Statistics
| Branch: | Revision:

root / qemu-doc.texi @ ef5b2344

History | View | Annotate | Download (79.7 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 e080e785 Stefan Weil
5 e080e785 Stefan Weil
@documentlanguage en
6 e080e785 Stefan Weil
@documentencoding UTF-8
7 e080e785 Stefan Weil
8 8f40c388 bellard
@settitle QEMU Emulator User Documentation
9 debc7065 bellard
@exampleindent 0
10 debc7065 bellard
@paragraphindent 0
11 debc7065 bellard
@c %**end of header
12 386405f7 bellard
13 a1a32b05 Stefan Weil
@ifinfo
14 a1a32b05 Stefan Weil
@direntry
15 a1a32b05 Stefan Weil
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16 a1a32b05 Stefan Weil
@end direntry
17 a1a32b05 Stefan Weil
@end ifinfo
18 a1a32b05 Stefan Weil
19 0806e3f6 bellard
@iftex
20 386405f7 bellard
@titlepage
21 386405f7 bellard
@sp 7
22 8f40c388 bellard
@center @titlefont{QEMU Emulator}
23 debc7065 bellard
@sp 1
24 debc7065 bellard
@center @titlefont{User Documentation}
25 386405f7 bellard
@sp 3
26 386405f7 bellard
@end titlepage
27 0806e3f6 bellard
@end iftex
28 386405f7 bellard
29 debc7065 bellard
@ifnottex
30 debc7065 bellard
@node Top
31 debc7065 bellard
@top
32 debc7065 bellard
33 debc7065 bellard
@menu
34 debc7065 bellard
* Introduction::
35 debc7065 bellard
* Installation::
36 debc7065 bellard
* QEMU PC System emulator::
37 debc7065 bellard
* QEMU System emulator for non PC targets::
38 83195237 bellard
* QEMU User space emulator::
39 debc7065 bellard
* compilation:: Compilation from the sources
40 7544a042 Stefan Weil
* License::
41 debc7065 bellard
* Index::
42 debc7065 bellard
@end menu
43 debc7065 bellard
@end ifnottex
44 debc7065 bellard
45 debc7065 bellard
@contents
46 debc7065 bellard
47 debc7065 bellard
@node Introduction
48 386405f7 bellard
@chapter Introduction
49 386405f7 bellard
50 debc7065 bellard
@menu
51 debc7065 bellard
* intro_features:: Features
52 debc7065 bellard
@end menu
53 debc7065 bellard
54 debc7065 bellard
@node intro_features
55 322d0c66 bellard
@section Features
56 386405f7 bellard
57 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
58 1f673135 bellard
achieve good emulation speed.
59 1eb20527 bellard
60 1eb20527 bellard
QEMU has two operating modes:
61 0806e3f6 bellard
62 d7e5edca Stefan Weil
@itemize
63 7544a042 Stefan Weil
@cindex operating modes
64 0806e3f6 bellard
65 5fafdf24 ths
@item
66 7544a042 Stefan Weil
@cindex system emulation
67 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
68 3f9f3aa1 bellard
example a PC), including one or several processors and various
69 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
70 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
71 1eb20527 bellard
72 5fafdf24 ths
@item
73 7544a042 Stefan Weil
@cindex user mode emulation
74 83195237 bellard
User mode emulation. In this mode, QEMU can launch
75 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
76 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 1f673135 bellard
to ease cross-compilation and cross-debugging.
78 1eb20527 bellard
79 1eb20527 bellard
@end itemize
80 1eb20527 bellard
81 e1b4382c Stefan Weil
QEMU can run without a host kernel driver and yet gives acceptable
82 5fafdf24 ths
performance.
83 322d0c66 bellard
84 52c00a5f bellard
For system emulation, the following hardware targets are supported:
85 52c00a5f bellard
@itemize
86 7544a042 Stefan Weil
@cindex emulated target systems
87 7544a042 Stefan Weil
@cindex supported target systems
88 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
89 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
90 52c00a5f bellard
@item PREP (PowerPC processor)
91 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
92 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
93 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
96 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
97 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
98 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
99 0ef849d7 Paul Brook
@item ARM RealView Emulation/Platform baseboard (ARM)
100 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
104 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
106 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
107 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
108 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
110 48c50a62 Edgar E. Iglesias
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111 48c50a62 Edgar E. Iglesias
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112 3aeaea65 Max Filippov
@item Avnet LX60/LX110/LX200 boards (Xtensa)
113 52c00a5f bellard
@end itemize
114 386405f7 bellard
115 7544a042 Stefan Weil
@cindex supported user mode targets
116 7544a042 Stefan Weil
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 7544a042 Stefan Weil
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 7544a042 Stefan Weil
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119 0806e3f6 bellard
120 debc7065 bellard
@node Installation
121 5b9f457a bellard
@chapter Installation
122 5b9f457a bellard
123 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
124 15a34c63 bellard
125 debc7065 bellard
@menu
126 debc7065 bellard
* install_linux::   Linux
127 debc7065 bellard
* install_windows:: Windows
128 debc7065 bellard
* install_mac::     Macintosh
129 debc7065 bellard
@end menu
130 debc7065 bellard
131 debc7065 bellard
@node install_linux
132 1f673135 bellard
@section Linux
133 7544a042 Stefan Weil
@cindex installation (Linux)
134 1f673135 bellard
135 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
136 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
137 5b9f457a bellard
138 debc7065 bellard
@node install_windows
139 1f673135 bellard
@section Windows
140 7544a042 Stefan Weil
@cindex installation (Windows)
141 8cd0ac2f bellard
142 15a34c63 bellard
Download the experimental binary installer at
143 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
144 7544a042 Stefan Weil
TODO (no longer available)
145 d691f669 bellard
146 debc7065 bellard
@node install_mac
147 1f673135 bellard
@section Mac OS X
148 d691f669 bellard
149 15a34c63 bellard
Download the experimental binary installer at
150 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
151 7544a042 Stefan Weil
TODO (no longer available)
152 df0f11a0 bellard
153 debc7065 bellard
@node QEMU PC System emulator
154 3f9f3aa1 bellard
@chapter QEMU PC System emulator
155 7544a042 Stefan Weil
@cindex system emulation (PC)
156 1eb20527 bellard
157 debc7065 bellard
@menu
158 debc7065 bellard
* pcsys_introduction:: Introduction
159 debc7065 bellard
* pcsys_quickstart::   Quick Start
160 debc7065 bellard
* sec_invocation::     Invocation
161 debc7065 bellard
* pcsys_keys::         Keys
162 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
163 debc7065 bellard
* disk_images::        Disk Images
164 debc7065 bellard
* pcsys_network::      Network emulation
165 576fd0a1 Stefan Weil
* pcsys_other_devs::   Other Devices
166 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
167 debc7065 bellard
* pcsys_usb::          USB emulation
168 f858dcae ths
* vnc_security::       VNC security
169 debc7065 bellard
* gdb_usage::          GDB usage
170 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
171 debc7065 bellard
@end menu
172 debc7065 bellard
173 debc7065 bellard
@node pcsys_introduction
174 0806e3f6 bellard
@section Introduction
175 0806e3f6 bellard
176 0806e3f6 bellard
@c man begin DESCRIPTION
177 0806e3f6 bellard
178 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
179 3f9f3aa1 bellard
following peripherals:
180 0806e3f6 bellard
181 0806e3f6 bellard
@itemize @minus
182 5fafdf24 ths
@item
183 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184 0806e3f6 bellard
@item
185 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186 15a34c63 bellard
extensions (hardware level, including all non standard modes).
187 0806e3f6 bellard
@item
188 0806e3f6 bellard
PS/2 mouse and keyboard
189 5fafdf24 ths
@item
190 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
191 1f673135 bellard
@item
192 1f673135 bellard
Floppy disk
193 5fafdf24 ths
@item
194 3a2eeac0 Stefan Weil
PCI and ISA network adapters
195 0806e3f6 bellard
@item
196 05d5818c bellard
Serial ports
197 05d5818c bellard
@item
198 c0fe3827 bellard
Creative SoundBlaster 16 sound card
199 c0fe3827 bellard
@item
200 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
201 c0fe3827 bellard
@item
202 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
203 e5c9a13e balrog
@item
204 7d72e762 Gerd Hoffmann
Intel HD Audio Controller and HDA codec
205 7d72e762 Gerd Hoffmann
@item
206 2d983446 Stefan Weil
Adlib (OPL2) - Yamaha YM3812 compatible chip
207 b389dbfb bellard
@item
208 26463dbc balrog
Gravis Ultrasound GF1 sound card
209 26463dbc balrog
@item
210 cc53d26d malc
CS4231A compatible sound card
211 cc53d26d malc
@item
212 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
213 0806e3f6 bellard
@end itemize
214 0806e3f6 bellard
215 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
216 3f9f3aa1 bellard
217 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
218 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
219 e5178e8d malc
required card(s).
220 c0fe3827 bellard
221 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222 15a34c63 bellard
VGA BIOS.
223 15a34c63 bellard
224 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225 c0fe3827 bellard
226 2d983446 Stefan Weil
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227 26463dbc balrog
by Tibor "TS" Schรผtz.
228 423d65f4 balrog
229 1a1a0e20 Bernhard Reutner-Fischer
Note that, by default, GUS shares IRQ(7) with parallel ports and so
230 b65ee4fa Stefan Weil
QEMU must be told to not have parallel ports to have working GUS.
231 720036a5 malc
232 720036a5 malc
@example
233 3804da9d Stefan Weil
qemu-system-i386 dos.img -soundhw gus -parallel none
234 720036a5 malc
@end example
235 720036a5 malc
236 720036a5 malc
Alternatively:
237 720036a5 malc
@example
238 3804da9d Stefan Weil
qemu-system-i386 dos.img -device gus,irq=5
239 720036a5 malc
@end example
240 720036a5 malc
241 720036a5 malc
Or some other unclaimed IRQ.
242 720036a5 malc
243 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
244 cc53d26d malc
245 0806e3f6 bellard
@c man end
246 0806e3f6 bellard
247 debc7065 bellard
@node pcsys_quickstart
248 1eb20527 bellard
@section Quick Start
249 7544a042 Stefan Weil
@cindex quick start
250 1eb20527 bellard
251 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
252 0806e3f6 bellard
253 0806e3f6 bellard
@example
254 3804da9d Stefan Weil
qemu-system-i386 linux.img
255 0806e3f6 bellard
@end example
256 0806e3f6 bellard
257 0806e3f6 bellard
Linux should boot and give you a prompt.
258 0806e3f6 bellard
259 6cc721cf bellard
@node sec_invocation
260 ec410fc9 bellard
@section Invocation
261 ec410fc9 bellard
262 ec410fc9 bellard
@example
263 0806e3f6 bellard
@c man begin SYNOPSIS
264 3804da9d Stefan Weil
usage: qemu-system-i386 [options] [@var{disk_image}]
265 0806e3f6 bellard
@c man end
266 ec410fc9 bellard
@end example
267 ec410fc9 bellard
268 0806e3f6 bellard
@c man begin OPTIONS
269 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270 d2c639d6 blueswir1
targets do not need a disk image.
