(opaque, addr, val & 0xff);
2847
            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2848
            break;
2849
    }
2850
}
2851

    
2852
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2853
{
2854
    int64_t pci_time, next_time;
2855
    uint32_t low_pci;
2856

    
2857
    DPRINTF("entered rtl8139_set_next_tctr_time\n");
2858

    
2859
    if (s->TimerExpire && current_time >= s->TimerExpire) {
2860
        s->IntrStatus |= PCSTimeout;
2861
        rtl8139_update_irq(s);
2862
    }
2863

    
2864
    /* Set QEMU timer only if needed that is
2865
     * - TimerInt <> 0 (we have a timer)
2866
     * - mask = 1 (we want an interrupt timer)
2867
     * - irq = 0  (irq is not already active)
2868
     * If any of above change we need to compute timer again
2869
     * Also we must check if timer is passed without QEMU timer
2870
     */
2871
    s->TimerExpire = 0;
2872
    if (!s->TimerInt) {
2873
        return;
2874
    }
2875

    
2876
    pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2877
                                get_ticks_per_sec());
2878
    low_pci = pci_time & 0xffffffff;
2879
    pci_time = pci_time - low_pci + s->TimerInt;
2880
    if (low_pci >= s->TimerInt) {
2881
        pci_time += 0x100000000LL;
2882
    }
2883
    next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2884
                                                PCI_FREQUENCY);
2885
    s->TimerExpire = next_time;
2886

    
2887
    if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2888
        qemu_mod_timer(s->timer, next_time);
2889
    }
2890
}
2891

    
2892
static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2893
{
2894
    RTL8139State *s = opaque;
2895

    
2896
    addr &= 0xfc;
2897

    
2898
    switch (addr)
2899
    {
2900
        case RxMissed:
2901
            DPRINTF("RxMissed clearing on write\n");
2902
            s->RxMissed = 0;
2903
            break;
2904

    
2905
        case TxConfig:
2906
            rtl8139_TxConfig_write(s, val);
2907
            break;
2908

    
2909
        case RxConfig:
2910
            rtl8139_RxConfig_write(s, val);
2911
            break;
2912

    
2913
        case TxStatus0 ... TxStatus0+4*4-1:
2914
            rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2915
            break;
2916

    
2917
        case TxAddr0 ... TxAddr0+4*4-1:
2918
            rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2919
            break;
2920

    
2921
        case RxBuf:
2922
            rtl8139_RxBuf_write(s, val);
2923
            break;
2924

    
2925
        case RxRingAddrLO:
2926
            DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2927
            s->RxRingAddrLO = val;
2928
            break;
2929

    
2930
        case RxRingAddrHI:
2931
            DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2932
            s->RxRingAddrHI = val;
2933
            break;
2934

    
2935
        case Timer:
2936
            DPRINTF("TCTR Timer reset on write\n");
2937
            s->TCTR_base = qemu_get_clock_ns(vm_clock);
2938
            rtl8139_set_next_tctr_time(s, s->TCTR_base);
2939
            break;
2940

    
2941
        case FlashReg:
2942
            DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2943
            if (s->TimerInt != val) {
2944
                s->TimerInt = val;
2945
                rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2946
            }
2947
            break;
2948

    
2949
        default:
2950
            DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2951
                addr, val);
2952
            rtl8139_io_writeb(opaque, addr, val & 0xff);
2953
            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2954
            rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2955
            rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2956
            break;
2957
    }
2958
}
2959

    
2960
static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2961
{
2962
    RTL8139State *s = opaque;
2963
    int ret;
2964