271 ec410fc9 bellard
272 5824d651 blueswir1
@include qemu-options.texi
273 ec410fc9 bellard
274 3e11db9a bellard
@c man end
275 3e11db9a bellard
276 debc7065 bellard
@node pcsys_keys
277 3e11db9a bellard
@section Keys
278 3e11db9a bellard
279 3e11db9a bellard
@c man begin OPTIONS
280 3e11db9a bellard
281 de1db2a1 Brad Hards
During the graphical emulation, you can use special key combinations to change
282 de1db2a1 Brad Hards
modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283 de1db2a1 Brad Hards
then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284 de1db2a1 Brad Hards
@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285 de1db2a1 Brad Hards
286 a1b74fe8 bellard
@table @key
287 f9859310 bellard
@item Ctrl-Alt-f
288 7544a042 Stefan Weil
@kindex Ctrl-Alt-f
289 a1b74fe8 bellard
Toggle full screen
290 a0a821a4 bellard
291 d6a65ba3 Jan Kiszka
@item Ctrl-Alt-+
292 d6a65ba3 Jan Kiszka
@kindex Ctrl-Alt-+
293 d6a65ba3 Jan Kiszka
Enlarge the screen
294 d6a65ba3 Jan Kiszka
295 d6a65ba3 Jan Kiszka
@item Ctrl-Alt--
296 d6a65ba3 Jan Kiszka
@kindex Ctrl-Alt--
297 d6a65ba3 Jan Kiszka
Shrink the screen
298 d6a65ba3 Jan Kiszka
299 c4a735f9 malc
@item Ctrl-Alt-u
300 7544a042 Stefan Weil
@kindex Ctrl-Alt-u
301 c4a735f9 malc
Restore the screen's un-scaled dimensions
302 c4a735f9 malc
303 f9859310 bellard
@item Ctrl-Alt-n
304 7544a042 Stefan Weil
@kindex Ctrl-Alt-n
305 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
306 a0a821a4 bellard
@table @emph
307 a0a821a4 bellard
@item 1
308 a0a821a4 bellard
Target system display
309 a0a821a4 bellard
@item 2
310 a0a821a4 bellard
Monitor
311 a0a821a4 bellard
@item 3
312 a0a821a4 bellard
Serial port
313 a1b74fe8 bellard
@end table
314 a1b74fe8 bellard
315 f9859310 bellard
@item Ctrl-Alt
316 7544a042 Stefan Weil
@kindex Ctrl-Alt
317 a0a821a4 bellard
Toggle mouse and keyboard grab.
318 a0a821a4 bellard
@end table
319 a0a821a4 bellard
320 7544a042 Stefan Weil
@kindex Ctrl-Up
321 7544a042 Stefan Weil
@kindex Ctrl-Down
322 7544a042 Stefan Weil
@kindex Ctrl-PageUp
323 7544a042 Stefan Weil
@kindex Ctrl-PageDown
324 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326 3e11db9a bellard
327 7544a042 Stefan Weil
@kindex Ctrl-a h
328 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
329 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
330 ec410fc9 bellard
331 ec410fc9 bellard
@table @key
332 a1b74fe8 bellard
@item Ctrl-a h
333 7544a042 Stefan Weil
@kindex Ctrl-a h
334 d2c639d6 blueswir1
@item Ctrl-a ?
335 7544a042 Stefan Weil
@kindex Ctrl-a ?
336 ec410fc9 bellard
Print this help
337 3b46e624 ths
@item Ctrl-a x
338 7544a042 Stefan Weil
@kindex Ctrl-a x
339 366dfc52 ths
Exit emulator
340 3b46e624 ths
@item Ctrl-a s
341 7544a042 Stefan Weil
@kindex Ctrl-a s
342 1f47a922 bellard
Save disk data back to file (if -snapshot)
343 20d8a3ed ths
@item Ctrl-a t
344 7544a042 Stefan Weil
@kindex Ctrl-a t
345 d2c639d6 blueswir1
Toggle console timestamps
346 a1b74fe8 bellard
@item Ctrl-a b
347 7544a042 Stefan Weil
@kindex Ctrl-a b
348 1f673135 bellard
Send break (magic sysrq in Linux)
349 a1b74fe8 bellard
@item Ctrl-a c
350 7544a042 Stefan Weil
@kindex Ctrl-a c
351 1f673135 bellard
Switch between console and monitor
352 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
353 7544a042 Stefan Weil
@kindex Ctrl-a a
354 a1b74fe8 bellard
Send Ctrl-a
355 ec410fc9 bellard
@end table
356 0806e3f6 bellard
@c man end
357 0806e3f6 bellard
358 0806e3f6 bellard
@ignore
359 0806e3f6 bellard
360 1f673135 bellard
@c man begin SEEALSO
361 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
362 1f673135 bellard
user mode emulator invocation.
363 1f673135 bellard
@c man end
364 1f673135 bellard
365 1f673135 bellard
@c man begin AUTHOR
366 1f673135 bellard
Fabrice Bellard
367 1f673135 bellard
@c man end
368 1f673135 bellard
369 1f673135 bellard
@end ignore
370 1f673135 bellard
371 debc7065 bellard
@node pcsys_monitor
372 1f673135 bellard
@section QEMU Monitor
373 7544a042 Stefan Weil
@cindex QEMU monitor
374 1f673135 bellard
375 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
376 1f673135 bellard
emulator. You can use it to:
377 1f673135 bellard
378 1f673135 bellard
@itemize @minus
379 1f673135 bellard
380 1f673135 bellard
@item
381 e598752a ths
Remove or insert removable media images
382 89dfe898 ths
(such as CD-ROM or floppies).
383 1f673135 bellard
384 5fafdf24 ths
@item
385 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386 1f673135 bellard
from a disk file.
387 1f673135 bellard
388 1f673135 bellard
@item Inspect the VM state without an external debugger.
389 1f673135 bellard
390 1f673135 bellard
@end itemize
391 1f673135 bellard
392 1f673135 bellard
@subsection Commands
393 1f673135 bellard
394 1f673135 bellard
The following commands are available:
395 1f673135 bellard
396 2313086a Blue Swirl
@include qemu-monitor.texi
397 0806e3f6 bellard
398 1f673135 bellard
@subsection Integer expressions
399 1f673135 bellard
400 1f673135 bellard
The monitor understands integers expressions for every integer
401 1f673135 bellard
argument. You can use register names to get the value of specifics
402 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
403 ec410fc9 bellard
404 1f47a922 bellard
@node disk_images
405 1f47a922 bellard
@section Disk Images
406 1f47a922 bellard
407 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
408 acd935ef bellard
growable disk images (their size increase as non empty sectors are
409 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
410 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
411 13a2e80f bellard
snapshots.
412 1f47a922 bellard
413 debc7065 bellard
@menu
414 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
415 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
416 13a2e80f bellard
* vm_snapshots::              VM snapshots
417 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
418 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
419 19cb3738 bellard
* host_drives::               Using host drives
420 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
421 75818250 ths
* disk_images_nbd::           NBD access
422 42af9c30 MORITA Kazutaka
* disk_images_sheepdog::      Sheepdog disk images
423 00984e39 Ronnie Sahlberg
* disk_images_iscsi::         iSCSI LUNs
424 debc7065 bellard
@end menu
425 debc7065 bellard
426 debc7065 bellard
@node disk_images_quickstart
427 acd935ef bellard
@subsection Quick start for disk image creation
428 acd935ef bellard
429 acd935ef bellard
You can create a disk image with the command:
430 1f47a922 bellard
@example
431 acd935ef bellard
qemu-img create myimage.img mysize
432 1f47a922 bellard
@end example
433 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
434 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
435 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
436 acd935ef bellard
437 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
438 1f47a922 bellard
439 debc7065 bellard
@node disk_images_snapshot_mode
440 1f47a922 bellard
@subsection Snapshot mode
441 1f47a922 bellard
442 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
443 1f47a922 bellard
considered as read only. When sectors in written, they are written in
444 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
445 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
446 acd935ef bellard
command (or @key{C-a s} in the serial console).
447 1f47a922 bellard
448 13a2e80f bellard
@node vm_snapshots
449 13a2e80f bellard
@subsection VM snapshots
450 13a2e80f bellard
451 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
452 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
453 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
454 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
455 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
456 13a2e80f bellard
457 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
458 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
459 19d36792 bellard
snapshot in addition to its numerical ID.
460 13a2e80f bellard
461 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
463 13a2e80f bellard
with their associated information:
464 13a2e80f bellard
465 13a2e80f bellard
@example
466 13a2e80f bellard
(qemu) info snapshots
467 13a2e80f bellard
Snapshot devices: hda
468 13a2e80f bellard
Snapshot list (from hda):
469 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
470 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
471 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
472 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
473 13a2e80f bellard
@end example
474 13a2e80f bellard
475 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
476 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
477 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
478 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
479 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
480 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
481 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
482 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
483 19d36792 bellard
disk images).
484 13a2e80f bellard
485 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
486 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
488 13a2e80f bellard
489 13a2e80f bellard
VM snapshots currently have the following known limitations:
490 13a2e80f bellard
@itemize
491 5fafdf24 ths
@item
492 13a2e80f bellard
They cannot cope with removable devices if they are removed or
493 13a2e80f bellard
inserted after a snapshot is done.
494 5fafdf24 ths
@item
495 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
496 13a2e80f bellard
state is not saved or restored properly (in particular USB).
497 13a2e80f bellard
@end itemize
498 13a2e80f bellard
499 acd935ef bellard
@node qemu_img_invocation
500 acd935ef bellard
@subsection @code{qemu-img} Invocation
501 1f47a922 bellard
502 acd935ef bellard
@include qemu-img.texi
503 05efe46e bellard
504 975b092b ths
@node qemu_nbd_invocation
505 975b092b ths
@subsection @code{qemu-nbd} Invocation
506 975b092b ths
507 975b092b ths
@include qemu-nbd.texi
508 975b092b ths
509 19cb3738 bellard
@node host_drives
510 19cb3738 bellard
@subsection Using host drives
511 19cb3738 bellard
512 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
513 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
514 19cb3738 bellard
515 19cb3738 bellard
@subsubsection Linux
516 19cb3738 bellard
517 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
518 4be456f1 ths
disk image filename provided you have enough privileges to access
519 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
520 19cb3738 bellard
@file{/dev/fd0} for the floppy.
521 19cb3738 bellard
522 f542086d bellard
@table @code
523 19cb3738 bellard
@item CD
524 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
525 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
526 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
527 19cb3738 bellard
@item Floppy
528 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
529 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
530 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
531 19cb3738 bellard
OS will think that the same floppy is loaded).
532 19cb3738 bellard
@item Hard disks
533 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
534 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
535 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
536 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
537 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
538 19cb3738 bellard
line option or modify the device permissions accordingly).
539 19cb3738 bellard
@end table
540 19cb3738 bellard
541 19cb3738 bellard
@subsubsection Windows
542 19cb3738 bellard
543 01781963 bellard
@table @code
544 01781963 bellard
@item CD
545 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
546 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
547 01781963 bellard
supported as an alias to the first CDROM drive.
548 19cb3738 bellard
549 e598752a ths
Currently there is no specific code to handle removable media, so it
550 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
551 19cb3738 bellard
change or eject media.
552 01781963 bellard
@item Hard disks
553 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
554 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
555 01781963 bellard
556 01781963 bellard
WARNING: unless you know what you do, it is better to only make
557 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
558 01781963 bellard
host data (use the @option{-snapshot} command line so that the
559 01781963 bellard
modifications are written in a temporary file).
560 01781963 bellard
@end table
561 01781963 bellard
562 19cb3738 bellard
563 19cb3738 bellard
@subsubsection Mac OS X
564 19cb3738 bellard
565 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
566 19cb3738 bellard
567 e598752a ths
Currently there is no specific code to handle removable media, so it
568 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
569 19cb3738 bellard
change or eject media.
570 19cb3738 bellard
571 debc7065 bellard
@node disk_images_fat_images
572 2c6cadd4 bellard
@subsection Virtual FAT disk images
573 2c6cadd4 bellard
574 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
575 2c6cadd4 bellard
directory tree. In order to use it, just type:
576 2c6cadd4 bellard
577 5fafdf24 ths
@example
578 3804da9d Stefan Weil
qemu-system-i386 linux.img -hdb fat:/my_directory
579 2c6cadd4 bellard
@end example
580 2c6cadd4 bellard
581 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
582 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
583 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
584 2c6cadd4 bellard
585 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
586 2c6cadd4 bellard
587 5fafdf24 ths
@example
588 3804da9d Stefan Weil
qemu-system-i386 linux.img -fda fat:floppy:/my_directory
589 2c6cadd4 bellard
@end example
590 2c6cadd4 bellard
591 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
592 2c6cadd4 bellard
@code{:rw:} option:
593 2c6cadd4 bellard
594 5fafdf24 ths
@example
595 3804da9d Stefan Weil
qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
596 2c6cadd4 bellard
@end example
597 2c6cadd4 bellard
598 2c6cadd4 bellard
What you should @emph{never} do:
599 2c6cadd4 bellard
@itemize
600 2c6cadd4 bellard
@item use non-ASCII filenames ;
601 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
602 85b2c688 bellard
@item expect it to work when loadvm'ing ;
603 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
604 2c6cadd4 bellard
@end itemize
605 2c6cadd4 bellard
606 75818250 ths
@node disk_images_nbd
607 75818250 ths
@subsection NBD access
608 75818250 ths
609 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
610 75818250 ths
protocol.
611 75818250 ths
612 75818250 ths
@example
613 3804da9d Stefan Weil
qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
614 75818250 ths
@end example
615 75818250 ths
616 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
617 75818250 ths
of an inet socket:
618 75818250 ths
619 75818250 ths
@example
620 3804da9d Stefan Weil
qemu-system-i386 linux.img -hdb nbd:unix:/tmp/my_socket
621 75818250 ths
@end example
622 75818250 ths
623 75818250 ths
In this case, the block device must be exported using qemu-nbd:
624 75818250 ths
625 75818250 ths
@example
626 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
627 75818250 ths
@end example
628 75818250 ths
629 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
630 75818250 ths
@example
631 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
632 75818250 ths
@end example
633 75818250 ths
634 75818250 ths
and then you can use it with two guests:
635 75818250 ths
@example
636 3804da9d Stefan Weil
qemu-system-i386 linux1.img -hdb nbd:unix:/tmp/my_socket
637 3804da9d Stefan Weil
qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
638 75818250 ths
@end example
639 75818250 ths
640 1d45f8b5 Laurent Vivier
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
641 1d45f8b5 Laurent Vivier
"exportname" option:
642 1d45f8b5 Laurent Vivier
@example
643 3804da9d Stefan Weil
qemu-system-i386 -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
644 3804da9d Stefan Weil
qemu-system-i386 -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
645 1d45f8b5 Laurent Vivier
@end example
646 1d45f8b5 Laurent Vivier
647 42af9c30 MORITA Kazutaka
@node disk_images_sheepdog
648 42af9c30 MORITA Kazutaka
@subsection Sheepdog disk images
649 42af9c30 MORITA Kazutaka
650 42af9c30 MORITA Kazutaka
Sheepdog is a distributed storage system for QEMU.  It provides highly
651 42af9c30 MORITA Kazutaka
available block level storage volumes that can be attached to
652 42af9c30 MORITA Kazutaka
QEMU-based virtual machines.
653 42af9c30 MORITA Kazutaka
654 42af9c30 MORITA Kazutaka
You can create a Sheepdog disk image with the command:
655 42af9c30 MORITA Kazutaka
@example
656 42af9c30 MORITA Kazutaka
qemu-img create sheepdog:@var{image} @var{size}
657 42af9c30 MORITA Kazutaka
@end example
658 42af9c30 MORITA Kazutaka
where @var{image} is the Sheepdog image name and @var{size} is its
659 42af9c30 MORITA Kazutaka
size.
660 42af9c30 MORITA Kazutaka
661 42af9c30 MORITA Kazutaka
To import the existing @var{filename} to Sheepdog, you can use a
662 42af9c30 MORITA Kazutaka
convert command.
663 42af9c30 MORITA Kazutaka
@example
664 42af9c30 MORITA Kazutaka
qemu-img convert @var{filename} sheepdog:@var{image}
665 42af9c30 MORITA Kazutaka
@end example
666 42af9c30 MORITA Kazutaka
667 42af9c30 MORITA Kazutaka
You can boot from the Sheepdog disk image with the command:
668 42af9c30 MORITA Kazutaka
@example
669 3804da9d Stefan Weil
qemu-system-i386 sheepdog:@var{image}
670 42af9c30 MORITA Kazutaka
@end example
671 42af9c30 MORITA Kazutaka
672 42af9c30 MORITA Kazutaka
You can also create a snapshot of the Sheepdog image like qcow2.
673 42af9c30 MORITA Kazutaka
@example
674 42af9c30 MORITA Kazutaka
qemu-img snapshot -c @var{tag} sheepdog:@var{image}
675 42af9c30 MORITA Kazutaka
@end example
676 42af9c30 MORITA Kazutaka
where @var{tag} is a tag name of the newly created snapshot.
677 42af9c30 MORITA Kazutaka
678 42af9c30 MORITA Kazutaka
To boot from the Sheepdog snapshot, specify the tag name of the
679 42af9c30 MORITA Kazutaka
snapshot.
680 42af9c30 MORITA Kazutaka
@example
681 3804da9d Stefan Weil
qemu-system-i386 sheepdog:@var{image}:@var{tag}
682 42af9c30 MORITA Kazutaka
@end example
683 42af9c30 MORITA Kazutaka
684 42af9c30 MORITA Kazutaka
You can create a cloned image from the existing snapshot.
685 42af9c30 MORITA Kazutaka
@example
686 42af9c30 MORITA Kazutaka
qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
687 42af9c30 MORITA Kazutaka
@end example
688 42af9c30 MORITA Kazutaka
where @var{base} is a image name of the source snapshot and @var{tag}
689 42af9c30 MORITA Kazutaka
is its tag name.
690 42af9c30 MORITA Kazutaka
691 42af9c30 MORITA Kazutaka
If the Sheepdog daemon doesn't run on the local host, you need to
692 42af9c30 MORITA Kazutaka
specify one of the Sheepdog servers to connect to.
693 42af9c30 MORITA Kazutaka
@example
694 42af9c30 MORITA Kazutaka
qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
695 3804da9d Stefan Weil
qemu-system-i386 sheepdog:@var{hostname}:@var{port}:@var{image}
696 42af9c30 MORITA Kazutaka
@end example
697 42af9c30 MORITA Kazutaka
698 00984e39 Ronnie Sahlberg
@node disk_images_iscsi
699 00984e39 Ronnie Sahlberg
@subsection iSCSI LUNs
700 00984e39 Ronnie Sahlberg
701 00984e39 Ronnie Sahlberg
iSCSI is a popular protocol used to access SCSI devices across a computer
702 00984e39 Ronnie Sahlberg
network.
703 00984e39 Ronnie Sahlberg
704 00984e39 Ronnie Sahlberg
There are two different ways iSCSI devices can be used by QEMU.
705 00984e39 Ronnie Sahlberg
706 00984e39 Ronnie Sahlberg
The first method is to mount the iSCSI LUN on the host, and make it appear as
707 00984e39 Ronnie Sahlberg
any other ordinary SCSI device on the host and then to access this device as a
708 00984e39 Ronnie Sahlberg
/dev/sd device from QEMU. How to do this differs between host OSes.
709 00984e39 Ronnie Sahlberg
710 00984e39 Ronnie Sahlberg
The second method involves using the iSCSI initiator that is built into
711 00984e39 Ronnie Sahlberg
QEMU. This provides a mechanism that works the same way regardless of which
712 00984e39 Ronnie Sahlberg
host OS you are running QEMU on. This section will describe this second method
713 00984e39 Ronnie Sahlberg
of using iSCSI together with QEMU.
714 00984e39 Ronnie Sahlberg
715 00984e39 Ronnie Sahlberg
In QEMU, iSCSI devices are described using special iSCSI URLs
716 00984e39 Ronnie Sahlberg
717 00984e39 Ronnie Sahlberg
@example
718 00984e39 Ronnie Sahlberg
URL syntax:
719 00984e39 Ronnie Sahlberg
iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
720 00984e39 Ronnie Sahlberg
@end example
721 00984e39 Ronnie Sahlberg
722 00984e39 Ronnie Sahlberg
Username and password are optional and only used if your target is set up
723 00984e39 Ronnie Sahlberg
using CHAP authentication for access control.
724 00984e39 Ronnie Sahlberg
Alternatively the username and password can also be set via environment
725 00984e39 Ronnie Sahlberg
variables to have these not show up in the process list
726 00984e39 Ronnie Sahlberg
727 00984e39 Ronnie Sahlberg
@example
728 00984e39 Ronnie Sahlberg
export LIBISCSI_CHAP_USERNAME=<username>
729 00984e39 Ronnie Sahlberg
export LIBISCSI_CHAP_PASSWORD=<password>
730 00984e39 Ronnie Sahlberg
iscsi://<host>/<target-iqn-name>/<lun>
731 00984e39 Ronnie Sahlberg
@end example
732 00984e39 Ronnie Sahlberg
733 f9dadc98 Ronnie Sahlberg
Various session related parameters can be set via special options, either
734 f9dadc98 Ronnie Sahlberg
in a configuration file provided via '-readconfig' or directly on the
735 f9dadc98 Ronnie Sahlberg
command line.
736 f9dadc98 Ronnie Sahlberg
737 31459f46 Ronnie Sahlberg
If the initiator-name is not specified qemu will use a default name
738 31459f46 Ronnie Sahlberg
of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
739 31459f46 Ronnie Sahlberg
virtual machine.