    
2965
    addr &= 0xff;
2966

    
2967
    switch (addr)
2968
    {
2969
        case MAC0 ... MAC0+5:
2970
            ret = s->phys[addr - MAC0];
2971
            break;
2972
        case MAC0+6 ... MAC0+7:
2973
            ret = 0;
2974
            break;
2975
        case MAR0 ... MAR0+7:
2976
            ret = s->mult[addr - MAR0];
2977
            break;
2978
        case ChipCmd:
2979
            ret = rtl8139_ChipCmd_read(s);
2980
            break;
2981
        case Cfg9346:
2982
            ret = rtl8139_Cfg9346_read(s);
2983
            break;
2984
        case Config0:
2985
            ret = rtl8139_Config0_read(s);
2986
            break;
2987
        case Config1:
2988
            ret = rtl8139_Config1_read(s);
2989
            break;
2990
        case Config3:
2991
            ret = rtl8139_Config3_read(s);
2992
            break;
2993
        case Config4:
2994
            ret = rtl8139_Config4_read(s);
2995
            break;
2996
        case Config5:
2997
            ret = rtl8139_Config5_read(s);
2998
            break;
2999

    
3000
        case MediaStatus:
3001
            ret = 0xd0;
3002
            DPRINTF("MediaStatus read 0x%x\n", ret);
3003
            break;
3004

    
3005
        case HltClk:
3006
            ret = s->clock_enabled;
3007
            DPRINTF("HltClk read 0x%x\n", ret);
3008
            break;
3009

    
3010
        case PCIRevisionID:
3011
            ret = RTL8139_PCI_REVID;
3012
            DPRINTF("PCI Revision ID read 0x%x\n", ret);
3013
            break;
3014

    
3015
        case TxThresh:
3016
            ret = s->TxThresh;
3017
            DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3018
            break;
3019

    
3020
        case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3021
            ret = s->TxConfig >> 24;
3022
            DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3023
            break;
3024

    
3025
        default:
3026
            DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3027
            ret = 0;
3028
            break;
3029
    }
3030

    
3031
    return ret;
3032
}
3033

    
3034
static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3035
{
3036
    RTL8139State *s = opaque;
3037
    uint32_t ret;
3038

    
3039
    addr &= 0xfe; /* mask lower bit */
3040

    
3041
    switch (addr)
3042
    {
3043
        case IntrMask:
3044
            ret = rtl8139_IntrMask_read(s);
3045
            break;
3046

    
3047
        case IntrStatus:
3048
            ret = rtl8139_IntrStatus_read(s);
3049
            break;
3050

    
3051
        case MultiIntr:
3052
            ret = rtl8139_MultiIntr_read(s);
3053
            break;
3054

    
3055
        case RxBufPtr:
3056
            ret = rtl8139_RxBufPtr_read(s);
3057
            break;
3058

    
3059
        case RxBufAddr:
3060
            ret = rtl8139_RxBufAddr_read(s);
3061
            break;
3062

    
3063
        case BasicModeCtrl:
3064
            ret = rtl8139_BasicModeCtrl_read(s);
3065
            break;
3066
        case BasicModeStatus:
3067
            ret = rtl8139_BasicModeStatus_read(s);
3068
            break;
3069
        case NWayAdvert:
3070
            ret = s->NWayAdvert;
3071
            DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3072
            break;
3073
        case NWayLPAR:
3074
            ret = s->NWayLPAR;
3075
            DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3076
            break;
3077
        case NWayExpansion:
3078
            ret = s->NWayExpansion;
3079
            DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3080
            break;
3081

    
3082
        case CpCmd:
3083
            ret = rtl8139_CpCmd_read(s);
3084
            break;
3085

    
3086
        case IntrMitigate:
3087
            ret = rtl8139_IntrMitigate_read(s);
3088
            break;
3089

    
3090
        case TxSummary:
3091
            ret = rtl8139_TSAD_read(s);
3092
            break;
3093

    
3094
        case CSCR:
3095
            ret = rtl8139_CSCR_read(s);
3096
            break;
3097

    
3098
        default:
3099
            DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3100

    
3101
            ret  = rtl8139_io_readb(opaque, addr);
3102
            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3103

    
3104
            DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3105
            break;
3106
    }
3107

    
3108
    return ret;
3109
}
3110

    
3111
static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3112
{
3113
    RTL8139State *s = opaque;
3114
    uint32_t ret;
3115