740 31459f46 Ronnie Sahlberg
741 31459f46 Ronnie Sahlberg
742 f9dadc98 Ronnie Sahlberg
@example
743 f9dadc98 Ronnie Sahlberg
Setting a specific initiator name to use when logging in to the target
744 f9dadc98 Ronnie Sahlberg
-iscsi initiator-name=iqn.qemu.test:my-initiator
745 f9dadc98 Ronnie Sahlberg
@end example
746 f9dadc98 Ronnie Sahlberg
747 f9dadc98 Ronnie Sahlberg
@example
748 f9dadc98 Ronnie Sahlberg
Controlling which type of header digest to negotiate with the target
749 f9dadc98 Ronnie Sahlberg
-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
750 f9dadc98 Ronnie Sahlberg
@end example
751 f9dadc98 Ronnie Sahlberg
752 f9dadc98 Ronnie Sahlberg
These can also be set via a configuration file
753 f9dadc98 Ronnie Sahlberg
@example
754 f9dadc98 Ronnie Sahlberg
[iscsi]
755 f9dadc98 Ronnie Sahlberg
  user = "CHAP username"
756 f9dadc98 Ronnie Sahlberg
  password = "CHAP password"
757 f9dadc98 Ronnie Sahlberg
  initiator-name = "iqn.qemu.test:my-initiator"
758 f9dadc98 Ronnie Sahlberg
  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
759 f9dadc98 Ronnie Sahlberg
  header-digest = "CRC32C"
760 f9dadc98 Ronnie Sahlberg
@end example
761 f9dadc98 Ronnie Sahlberg
762 f9dadc98 Ronnie Sahlberg
763 f9dadc98 Ronnie Sahlberg
Setting the target name allows different options for different targets
764 f9dadc98 Ronnie Sahlberg
@example
765 f9dadc98 Ronnie Sahlberg
[iscsi "iqn.target.name"]
766 f9dadc98 Ronnie Sahlberg
  user = "CHAP username"
767 f9dadc98 Ronnie Sahlberg
  password = "CHAP password"
768 f9dadc98 Ronnie Sahlberg
  initiator-name = "iqn.qemu.test:my-initiator"
769 f9dadc98 Ronnie Sahlberg
  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
770 f9dadc98 Ronnie Sahlberg
  header-digest = "CRC32C"
771 f9dadc98 Ronnie Sahlberg
@end example
772 f9dadc98 Ronnie Sahlberg
773 f9dadc98 Ronnie Sahlberg
774 f9dadc98 Ronnie Sahlberg
Howto use a configuration file to set iSCSI configuration options:
775 f9dadc98 Ronnie Sahlberg
@example
776 f9dadc98 Ronnie Sahlberg
cat >iscsi.conf <<EOF
777 f9dadc98 Ronnie Sahlberg
[iscsi]
778 f9dadc98 Ronnie Sahlberg
  user = "me"
779 f9dadc98 Ronnie Sahlberg
  password = "my password"
780 f9dadc98 Ronnie Sahlberg
  initiator-name = "iqn.qemu.test:my-initiator"
781 f9dadc98 Ronnie Sahlberg
  header-digest = "CRC32C"
782 f9dadc98 Ronnie Sahlberg
EOF
783 f9dadc98 Ronnie Sahlberg
784 f9dadc98 Ronnie Sahlberg
qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
785 f9dadc98 Ronnie Sahlberg
    -readconfig iscsi.conf
786 f9dadc98 Ronnie Sahlberg
@end example
787 f9dadc98 Ronnie Sahlberg
788 f9dadc98 Ronnie Sahlberg
789 00984e39 Ronnie Sahlberg
Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
790 00984e39 Ronnie Sahlberg
@example
791 00984e39 Ronnie Sahlberg
This example shows how to set up an iSCSI target with one CDROM and one DISK
792 00984e39 Ronnie Sahlberg
using the Linux STGT software target. This target is available on Red Hat based
793 00984e39 Ronnie Sahlberg
systems as the package 'scsi-target-utils'.
794 00984e39 Ronnie Sahlberg
795 00984e39 Ronnie Sahlberg
tgtd --iscsi portal=127.0.0.1:3260
796 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
797 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
798 00984e39 Ronnie Sahlberg
    -b /IMAGES/disk.img --device-type=disk
799 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
800 00984e39 Ronnie Sahlberg
    -b /IMAGES/cd.iso --device-type=cd
801 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
802 00984e39 Ronnie Sahlberg
803 f9dadc98 Ronnie Sahlberg
qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
804 f9dadc98 Ronnie Sahlberg
    -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
805 00984e39 Ronnie Sahlberg
    -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
806 00984e39 Ronnie Sahlberg
@end example
807 00984e39 Ronnie Sahlberg
808 00984e39 Ronnie Sahlberg
809 00984e39 Ronnie Sahlberg
810 debc7065 bellard
@node pcsys_network
811 9d4fb82e bellard
@section Network emulation
812 9d4fb82e bellard
813 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
814 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
815 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
816 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
817 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
818 41d03949 bellard
network stack can replace the TAP device to have a basic network
819 41d03949 bellard
connection.
820 41d03949 bellard
821 41d03949 bellard
@subsection VLANs
822 9d4fb82e bellard
823 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
824 41d03949 bellard
connection between several network devices. These devices can be for
825 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
826 41d03949 bellard
(TAP devices).
827 9d4fb82e bellard
828 41d03949 bellard
@subsection Using TAP network interfaces
829 41d03949 bellard
830 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
831 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
832 41d03949 bellard
can then configure it as if it was a real ethernet card.
833 9d4fb82e bellard
834 8f40c388 bellard
@subsubsection Linux host
835 8f40c388 bellard
836 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
837 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
838 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
839 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
840 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
841 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
842 9d4fb82e bellard
843 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
844 ee0f4751 bellard
TAP network interfaces.
845 9d4fb82e bellard
846 8f40c388 bellard
@subsubsection Windows host
847 8f40c388 bellard
848 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
849 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
850 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
851 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
852 8f40c388 bellard
853 9d4fb82e bellard
@subsection Using the user mode network stack
854 9d4fb82e bellard
855 41d03949 bellard
By using the option @option{-net user} (default configuration if no
856 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
857 4be456f1 ths
network stack (you don't need root privilege to use the virtual
858 41d03949 bellard
network). The virtual network configuration is the following:
859 9d4fb82e bellard
860 9d4fb82e bellard
@example
861 9d4fb82e bellard
862 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
863 41d03949 bellard
                           |          (10.0.2.2)
864 9d4fb82e bellard
                           |
865 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
866 3b46e624 ths
                           |
867 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
868 9d4fb82e bellard
@end example
869 9d4fb82e bellard
870 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
871 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
872 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
873 41d03949 bellard
to the hosts starting from 10.0.2.15.
874 9d4fb82e bellard
875 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
876 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
877 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
878 9d4fb82e bellard
879 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
880 4be456f1 ths
would require root privileges. It means you can only ping the local
881 b415a407 bellard
router (10.0.2.2).
882 b415a407 bellard
883 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
884 9bf05444 bellard
server.
885 9bf05444 bellard
886 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
887 9bf05444 bellard
redirected from the host to the guest. It allows for example to
888 9bf05444 bellard
redirect X11, telnet or SSH connections.
889 443f1376 bellard
890 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
891 41d03949 bellard
892 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
893 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
894 41d03949 bellard
basic example.
895 41d03949 bellard
896 576fd0a1 Stefan Weil
@node pcsys_other_devs
897 6cbf4c8c Cam Macdonell
@section Other Devices
898 6cbf4c8c Cam Macdonell
899 6cbf4c8c Cam Macdonell
@subsection Inter-VM Shared Memory device
900 6cbf4c8c Cam Macdonell
901 6cbf4c8c Cam Macdonell
With KVM enabled on a Linux host, a shared memory device is available.  Guests
902 6cbf4c8c Cam Macdonell
map a POSIX shared memory region into the guest as a PCI device that enables
903 6cbf4c8c Cam Macdonell
zero-copy communication to the application level of the guests.  The basic
904 6cbf4c8c Cam Macdonell
syntax is:
905 6cbf4c8c Cam Macdonell
906 6cbf4c8c Cam Macdonell
@example
907 3804da9d Stefan Weil
qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
908 6cbf4c8c Cam Macdonell
@end example
909 6cbf4c8c Cam Macdonell
910 6cbf4c8c Cam Macdonell
If desired, interrupts can be sent between guest VMs accessing the same shared
911 6cbf4c8c Cam Macdonell
memory region.  Interrupt support requires using a shared memory server and
912 6cbf4c8c Cam Macdonell
using a chardev socket to connect to it.  The code for the shared memory server
913 6cbf4c8c Cam Macdonell
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
914 6cbf4c8c Cam Macdonell
memory server is:
915 6cbf4c8c Cam Macdonell
916 6cbf4c8c Cam Macdonell
@example
917 3804da9d Stefan Weil
qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
918 3804da9d Stefan Weil
                 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
919 3804da9d Stefan Weil
qemu-system-i386 -chardev socket,path=<path>,id=<id>
920 6cbf4c8c Cam Macdonell
@end example
921 6cbf4c8c Cam Macdonell
922 6cbf4c8c Cam Macdonell
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
923 6cbf4c8c Cam Macdonell
using the same server to communicate via interrupts.  Guests can read their
924 6cbf4c8c Cam Macdonell
VM ID from a device register (see example code).  Since receiving the shared
925 6cbf4c8c Cam Macdonell
memory region from the server is asynchronous, there is a (small) chance the
926 6cbf4c8c Cam Macdonell
guest may boot before the shared memory is attached.  To allow an application
927 6cbf4c8c Cam Macdonell
to ensure shared memory is attached, the VM ID register will return -1 (an
928 6cbf4c8c Cam Macdonell
invalid VM ID) until the memory is attached.  Once the shared memory is
929 6cbf4c8c Cam Macdonell
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
930 6cbf4c8c Cam Macdonell
the guest application can check to ensure the shared memory is attached to the
931 6cbf4c8c Cam Macdonell
guest before proceeding.
932 6cbf4c8c Cam Macdonell
933 6cbf4c8c Cam Macdonell
The @option{role} argument can be set to either master or peer and will affect
934 6cbf4c8c Cam Macdonell
how the shared memory is migrated.  With @option{role=master}, the guest will
935 6cbf4c8c Cam Macdonell
copy the shared memory on migration to the destination host.  With
936 6cbf4c8c Cam Macdonell
@option{role=peer}, the guest will not be able to migrate with the device attached.
937 6cbf4c8c Cam Macdonell
With the @option{peer} case, the device should be detached and then reattached
938 6cbf4c8c Cam Macdonell
after migration using the PCI hotplug support.
939 6cbf4c8c Cam Macdonell
940 9d4fb82e bellard
@node direct_linux_boot
941 9d4fb82e bellard
@section Direct Linux Boot
942 1f673135 bellard
943 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
944 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
945 ee0f4751 bellard
kernel testing.
946 1f673135 bellard
947 ee0f4751 bellard
The syntax is:
948 1f673135 bellard
@example
949 3804da9d Stefan Weil
qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
950 1f673135 bellard
@end example
951 1f673135 bellard
952 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
953 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
954 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
955 1f673135 bellard
956 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
957 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
958 ee0f4751 bellard
Linux kernel.
959 1f673135 bellard
960 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
961 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
962 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
963 1f673135 bellard
@example
964 3804da9d Stefan Weil
qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
965 3804da9d Stefan Weil
                 -append "root=/dev/hda console=ttyS0" -nographic
966 1f673135 bellard
@end example
967 1f673135 bellard
968 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
969 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
970 1f673135 bellard
971 debc7065 bellard
@node pcsys_usb
972 b389dbfb bellard
@section USB emulation
973 b389dbfb bellard
974 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
975 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
976 071c9394 Stefan Weil
on Linux hosts).  QEMU will automatically create and connect virtual USB hubs
977 f542086d bellard
as necessary to connect multiple USB devices.
978 b389dbfb bellard
979 0aff66b5 pbrook
@menu
980 0aff66b5 pbrook
* usb_devices::
981 0aff66b5 pbrook
* host_usb_devices::
982 0aff66b5 pbrook
@end menu
983 0aff66b5 pbrook
@node usb_devices
984 0aff66b5 pbrook
@subsection Connecting USB devices
985 b389dbfb bellard
986 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
987 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
988 b389dbfb bellard
989 db380c06 balrog
@table @code
990 db380c06 balrog
@item mouse
991 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
992 db380c06 balrog
@item tablet
993 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
994 b65ee4fa Stefan Weil
This means QEMU is able to report the mouse position without having
995 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
996 db380c06 balrog
@item disk:@var{file}
997 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
998 db380c06 balrog
@item host:@var{bus.addr}
999 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1000 0aff66b5 pbrook
(Linux only)
1001 db380c06 balrog
@item host:@var{vendor_id:product_id}
1002 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1003 0aff66b5 pbrook
(Linux only)
1004 db380c06 balrog
@item wacom-tablet
1005 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1006 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1007 f6d2a316 balrog
coordinates it reports touch pressure.
1008 db380c06 balrog
@item keyboard
1009 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1010 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1011 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1012 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1013 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1014 0d6753e5 Stefan Weil
used to override the default 0403:6001. For instance,
1015 db380c06 balrog
@example
1016 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1017 db380c06 balrog
@end example
1018 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1019 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1020 2e4d9fb1 aurel32
@item braille
1021 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1022 2e4d9fb1 aurel32
or fake device.
1023 9ad97e65 balrog
@item net:@var{options}
1024 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1025 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1026 9ad97e65 balrog
For instance, user-mode networking can be used with
1027 6c9f886c balrog
@example
1028 3804da9d Stefan Weil
qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1029 6c9f886c balrog
@end example
1030 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
1031 2d564691 balrog
@item bt[:@var{hci-type}]
1032 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
1033 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1034 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1035 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
1036 2d564691 balrog
usage:
1037 2d564691 balrog
@example
1038 3804da9d Stefan Weil
qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1039 2d564691 balrog
@end example
1040 0aff66b5 pbrook
@end table
1041 b389dbfb bellard
1042 0aff66b5 pbrook
@node host_usb_devices
1043 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1044 b389dbfb bellard
1045 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1046 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1047 b389dbfb bellard
Cameras) are not supported yet.
1048 b389dbfb bellard
1049 b389dbfb bellard
@enumerate
1050 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1051 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1052 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1053 b389dbfb bellard
to @file{mydriver.o.disabled}.
1054 b389dbfb bellard
1055 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1056 b389dbfb bellard
@example
1057 b389dbfb bellard
ls /proc/bus/usb
1058 b389dbfb bellard
001  devices  drivers
1059 b389dbfb bellard
@end example
1060 b389dbfb bellard
1061 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1062 b389dbfb bellard
@example
1063 b389dbfb bellard
chown -R myuid /proc/bus/usb
1064 b389dbfb bellard
@end example
1065 b389dbfb bellard
1066 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1067 5fafdf24 ths
@example
1068 b389dbfb bellard
info usbhost
1069 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1070 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1071 b389dbfb bellard
@end example
1072 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1073 b389dbfb bellard
hubs, it won't work).
1074 b389dbfb bellard
1075 b389dbfb bellard
@item Add the device in QEMU by using:
1076 5fafdf24 ths
@example
1077 b389dbfb bellard
usb_add host:1234:5678
1078 b389dbfb bellard
@end example
1079 b389dbfb bellard
1080 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1081 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1082 b389dbfb bellard
1083 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1084 b389dbfb bellard
1085 b389dbfb bellard
@end enumerate
1086 b389dbfb bellard
1087 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1088 b389dbfb bellard
device to make it work again (this is a bug).
1089 b389dbfb bellard
1090 f858dcae ths
@node vnc_security
1091 f858dcae ths
@section VNC security
1092 f858dcae ths
1093 f858dcae ths
The VNC server capability provides access to the graphical console
1094 f858dcae ths
of the guest VM across the network. This has a number of security
1095 f858dcae ths
considerations depending on the deployment scenarios.
1096 f858dcae ths
1097 f858dcae ths
@menu
1098 f858dcae ths
* vnc_sec_none::
1099 f858dcae ths
* vnc_sec_password::
1100 f858dcae ths
* vnc_sec_certificate::
1101 f858dcae ths
* vnc_sec_certificate_verify::
1102 f858dcae ths
* vnc_sec_certificate_pw::
1103 2f9606b3 aliguori
* vnc_sec_sasl::
1104 2f9606b3 aliguori
* vnc_sec_certificate_sasl::
1105 f858dcae ths
* vnc_generate_cert::
1106 2f9606b3 aliguori
* vnc_setup_sasl::
1107 f858dcae ths
@end menu
1108 f858dcae ths
@node vnc_sec_none
1109 f858dcae ths
@subsection Without passwords
1110 f858dcae ths
1111 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1112 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1113 f858dcae ths
socket only. For example
1114 f858dcae ths
1115 f858dcae ths
@example
1116 3804da9d Stefan Weil
qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1117 f858dcae ths
@end example
1118 f858dcae ths
1119 f858dcae ths
This ensures that only users on local box with read/write access to that
1120 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1121 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1122 f858dcae ths
tunnel.
1123 f858dcae ths
1124 f858dcae ths
@node vnc_sec_password
1125 f858dcae ths
@subsection With passwords
1126 f858dcae ths
1127 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1128 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1129 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1130 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1131 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1132 0f66998f Paul Moore
or UNIX domain sockets. Password authentication is not supported when operating
1133 0f66998f Paul Moore
in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1134 0f66998f Paul Moore
authentication is requested with the @code{password} option, and then once QEMU
1135 0f66998f Paul Moore
is running the password is set with the monitor. Until the monitor is used to
1136 0f66998f Paul Moore
set the password all clients will be rejected.
1137 f858dcae ths
1138 f858dcae ths
@example
1139 3804da9d Stefan Weil
qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1140 f858dcae ths
(qemu) change vnc password
1141 f858dcae ths
Password: ********
1142 f858dcae ths
(qemu)
1143 f858dcae ths
@end example
1144 f858dcae ths
1145 f858dcae ths
@node vnc_sec_certificate
1146 f858dcae ths
@subsection With x509 certificates
1147 f858dcae ths
1148 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1149 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1150 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1151 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1152 f858dcae ths
support provides a secure session, but no authentication. This allows any
1153 f858dcae ths
client to connect, and provides an encrypted session.
1154 f858dcae ths
1155 f858dcae ths
@example
1156 3804da9d Stefan Weil
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1157 f858dcae ths
@end example
1158 f858dcae ths
1159 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1160 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1161 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1162 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1163 f858dcae ths
only be readable by the user owning it.
1164 f858dcae ths
1165 f858dcae ths
@node vnc_sec_certificate_verify
1166 f858dcae ths
@subsection With x509 certificates and client verification
1167 f858dcae ths
1168 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1169 f858dcae ths
The server will request that the client provide a certificate, which it will
1170 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1171 f858dcae ths
in an environment with a private internal certificate authority.
1172 f858dcae ths
1173 f858dcae ths
@example
1174 3804da9d Stefan Weil
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1175 f858dcae ths
@end example
1176 f858dcae ths
1177 f858dcae ths
1178 f858dcae ths
@node vnc_sec_certificate_pw
1179 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1180 f858dcae ths
1181 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1182 f858dcae ths
to provide two layers of authentication for clients.
1183 f858dcae ths
1184 f858dcae ths
@example
1185 3804da9d Stefan Weil
qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1186 f858dcae ths
(qemu) change vnc password
1187 f858dcae ths
Password: ********
1188 f858dcae ths
(qemu)
1189 f858dcae ths
@end example
1190 f858dcae ths
1191 2f9606b3 aliguori
1192 2f9606b3 aliguori
@node vnc_sec_sasl
1193 2f9606b3 aliguori
@subsection With SASL authentication
1194 2f9606b3 aliguori
1195 2f9606b3 aliguori
The SASL authentication method is a VNC extension, that provides an
1196 2f9606b3 aliguori
easily extendable, pluggable authentication method. This allows for
1197 2f9606b3 aliguori
integration with a wide range of authentication mechanisms, such as
1198 2f9606b3 aliguori
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1199 2f9606b3 aliguori
The strength of the authentication depends on the exact mechanism
1200 2f9606b3 aliguori
configured. If the chosen mechanism also provides a SSF layer, then
1201 2f9606b3 aliguori
it will encrypt the datastream as well.
1202 2f9606b3 aliguori
1203 2f9606b3 aliguori
Refer to the later docs on how to choose the exact SASL mechanism
1204 2f9606b3 aliguori
used for authentication, but assuming use of one supporting SSF,
1205 2f9606b3 aliguori
then QEMU can be launched with:
1206 2f9606b3 aliguori
1207 2f9606b3 aliguori
@example
1208 3804da9d Stefan Weil
qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1209 2f9606b3 aliguori
@end example
1210 2f9606b3 aliguori
1211 2f9606b3 aliguori
@node vnc_sec_certificate_sasl
1212 2f9606b3 aliguori
@subsection With x509 certificates and SASL authentication
1213 2f9606b3 aliguori
1214 2f9606b3 aliguori
If the desired SASL authentication mechanism does not supported
1215 2f9606b3 aliguori
SSF layers, then it is strongly advised to run it in combination
1216 2f9606b3 aliguori
with TLS and x509 certificates. This provides securely encrypted
1217 2f9606b3 aliguori
data stream, avoiding risk of compromising of the security
1218 2f9606b3 aliguori
credentials. This can be enabled, by combining the 'sasl' option
1219 2f9606b3 aliguori
with the aforementioned TLS + x509 options:
1220 2f9606b3 aliguori
1221 2f9606b3 aliguori
@example
1222 3804da9d Stefan Weil
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1223 2f9606b3 aliguori
@end example
1224 2f9606b3 aliguori
1225 2f9606b3 aliguori
1226 f858dcae ths
@node vnc_generate_cert
1227 f858dcae ths
@subsection Generating certificates for VNC
1228 f858dcae ths
1229 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1230 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1231 40c5c6cd Stefan Weil
is necessary to setup a certificate authority, and issue certificates to
1232 f858dcae ths
each server. If using certificates for authentication, then each client
1233 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1234 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1235 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1236 f858dcae ths
1237 f858dcae ths
@menu
1238 f858dcae ths
* vnc_generate_ca::
1239 f858dcae ths
* vnc_generate_server::
1240 f858dcae ths
* vnc_generate_client::
1241 f858dcae ths
@end menu
1242 f858dcae ths
@node vnc_generate_ca
1243 f858dcae ths
@subsubsection Setup the Certificate Authority
1244 f858dcae ths
1245 f858dcae ths
This step only needs to be performed once per organization / organizational
1246 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1247 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1248 f858dcae ths
issued with it is lost.