    
3116
    addr &= 0xfc; /* also mask low 2 bits */
3117

    
3118
    switch (addr)
3119
    {
3120
        case RxMissed:
3121
            ret = s->RxMissed;
3122

    
3123
            DPRINTF("RxMissed read val=0x%08x\n", ret);
3124
            break;
3125

    
3126
        case TxConfig:
3127
            ret = rtl8139_TxConfig_read(s);
3128
            break;
3129

    
3130
        case RxConfig:
3131
            ret = rtl8139_RxConfig_read(s);
3132
            break;
3133

    
3134
        case TxStatus0 ... TxStatus0+4*4-1:
3135
            ret = rtl8139_TxStatus_read(s, addr-TxStatus0);
3136
            break;
3137

    
3138
        case TxAddr0 ... TxAddr0+4*4-1:
3139
            ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3140
            break;
3141

    
3142
        case RxBuf:
3143
            ret = rtl8139_RxBuf_read(s);
3144
            break;
3145

    
3146
        case RxRingAddrLO:
3147
            ret = s->RxRingAddrLO;
3148
            DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3149
            break;
3150

    
3151
        case RxRingAddrHI:
3152
            ret = s->RxRingAddrHI;
3153
            DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3154
            break;
3155

    
3156
        case Timer:
3157
            ret = muldiv64(qemu_get_clock_ns(vm_clock) - s->TCTR_base,
3158
                           PCI_FREQUENCY, get_ticks_per_sec());
3159
            DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3160
            break;
3161

    
3162
        case FlashReg:
3163
            ret = s->TimerInt;
3164
            DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3165
            break;
3166

    
3167
        default:
3168
            DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3169

    
3170
            ret  = rtl8139_io_readb(opaque, addr);
3171
            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3172
            ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3173
            ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3174

    
3175
            DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3176
            break;
3177
    }
3178

    
3179
    return ret;
3180
}
3181

    
3182
/* */
3183

    
3184
static void rtl8139_ioport_writeb(void *opaque, uint32_t addr, uint32_t val)
3185
{
3186
    rtl8139_io_writeb(opaque, addr & 0xFF, val);
3187
}
3188

    
3189
static void rtl8139_ioport_writew(void *opaque, uint32_t addr, uint32_t val)
3190
{
3191
    rtl8139_io_writew(opaque, addr & 0xFF, val);
3192
}
3193

    
3194
static void rtl8139_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
3195
{
3196
    rtl8139_io_writel(opaque, addr & 0xFF, val);
3197
}
3198

    
3199
static uint32_t rtl8139_ioport_readb(void *opaque, uint32_t addr)
3200
{
3201
    return rtl8139_io_readb(opaque, addr & 0xFF);
3202
}
3203

    
3204
static uint32_t rtl8139_ioport_readw(void *opaque, uint32_t addr)
3205
{
3206
    return rtl8139_io_readw(opaque, addr & 0xFF);
3207
}
3208

    
3209
static uint32_t rtl8139_ioport_readl(void *opaque, uint32_t addr)
3210
{
3211
    return rtl8139_io_readl(opaque, addr & 0xFF);
3212
}
3213

    
3214
/* */
3215

    
3216
static void rtl8139_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3217
{
3218
    rtl8139_io_writeb(opaque, addr & 0xFF, val);
3219
}
3220

    
3221
static void rtl8139_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3222
{
3223
    rtl8139_io_writew(opaque, addr & 0xFF, val);
3224
}
3225

    
3226
static void rtl8139_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3227
{
3228
    rtl8139_io_writel(opaque, addr & 0xFF, val);
3229
}
3230

    
3231
static uint32_t rtl8139_mmio_readb(void *opaque, target_phys_addr_t addr)
3232
{
3233
    return rtl8139_io_readb(opaque, addr & 0xFF);
3234
}
3235

    
3236
static uint32_t rtl8139_mmio_readw(void *opaque, target_phys_addr_t addr)
3237
{
3238
    uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3239
    return val;
3240
}
3241

    
3242
static uint32_t rtl8139_mmio_readl(void *opaque, target_phys_addr_t addr)
3243
{
3244
    uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3245
    return val;
3246
}
3247

    
3248
static int rtl8139_post_load(void *opaque, int version_id)
3249
{
3250
    RTL8139State* s = opaque;
3251
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3252
    if (version_id < 4) {
3253
        s->cplus_enabled = s->CpCmd != 0;
3254
    }
3255

    
3256
    return 0;
3257
}
3258

    
3259
static bool rtl8139_hotplug_ready_needed(void *opaque)
3260
{
3261
    return qdev_machine_modified();
3262
}
3263

    
3264
static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3265
    .name = "rtl8139/hotplug_ready",
3266
    .version_id = 1,
3267
    .minimum_version_id = 1,
3268
    .minimum_version_id_old = 1,
3269
    .fields      = (VMStateField []) {
3270
        VMSTATE_END_OF_LIST()
3271
    }
3272
};
3273

    
3274
static void rtl8139_pre_save(void *opaque)
3275
{
3276
    RTL8139State* s = opaque;
3277
    int64_t current_time = qemu_get_clock_ns(vm_clock);
3278

    
3279
    /* set IntrStatus correctly */
3280
    rtl8139_set_next_tctr_time(s, current_time);
3281
    s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3282
                       get_ticks_per_sec());
3283
    s->rtl8139_mmio_io_addr_dummy = s->rtl8139_mmio_io_addr;
3284
}
3285

    
3286
static const VMStateDescription vmstate_rtl8139 = {
3287
    .name = "rtl8139",
3288
    .version_id = 4,
3289
    .minimum_version_id = 3,
3290
    .minimum_version_id_old = 3,
3291
    .post_load = rtl8139_post_load,
3292
    .pre_save  = rtl8139_pre_save,
3293
    .fields      = (VMStateField []) {
3294
        VMSTATE_PCI_DEVICE(dev, RTL8139State),
3295
        VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3296
        VMSTATE_BUFFER(mult, RTL8139State),
3297
        VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3298
        VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3299

    
3300
        VMSTATE_UINT32(RxBuf, RTL8139State),
3301
        VMSTATE_UINT32(RxBufferSize, RTL8139State),
3302
        VMSTATE_UINT32(RxBufPtr, RTL8139State),
3303
        VMSTATE_UINT32(RxBufAddr, RTL8139State),
3304

    
3305
        VMSTATE_UINT16(IntrStatus, RTL8139State),
3306
        VMSTATE_UINT16(IntrMask, RTL8139State),
3307

    
3308
        VMSTATE_UINT32(TxConfig, RTL8139State),
3309
        VMSTATE_UINT32(RxConfig, RTL8139State),
3310
        VMSTATE_UINT32(RxMissed, RTL8139State),
3311
        VMSTATE_UINT16(CSCR, RTL8139State),
3312

    
3313
        VMSTATE_UINT8(Cfg9346, RTL8139State),
3314
        VMSTATE_UINT8(Config0, RTL8139State),
3315
        VMSTATE_UINT8(Config1, RTL8139State),
3316
        VMSTATE_UINT8(Config3, RTL8139State),
3317
        VMSTATE_UINT8(Config4, RTL8139State),
3318
        VMSTATE_UINT8(Config5, RTL8139State),
3319

    
3320
        VMSTATE_UINT8(clock_enabled, RTL8139State),
3321
        VMSTATE_UINT8(bChipCmdState, RTL8139State),
3322

    
3323
        VMSTATE_UINT16(MultiIntr, RTL8139State),
3324

    
3325
        VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3326
        VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3327
        VMSTATE_UINT16(NWayAdvert, RTL8139State),
3328
        VMSTATE_UINT16(NWayLPAR, RTL8139State),
3329
        VMSTATE_UINT16(NWayExpansion, RTL8139State),
3330

    
3331
        VMSTATE_UINT16(CpCmd, RTL8139State),
3332
        VMSTATE_UINT8(TxThresh, RTL8139State),
3333

    
3334
        VMSTATE_UNUSED(4),
3335
        VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3336
        VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3337