1249 f858dcae ths
1250 f858dcae ths
@example
1251 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1252 f858dcae ths
@end example
1253 f858dcae ths
1254 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1255 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1256 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1257 f858dcae ths
name of the organization.
1258 f858dcae ths
1259 f858dcae ths
@example
1260 f858dcae ths
# cat > ca.info <<EOF
1261 f858dcae ths
cn = Name of your organization
1262 f858dcae ths
ca
1263 f858dcae ths
cert_signing_key
1264 f858dcae ths
EOF
1265 f858dcae ths
# certtool --generate-self-signed \
1266 f858dcae ths
           --load-privkey ca-key.pem
1267 f858dcae ths
           --template ca.info \
1268 f858dcae ths
           --outfile ca-cert.pem
1269 f858dcae ths
@end example
1270 f858dcae ths
1271 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1272 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1273 f858dcae ths
1274 f858dcae ths
@node vnc_generate_server
1275 f858dcae ths
@subsubsection Issuing server certificates
1276 f858dcae ths
1277 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1278 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1279 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1280 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1281 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1282 f858dcae ths
secure CA private key:
1283 f858dcae ths
1284 f858dcae ths
@example
1285 f858dcae ths
# cat > server.info <<EOF
1286 f858dcae ths
organization = Name  of your organization
1287 f858dcae ths
cn = server.foo.example.com
1288 f858dcae ths
tls_www_server
1289 f858dcae ths
encryption_key
1290 f858dcae ths
signing_key
1291 f858dcae ths
EOF
1292 f858dcae ths
# certtool --generate-privkey > server-key.pem
1293 f858dcae ths
# certtool --generate-certificate \
1294 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1295 f858dcae ths
           --load-ca-privkey ca-key.pem \
1296 f858dcae ths
           --load-privkey server server-key.pem \
1297 f858dcae ths
           --template server.info \
1298 f858dcae ths
           --outfile server-cert.pem
1299 f858dcae ths
@end example
1300 f858dcae ths
1301 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1302 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1303 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1304 f858dcae ths
1305 f858dcae ths
@node vnc_generate_client
1306 f858dcae ths
@subsubsection Issuing client certificates
1307 f858dcae ths
1308 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1309 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1310 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1311 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1312 f858dcae ths
the secure CA private key:
1313 f858dcae ths
1314 f858dcae ths
@example
1315 f858dcae ths
# cat > client.info <<EOF
1316 f858dcae ths
country = GB
1317 f858dcae ths
state = London
1318 f858dcae ths
locality = London
1319 f858dcae ths
organiazation = Name of your organization
1320 f858dcae ths
cn = client.foo.example.com
1321 f858dcae ths
tls_www_client
1322 f858dcae ths
encryption_key
1323 f858dcae ths
signing_key
1324 f858dcae ths
EOF
1325 f858dcae ths
# certtool --generate-privkey > client-key.pem
1326 f858dcae ths
# certtool --generate-certificate \
1327 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1328 f858dcae ths
           --load-ca-privkey ca-key.pem \
1329 f858dcae ths
           --load-privkey client-key.pem \
1330 f858dcae ths
           --template client.info \
1331 f858dcae ths
           --outfile client-cert.pem
1332 f858dcae ths
@end example
1333 f858dcae ths
1334 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1335 f858dcae ths
copied to the client for which they were generated.
1336 f858dcae ths
1337 2f9606b3 aliguori
1338 2f9606b3 aliguori
@node vnc_setup_sasl
1339 2f9606b3 aliguori
1340 2f9606b3 aliguori
@subsection Configuring SASL mechanisms
1341 2f9606b3 aliguori
1342 2f9606b3 aliguori
The following documentation assumes use of the Cyrus SASL implementation on a
1343 2f9606b3 aliguori
Linux host, but the principals should apply to any other SASL impl. When SASL
1344 2f9606b3 aliguori
is enabled, the mechanism configuration will be loaded from system default
1345 2f9606b3 aliguori
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1346 2f9606b3 aliguori
unprivileged user, an environment variable SASL_CONF_PATH can be used
1347 2f9606b3 aliguori
to make it search alternate locations for the service config.
1348 2f9606b3 aliguori
1349 2f9606b3 aliguori
The default configuration might contain
1350 2f9606b3 aliguori
1351 2f9606b3 aliguori
@example
1352 2f9606b3 aliguori
mech_list: digest-md5
1353 2f9606b3 aliguori
sasldb_path: /etc/qemu/passwd.db
1354 2f9606b3 aliguori
@end example
1355 2f9606b3 aliguori
1356 2f9606b3 aliguori
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1357 2f9606b3 aliguori
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1358 2f9606b3 aliguori
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1359 2f9606b3 aliguori
command. While this mechanism is easy to configure and use, it is not
1360 2f9606b3 aliguori
considered secure by modern standards, so only suitable for developers /
1361 2f9606b3 aliguori
ad-hoc testing.
1362 2f9606b3 aliguori
1363 2f9606b3 aliguori
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1364 2f9606b3 aliguori
mechanism
1365 2f9606b3 aliguori
1366 2f9606b3 aliguori
@example
1367 2f9606b3 aliguori
mech_list: gssapi
1368 2f9606b3 aliguori
keytab: /etc/qemu/krb5.tab
1369 2f9606b3 aliguori
@end example
1370 2f9606b3 aliguori
1371 2f9606b3 aliguori
For this to work the administrator of your KDC must generate a Kerberos
1372 2f9606b3 aliguori
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1373 2f9606b3 aliguori
replacing 'somehost.example.com' with the fully qualified host name of the
1374 40c5c6cd Stefan Weil
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1375 2f9606b3 aliguori
1376 2f9606b3 aliguori
Other configurations will be left as an exercise for the reader. It should
1377 2f9606b3 aliguori
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1378 2f9606b3 aliguori
encryption. For all other mechanisms, VNC should always be configured to
1379 2f9606b3 aliguori
use TLS and x509 certificates to protect security credentials from snooping.
1380 2f9606b3 aliguori
1381 0806e3f6 bellard
@node gdb_usage
1382 da415d54 bellard
@section GDB usage
1383 da415d54 bellard
1384 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1385 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1386 da415d54 bellard
1387 b65ee4fa Stefan Weil
In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1388 da415d54 bellard
gdb connection:
1389 da415d54 bellard
@example
1390 3804da9d Stefan Weil
qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1391 3804da9d Stefan Weil
                    -append "root=/dev/hda"
1392 da415d54 bellard
Connected to host network interface: tun0
1393 da415d54 bellard
Waiting gdb connection on port 1234
1394 da415d54 bellard
@end example
1395 da415d54 bellard
1396 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1397 da415d54 bellard
@example
1398 da415d54 bellard
> gdb vmlinux
1399 da415d54 bellard
@end example
1400 da415d54 bellard
1401 da415d54 bellard
In gdb, connect to QEMU:
1402 da415d54 bellard
@example
1403 6c9bf893 bellard
(gdb) target remote localhost:1234
1404 da415d54 bellard
@end example
1405 da415d54 bellard
1406 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1407 da415d54 bellard
@example
1408 da415d54 bellard
(gdb) c
1409 da415d54 bellard
@end example
1410 da415d54 bellard
1411 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1412 0806e3f6 bellard
1413 0806e3f6 bellard
@enumerate
1414 0806e3f6 bellard
@item
1415 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1416 0806e3f6 bellard
@item
1417 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1418 0806e3f6 bellard
@item
1419 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1420 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1421 0806e3f6 bellard
@end enumerate
1422 0806e3f6 bellard
1423 60897d36 edgar_igl
Advanced debugging options:
1424 60897d36 edgar_igl
1425 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1426 94d45e44 edgar_igl
@table @code
1427 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1428 60897d36 edgar_igl
1429 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1430 60897d36 edgar_igl
@example
1431 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1432 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1433 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1434 60897d36 edgar_igl
@end example
1435 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1436 60897d36 edgar_igl
1437 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1438 60897d36 edgar_igl
@example
1439 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1440 60897d36 edgar_igl
sending: "qqemu.sstep"
1441 60897d36 edgar_igl
received: "0x7"
1442 60897d36 edgar_igl
@end example
1443 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1444 60897d36 edgar_igl
1445 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1446 60897d36 edgar_igl
@example
1447 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1448 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1449 60897d36 edgar_igl
received: "OK"
1450 60897d36 edgar_igl
@end example
1451 94d45e44 edgar_igl
@end table
1452 60897d36 edgar_igl
1453 debc7065 bellard
@node pcsys_os_specific
1454 1a084f3d bellard
@section Target OS specific information
1455 1a084f3d bellard
1456 1a084f3d bellard
@subsection Linux
1457 1a084f3d bellard
1458 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1459 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1460 15a34c63 bellard
color depth in the guest and the host OS.
1461 1a084f3d bellard
1462 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1463 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1464 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1465 e3371e62 bellard
cannot simulate exactly.
1466 e3371e62 bellard
1467 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1468 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1469 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1470 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1471 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1472 7c3fc84d bellard
1473 1a084f3d bellard
@subsection Windows
1474 1a084f3d bellard
1475 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1476 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1477 1a084f3d bellard
1478 e3371e62 bellard
@subsubsection SVGA graphic modes support
1479 e3371e62 bellard
1480 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1481 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1482 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1483 15a34c63 bellard
depth in the guest and the host OS.
1484 1a084f3d bellard
1485 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1486 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1487 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1488 3cb0853a bellard
(option @option{-std-vga}).
1489 3cb0853a bellard
1490 e3371e62 bellard
@subsubsection CPU usage reduction
1491 e3371e62 bellard
1492 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1493 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1494 15a34c63 bellard
idle. You can install the utility from
1495 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1496 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1497 1a084f3d bellard
1498 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1499 e3371e62 bellard
1500 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1501 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1502 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1503 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1504 9d0a8e6f bellard
IDE transfers).
1505 e3371e62 bellard
1506 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1507 6cc721cf bellard
1508 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1509 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1510 6cc721cf bellard
use the APM driver provided by the BIOS.
1511 6cc721cf bellard
1512 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1513 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1514 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1515 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1516 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1517 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1518 6cc721cf bellard
1519 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1520 6cc721cf bellard
1521 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1522 6cc721cf bellard
1523 2192c332 bellard
@subsubsection Windows XP security problem
1524 e3371e62 bellard
1525 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1526 e3371e62 bellard
error when booting:
1527 e3371e62 bellard
@example
1528 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1529 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1530 e3371e62 bellard
@end example
1531 e3371e62 bellard
1532 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1533 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1534 2192c332 bellard
network while in safe mode, its recommended to download the full
1535 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1536 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1537 e3371e62 bellard
1538 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
1539 a0a821a4 bellard
1540 a0a821a4 bellard
@subsubsection CPU usage reduction
1541 a0a821a4 bellard
1542 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
1543 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
1544 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1545 a0a821a4 bellard
problem.
1546 a0a821a4 bellard
1547 debc7065 bellard
@node QEMU System emulator for non PC targets
1548 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
1549 3f9f3aa1 bellard
1550 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
1551 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
1552 4be456f1 ths
differences are mentioned in the following sections.
1553 3f9f3aa1 bellard
1554 debc7065 bellard
@menu
1555 7544a042 Stefan Weil
* PowerPC System emulator::
1556 24d4de45 ths
* Sparc32 System emulator::
1557 24d4de45 ths
* Sparc64 System emulator::
1558 24d4de45 ths
* MIPS System emulator::
1559 24d4de45 ths
* ARM System emulator::
1560 24d4de45 ths
* ColdFire System emulator::
1561 7544a042 Stefan Weil
* Cris System emulator::
1562 7544a042 Stefan Weil
* Microblaze System emulator::
1563 7544a042 Stefan Weil
* SH4 System emulator::
1564 3aeaea65 Max Filippov
* Xtensa System emulator::
1565 debc7065 bellard
@end menu
1566 debc7065 bellard
1567 7544a042 Stefan Weil
@node PowerPC System emulator
1568 7544a042 Stefan Weil
@section PowerPC System emulator
1569 7544a042 Stefan Weil
@cindex system emulation (PowerPC)
1570 1a084f3d bellard
1571 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1572 15a34c63 bellard
or PowerMac PowerPC system.
1573 1a084f3d bellard
1574 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
1575 1a084f3d bellard
1576 15a34c63 bellard
@itemize @minus
1577 5fafdf24 ths
@item
1578 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
1579 15a34c63 bellard
@item
1580 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1581 5fafdf24 ths
@item
1582 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
1583 5fafdf24 ths
@item
1584 15a34c63 bellard
NE2000 PCI adapters
1585 15a34c63 bellard
@item
1586 15a34c63 bellard
Non Volatile RAM
1587 15a34c63 bellard
@item
1588 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
1589 1a084f3d bellard
@end itemize
1590 1a084f3d bellard
1591 b671f9ed bellard
QEMU emulates the following PREP peripherals:
1592 52c00a5f bellard
1593 52c00a5f bellard
@itemize @minus
1594 5fafdf24 ths
@item
1595 15a34c63 bellard
PCI Bridge
1596 15a34c63 bellard
@item
1597 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1598 5fafdf24 ths
@item
1599 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
1600 52c00a5f bellard
@item
1601 52c00a5f bellard
Floppy disk
1602 5fafdf24 ths
@item
1603 15a34c63 bellard
NE2000 network adapters
1604 52c00a5f bellard
@item
1605 52c00a5f bellard
Serial port
1606 52c00a5f bellard
@item
1607 52c00a5f bellard
PREP Non Volatile RAM
1608 15a34c63 bellard
@item
1609 15a34c63 bellard
PC compatible keyboard and mouse.
1610 52c00a5f bellard
@end itemize
1611 52c00a5f bellard
1612 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1613 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1614 52c00a5f bellard
1615 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1616 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1617 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
1618 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1619 992e5acd blueswir1
1620 15a34c63 bellard
@c man begin OPTIONS
1621 15a34c63 bellard
1622 15a34c63 bellard
The following options are specific to the PowerPC emulation:
1623 15a34c63 bellard
1624 15a34c63 bellard
@table @option
1625 15a34c63 bellard
1626 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1627 15a34c63 bellard
1628 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
1629 15a34c63 bellard
1630 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1631 95efd11c blueswir1
1632 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
1633 95efd11c blueswir1
1634 95efd11c blueswir1
@example
1635 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
1636 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
1637 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1638 95efd11c blueswir1
@end example
1639 95efd11c blueswir1
1640 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
1641 95efd11c blueswir1
1642 15a34c63 bellard
@end table
1643 15a34c63 bellard
1644 5fafdf24 ths
@c man end
1645 15a34c63 bellard
1646 15a34c63 bellard
1647 52c00a5f bellard
More information is available at
1648 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1649 52c00a5f bellard
1650 24d4de45 ths
@node Sparc32 System emulator
1651 24d4de45 ths
@section Sparc32 System emulator
1652 7544a042 Stefan Weil
@cindex system emulation (Sparc32)
1653 e80cfcfc bellard
1654 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
1655 34a3d239 blueswir1
Sun4m architecture machines:
1656 34a3d239 blueswir1
@itemize @minus
1657 34a3d239 blueswir1
@item
1658 34a3d239 blueswir1
SPARCstation 4
1659 34a3d239 blueswir1
@item
1660 34a3d239 blueswir1
SPARCstation 5
1661 34a3d239 blueswir1
@item
1662 34a3d239 blueswir1
SPARCstation 10
1663 34a3d239 blueswir1
@item
1664 34a3d239 blueswir1
SPARCstation 20
1665 34a3d239 blueswir1
@item
1666 34a3d239 blueswir1
SPARCserver 600MP
1667 34a3d239 blueswir1
@item
1668 34a3d239 blueswir1
SPARCstation LX
1669 34a3d239 blueswir1
@item
1670 34a3d239 blueswir1
SPARCstation Voyager
1671 34a3d239 blueswir1
@item
1672 34a3d239 blueswir1
SPARCclassic
1673 34a3d239 blueswir1
@item
1674 34a3d239 blueswir1
SPARCbook
1675 34a3d239 blueswir1
@end itemize
1676 34a3d239 blueswir1
1677 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1678 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
1679 e80cfcfc bellard
1680 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1681 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1682 34a3d239 blueswir1
emulators are not usable yet.
1683 34a3d239 blueswir1
1684 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1685 e80cfcfc bellard
1686 e80cfcfc bellard
@itemize @minus
1687 3475187d bellard
@item
1688 7d85892b blueswir1
IOMMU or IO-UNITs
1689 e80cfcfc bellard
@item
1690 e80cfcfc bellard
TCX Frame buffer
1691 5fafdf24 ths
@item
1692 e80cfcfc bellard
Lance (Am7990) Ethernet
1693 e80cfcfc bellard
@item
1694 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
1695 e80cfcfc bellard
@item
1696 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1697 3475187d bellard
and power/reset logic
1698 3475187d bellard
@item
1699 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
1700 3475187d bellard
@item
1701 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
1702 a2502b58 blueswir1
@item
1703 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
1704 e80cfcfc bellard
@end itemize
1705 e80cfcfc bellard
1706 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
1707 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
1708 7d85892b blueswir1
others 2047MB.
1709 3475187d bellard
1710 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
1711 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1712 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
1713 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
1714 3475187d bellard
1715 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
1716 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1717 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
1718 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
1719 34a3d239 blueswir1
Solaris.
1720 3475187d bellard
1721 3475187d bellard
@c man begin OPTIONS
1722 3475187d bellard
1723 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
1724 3475187d bellard
1725 3475187d bellard
@table @option
1726 3475187d bellard
1727 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1728 3475187d bellard
1729 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1730 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
1731 3475187d bellard
1732 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1733 66508601 blueswir1
1734 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1735 66508601 blueswir1
1736 66508601 blueswir1
@example
1737 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
1738 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1739 66508601 blueswir1
@end example
1740 66508601 blueswir1
1741 609c1dac Blue Swirl
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1742 a2502b58 blueswir1
1743 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
1744 a2502b58 blueswir1
1745 3475187d bellard
@end table
1746 3475187d bellard
1747 5fafdf24 ths
@c man end
1748 3475187d bellard
1749 24d4de45 ths
@node Sparc64 System emulator
1750 24d4de45 ths
@section Sparc64 System emulator
1751 7544a042 Stefan Weil
@cindex system emulation (Sparc64)
1752 e80cfcfc bellard
1753 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1754 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1755 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
1756 34a3d239 blueswir1
it can launch some kernels.