    
3338
        VMSTATE_UINT32(currTxDesc, RTL8139State),
3339
        VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3340
        VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3341
        VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3342
        VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3343

    
3344
        VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3345
        VMSTATE_INT32(eeprom.mode, RTL8139State),
3346
        VMSTATE_UINT32(eeprom.tick, RTL8139State),
3347
        VMSTATE_UINT8(eeprom.address, RTL8139State),
3348
        VMSTATE_UINT16(eeprom.input, RTL8139State),
3349
        VMSTATE_UINT16(eeprom.output, RTL8139State),
3350

    
3351
        VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3352
        VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3353
        VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3354
        VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3355

    
3356
        VMSTATE_UINT32(TCTR, RTL8139State),
3357
        VMSTATE_UINT32(TimerInt, RTL8139State),
3358
        VMSTATE_INT64(TCTR_base, RTL8139State),
3359

    
3360
        VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3361
                       vmstate_tally_counters, RTL8139TallyCounters),
3362

    
3363
        VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3364
        VMSTATE_END_OF_LIST()
3365
    },
3366
    .subsections = (VMStateSubsection []) {
3367
        {
3368
            .vmsd = &vmstate_rtl8139_hotplug_ready,
3369
            .needed = rtl8139_hotplug_ready_needed,
3370
        }, {
3371
            /* empty */
3372
        }
3373
    }
3374
};
3375

    
3376
/***********************************************************/
3377
/* PCI RTL8139 definitions */
3378

    
3379
static void rtl8139_mmio_map(PCIDevice *pci_dev, int region_num,
3380
                       pcibus_t addr, pcibus_t size, int type)
3381
{
3382
    RTL8139State *s = DO_UPCAST(RTL8139State, dev, pci_dev);
3383

    
3384
    cpu_register_physical_memory(addr + 0, 0x100, s->rtl8139_mmio_io_addr);
3385
}
3386

    
3387
static void rtl8139_ioport_map(PCIDevice *pci_dev, int region_num,
3388
                       pcibus_t addr, pcibus_t size, int type)
3389
{
3390
    RTL8139State *s = DO_UPCAST(RTL8139State, dev, pci_dev);
3391

    
3392
    register_ioport_write(addr, 0x100, 1, rtl8139_ioport_writeb, s);
3393
    register_ioport_read( addr, 0x100, 1, rtl8139_ioport_readb,  s);
3394

    
3395
    register_ioport_write(addr, 0x100, 2, rtl8139_ioport_writew, s);
3396
    register_ioport_read( addr, 0x100, 2, rtl8139_ioport_readw,  s);
3397

    
3398
    register_ioport_write(addr, 0x100, 4, rtl8139_ioport_writel, s);
3399
    register_ioport_read( addr, 0x100, 4, rtl8139_ioport_readl,  s);
3400
}
3401

    
3402
static CPUReadMemoryFunc * const rtl8139_mmio_read[3] = {
3403
    rtl8139_mmio_readb,
3404
    rtl8139_mmio_readw,
3405
    rtl8139_mmio_readl,
3406
};
3407

    
3408
static CPUWriteMemoryFunc * const rtl8139_mmio_write[3] = {
3409
    rtl8139_mmio_writeb,
3410
    rtl8139_mmio_writew,
3411
    rtl8139_mmio_writel,
3412
};
3413

    
3414
static void rtl8139_timer(void *opaque)
3415
{
3416
    RTL8139State *s = opaque;
3417

    
3418
    if (!s->clock_enabled)
3419
    {
3420
        DPRINTF(">>> timer: clock is not running\n");
3421
        return;
3422
    }
3423

    
3424
    s->IntrStatus |= PCSTimeout;
3425
    rtl8139_update_irq(s);
3426
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3427
}
3428

    
3429
static void rtl8139_cleanup(VLANClientState *nc)
3430
{
3431
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
3432

    
3433
    s->nic = NULL;
3434
}
3435

    
3436
static int pci_rtl8139_uninit(PCIDevice *dev)
3437
{
3438
    RTL8139State *s = DO_UPCAST(RTL8139State, dev, dev);
3439

    
3440
    cpu_unregister_io_memory(s->rtl8139_mmio_io_addr);
3441
    if (s->cplus_txbuffer) {
3442
        qemu_free(s->cplus_txbuffer);
3443
        s->cplus_txbuffer = NULL;
3444
    }
3445
    qemu_del_timer(s->timer);
3446
    qemu_free_timer(s->timer);
3447
    qemu_del_vlan_client(&s->nic->nc);
3448
    return 0;
3449
}
3450

    
3451
static NetClientInfo net_rtl8139_info = {
3452
    .type = NET_CLIENT_TYPE_NIC,
3453
    .size = sizeof(NICState),
3454
    .can_receive = rtl8139_can_receive,
3455
    .receive = rtl8139_receive,
3456
    .cleanup = rtl8139_cleanup,
3457
};
3458

    
3459
static int pci_rtl8139_init(PCIDevice *dev)
3460
{
3461
    RTL8139State * s = DO_UPCAST(RTL8139State, dev, dev);
3462
    uint8_t *pci_conf;
3463

    
3464
    pci_conf = s->dev.config;
3465
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
3466
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8139);
3467
    pci_conf[PCI_REVISION_ID] = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3468
    pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
3469
    pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin 0 */
3470
    /* TODO: start of capability list, but no capability
3471
     * list bit in status register, and offset 0xdc seems unused. */
3472
    pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3473

    
3474
    /* I/O handler for memory-mapped I/O */
3475
    s->rtl8139_mmio_io_addr =
3476
        cpu_register_io_memory(rtl8139_mmio_read, rtl8139_mmio_write, s,
3477
                               DEVICE_LITTLE_ENDIAN);
3478

    
3479
    pci_register_bar(&s->dev, 0, 0x100,
3480
                           PCI_BASE_ADDRESS_SPACE_IO,  rtl8139_ioport_map);
3481

    
3482
    pci_register_bar(&s->dev, 1, 0x100,
3483
                           PCI_BASE_ADDRESS_SPACE_MEMORY, rtl8139_mmio_map);
3484

    
3485
    qemu_macaddr_default_if_unset(&s->conf.macaddr);
3486

    
3487
    /* prepare eeprom */
3488
    s->eeprom.contents[0] = 0x8129;
3489
#if 1
3490
    /* PCI vendor and device ID should be mirrored here */
3491
    s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3492
    s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3493
#endif
3494
    s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3495
    s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3496
    s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3497

    
3498
    s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3499
                          dev->qdev.info->name, dev->qdev.id, s);
3500
    qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
3501

    
3502
    s->cplus_txbuffer = NULL;
3503
    s->cplus_txbuffer_len = 0;
3504
    s->cplus_txbuffer_offset = 0;
3505

    
3506
    s->TimerExpire = 0;
3507
    s->timer = qemu_new_timer_ns(vm_clock, rtl8139_timer, s);
3508
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3509

    
3510
    add_boot_device_path(s->conf.bootindex, &dev->qdev, "/ethernet-phy@0");
3511

    
3512
    return 0;
3513
}
3514

    
3515
static PCIDeviceInfo rtl8139_info = {
3516
    .qdev.name  = "rtl8139",
3517
    .qdev.size  = sizeof(RTL8139State),
3518
    .qdev.reset = rtl8139_reset,
3519
    .qdev.vmsd  = &vmstate_rtl8139,
3520
    .init       = pci_rtl8139_init,
3521
    .exit       = pci_rtl8139_uninit,
3522
    .romfile    = "pxe-rtl8139.rom",
3523
    .qdev.props = (Property[]) {
3524
        DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3525
        DEFINE_PROP_END_OF_LIST(),
3526
    }
3527
};
3528

    
3529
static void rtl8139_register_devices(void)
3530
{
3531
    pci_qdev_register(&rtl8139_info);
3532
}
3533

    
3534
device_init(rtl8139_register_devices)