1757 b756921a bellard
1758 c7ba218d blueswir1
QEMU emulates the following peripherals:
1759 83469015 bellard
1760 83469015 bellard
@itemize @minus
1761 83469015 bellard
@item
1762 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
1763 83469015 bellard
@item
1764 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
1765 83469015 bellard
@item
1766 34a3d239 blueswir1
PS/2 mouse and keyboard
1767 34a3d239 blueswir1
@item
1768 83469015 bellard
Non Volatile RAM M48T59
1769 83469015 bellard
@item
1770 83469015 bellard
PC-compatible serial ports
1771 c7ba218d blueswir1
@item
1772 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
1773 34a3d239 blueswir1
@item
1774 34a3d239 blueswir1
Floppy disk
1775 83469015 bellard
@end itemize
1776 83469015 bellard
1777 c7ba218d blueswir1
@c man begin OPTIONS
1778 c7ba218d blueswir1
1779 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
1780 c7ba218d blueswir1
1781 c7ba218d blueswir1
@table @option
1782 c7ba218d blueswir1
1783 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1784 34a3d239 blueswir1
1785 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1786 34a3d239 blueswir1
1787 34a3d239 blueswir1
@example
1788 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1789 34a3d239 blueswir1
@end example
1790 34a3d239 blueswir1
1791 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
1792 c7ba218d blueswir1
1793 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
1794 c7ba218d blueswir1
1795 c7ba218d blueswir1
@end table
1796 c7ba218d blueswir1
1797 c7ba218d blueswir1
@c man end
1798 c7ba218d blueswir1
1799 24d4de45 ths
@node MIPS System emulator
1800 24d4de45 ths
@section MIPS System emulator
1801 7544a042 Stefan Weil
@cindex system emulation (MIPS)
1802 9d0a8e6f bellard
1803 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
1804 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1805 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1806 88cb0a02 aurel32
Five different machine types are emulated:
1807 24d4de45 ths
1808 24d4de45 ths
@itemize @minus
1809 24d4de45 ths
@item
1810 24d4de45 ths
A generic ISA PC-like machine "mips"
1811 24d4de45 ths
@item
1812 24d4de45 ths
The MIPS Malta prototype board "malta"
1813 24d4de45 ths
@item
1814 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1815 6bf5b4e8 ths
@item
1816 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
1817 88cb0a02 aurel32
@item
1818 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1819 24d4de45 ths
@end itemize
1820 24d4de45 ths
1821 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
1822 24d4de45 ths
install Debian into a virtual disk image. The following devices are
1823 24d4de45 ths
emulated:
1824 3f9f3aa1 bellard
1825 3f9f3aa1 bellard
@itemize @minus
1826 5fafdf24 ths
@item
1827 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1828 3f9f3aa1 bellard
@item
1829 3f9f3aa1 bellard
PC style serial port
1830 3f9f3aa1 bellard
@item
1831 24d4de45 ths
PC style IDE disk
1832 24d4de45 ths
@item
1833 3f9f3aa1 bellard
NE2000 network card
1834 3f9f3aa1 bellard
@end itemize
1835 3f9f3aa1 bellard
1836 24d4de45 ths
The Malta emulation supports the following devices:
1837 24d4de45 ths
1838 24d4de45 ths
@itemize @minus
1839 24d4de45 ths
@item
1840 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
1841 24d4de45 ths
@item
1842 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
1843 24d4de45 ths
@item
1844 24d4de45 ths
The Multi-I/O chip's serial device
1845 24d4de45 ths
@item
1846 3a2eeac0 Stefan Weil
PCI network cards (PCnet32 and others)
1847 24d4de45 ths
@item
1848 24d4de45 ths
Malta FPGA serial device
1849 24d4de45 ths
@item
1850 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
1851 24d4de45 ths
@end itemize
1852 24d4de45 ths
1853 24d4de45 ths
The ACER Pica emulation supports:
1854 24d4de45 ths
1855 24d4de45 ths
@itemize @minus
1856 24d4de45 ths
@item
1857 24d4de45 ths
MIPS R4000 CPU
1858 24d4de45 ths
@item
1859 24d4de45 ths
PC-style IRQ and DMA controllers
1860 24d4de45 ths
@item
1861 24d4de45 ths
PC Keyboard
1862 24d4de45 ths
@item
1863 24d4de45 ths
IDE controller
1864 24d4de45 ths
@end itemize
1865 3f9f3aa1 bellard
1866 b5e4946f Stefan Weil
The mipssim pseudo board emulation provides an environment similar
1867 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
1868 f0fc6f8f ths
It supports:
1869 6bf5b4e8 ths
1870 6bf5b4e8 ths
@itemize @minus
1871 6bf5b4e8 ths
@item
1872 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1873 6bf5b4e8 ths
@item
1874 6bf5b4e8 ths
PC style serial port
1875 6bf5b4e8 ths
@item
1876 6bf5b4e8 ths
MIPSnet network emulation
1877 6bf5b4e8 ths
@end itemize
1878 6bf5b4e8 ths
1879 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
1880 88cb0a02 aurel32
1881 88cb0a02 aurel32
@itemize @minus
1882 88cb0a02 aurel32
@item
1883 88cb0a02 aurel32
MIPS R4000 CPU
1884 88cb0a02 aurel32
@item
1885 88cb0a02 aurel32
PC-style IRQ controller
1886 88cb0a02 aurel32
@item
1887 88cb0a02 aurel32
PC Keyboard
1888 88cb0a02 aurel32
@item
1889 88cb0a02 aurel32
SCSI controller
1890 88cb0a02 aurel32
@item
1891 88cb0a02 aurel32
G364 framebuffer
1892 88cb0a02 aurel32
@end itemize
1893 88cb0a02 aurel32
1894 88cb0a02 aurel32
1895 24d4de45 ths
@node ARM System emulator
1896 24d4de45 ths
@section ARM System emulator
1897 7544a042 Stefan Weil
@cindex system emulation (ARM)
1898 3f9f3aa1 bellard
1899 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
1900 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
1901 3f9f3aa1 bellard
devices:
1902 3f9f3aa1 bellard
1903 3f9f3aa1 bellard
@itemize @minus
1904 3f9f3aa1 bellard
@item
1905 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1906 3f9f3aa1 bellard
@item
1907 3f9f3aa1 bellard
Two PL011 UARTs
1908 5fafdf24 ths
@item
1909 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
1910 00a9bf19 pbrook
@item
1911 00a9bf19 pbrook
PL110 LCD controller
1912 00a9bf19 pbrook
@item
1913 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1914 a1bb27b1 pbrook
@item
1915 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1916 00a9bf19 pbrook
@end itemize
1917 00a9bf19 pbrook
1918 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
1919 00a9bf19 pbrook
1920 00a9bf19 pbrook
@itemize @minus
1921 00a9bf19 pbrook
@item
1922 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
1923 00a9bf19 pbrook
@item
1924 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
1925 00a9bf19 pbrook
@item
1926 00a9bf19 pbrook
Four PL011 UARTs
1927 5fafdf24 ths
@item
1928 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
1929 00a9bf19 pbrook
@item
1930 00a9bf19 pbrook
PL110 LCD controller
1931 00a9bf19 pbrook
@item
1932 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1933 00a9bf19 pbrook
@item
1934 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
1935 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
1936 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1937 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1938 00a9bf19 pbrook
mapped control registers.
1939 e6de1bad pbrook
@item
1940 e6de1bad pbrook
PCI OHCI USB controller.
1941 e6de1bad pbrook
@item
1942 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1943 a1bb27b1 pbrook
@item
1944 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1945 3f9f3aa1 bellard
@end itemize
1946 3f9f3aa1 bellard
1947 21a88941 Paul Brook
Several variants of the ARM RealView baseboard are emulated,
1948 21a88941 Paul Brook
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1949 21a88941 Paul Brook
bootloader, only certain Linux kernel configurations work out
1950 21a88941 Paul Brook
of the box on these boards.
1951 21a88941 Paul Brook
1952 21a88941 Paul Brook
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1953 21a88941 Paul Brook
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1954 21a88941 Paul Brook
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1955 21a88941 Paul Brook
disabled and expect 1024M RAM.
1956 21a88941 Paul Brook
1957 40c5c6cd Stefan Weil
The following devices are emulated:
1958 d7739d75 pbrook
1959 d7739d75 pbrook
@itemize @minus
1960 d7739d75 pbrook
@item
1961 f7c70325 Paul Brook
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1962 d7739d75 pbrook
@item
1963 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
1964 d7739d75 pbrook
@item
1965 d7739d75 pbrook
Four PL011 UARTs
1966 5fafdf24 ths
@item
1967 0ef849d7 Paul Brook
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1968 d7739d75 pbrook
@item
1969 d7739d75 pbrook
PL110 LCD controller
1970 d7739d75 pbrook
@item
1971 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
1972 d7739d75 pbrook
@item
1973 d7739d75 pbrook
PCI host bridge
1974 d7739d75 pbrook
@item
1975 d7739d75 pbrook
PCI OHCI USB controller
1976 d7739d75 pbrook
@item
1977 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1978 a1bb27b1 pbrook
@item
1979 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1980 d7739d75 pbrook
@end itemize
1981 d7739d75 pbrook
1982 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1983 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
1984 b00052e4 balrog
1985 b00052e4 balrog
@itemize @minus
1986 b00052e4 balrog
@item
1987 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
1988 b00052e4 balrog
@item
1989 b00052e4 balrog
NAND Flash memory
1990 b00052e4 balrog
@item
1991 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1992 b00052e4 balrog
@item
1993 b00052e4 balrog
On-chip OHCI USB controller
1994 b00052e4 balrog
@item
1995 b00052e4 balrog
On-chip LCD controller
1996 b00052e4 balrog
@item
1997 b00052e4 balrog
On-chip Real Time Clock
1998 b00052e4 balrog
@item
1999 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2000 b00052e4 balrog
@item
2001 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2002 b00052e4 balrog
@item
2003 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2004 b00052e4 balrog
@item
2005 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2006 b00052e4 balrog
@item
2007 b00052e4 balrog
Three on-chip UARTs
2008 b00052e4 balrog
@item
2009 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2010 b00052e4 balrog
@end itemize
2011 b00052e4 balrog
2012 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2013 02645926 balrog
following elements:
2014 02645926 balrog
2015 02645926 balrog
@itemize @minus
2016 02645926 balrog
@item
2017 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2018 02645926 balrog
@item
2019 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2020 02645926 balrog
@item
2021 02645926 balrog
On-chip LCD controller
2022 02645926 balrog
@item
2023 02645926 balrog
On-chip Real Time Clock
2024 02645926 balrog
@item
2025 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2026 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2027 02645926 balrog
@item
2028 02645926 balrog
GPIO-connected matrix keypad
2029 02645926 balrog
@item
2030 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2031 02645926 balrog
@item
2032 02645926 balrog
Three on-chip UARTs
2033 02645926 balrog
@end itemize
2034 02645926 balrog
2035 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2036 c30bb264 balrog
emulation supports the following elements:
2037 c30bb264 balrog
2038 c30bb264 balrog
@itemize @minus
2039 c30bb264 balrog
@item
2040 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2041 c30bb264 balrog
@item
2042 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
2043 c30bb264 balrog
@item
2044 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2045 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
2046 c30bb264 balrog
@item
2047 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2048 c30bb264 balrog
driven through SPI bus
2049 c30bb264 balrog
@item
2050 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
2051 c30bb264 balrog
through I@math{^2}C bus
2052 c30bb264 balrog
@item
2053 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
2054 c30bb264 balrog
@item
2055 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
2056 c30bb264 balrog
@item
2057 40c5c6cd Stefan Weil
A Bluetooth(R) transceiver and HCI connected to an UART
2058 2d564691 balrog
@item
2059 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2060 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
2061 c30bb264 balrog
@item
2062 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
2063 c30bb264 balrog
@item
2064 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2065 c30bb264 balrog
@item
2066 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2067 c30bb264 balrog
through CBUS
2068 c30bb264 balrog
@end itemize
2069 c30bb264 balrog
2070 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2071 9ee6e8bb pbrook
devices:
2072 9ee6e8bb pbrook
2073 9ee6e8bb pbrook
@itemize @minus
2074 9ee6e8bb pbrook
@item
2075 9ee6e8bb pbrook
Cortex-M3 CPU core.
2076 9ee6e8bb pbrook
@item
2077 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2078 9ee6e8bb pbrook
@item
2079 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2080 9ee6e8bb pbrook
@item
2081 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2082 9ee6e8bb pbrook
@end itemize
2083 9ee6e8bb pbrook
2084 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2085 9ee6e8bb pbrook
devices:
2086 9ee6e8bb pbrook
2087 9ee6e8bb pbrook
@itemize @minus
2088 9ee6e8bb pbrook
@item
2089 9ee6e8bb pbrook
Cortex-M3 CPU core.
2090 9ee6e8bb pbrook
@item
2091 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2092 9ee6e8bb pbrook
@item
2093 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2094 9ee6e8bb pbrook
@item
2095 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2096 9ee6e8bb pbrook
@end itemize
2097 9ee6e8bb pbrook
2098 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2099 57cd6e97 balrog
elements:
2100 57cd6e97 balrog
2101 57cd6e97 balrog
@itemize @minus
2102 57cd6e97 balrog
@item
2103 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2104 57cd6e97 balrog
@item
2105 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2106 57cd6e97 balrog
@item
2107 57cd6e97 balrog
Up to 2 16550 UARTs
2108 57cd6e97 balrog
@item
2109 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2110 57cd6e97 balrog
@item
2111 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2112 57cd6e97 balrog
@item
2113 e080e785 Stefan Weil
128ร—64 display with brightness control
2114 57cd6e97 balrog
@item
2115 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2116 57cd6e97 balrog
@end itemize
2117 57cd6e97 balrog
2118 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
2119 40c5c6cd Stefan Weil
The emulation includes the following elements:
2120 997641a8 balrog
2121 997641a8 balrog
@itemize @minus
2122 997641a8 balrog
@item
2123 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2124 997641a8 balrog
@item
2125 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2126 997641a8 balrog
V1
2127 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
2128 997641a8 balrog
V2
2129 997641a8 balrog
1 Flash of 32MB
2130 997641a8 balrog
@item
2131 997641a8 balrog
On-chip LCD controller
2132 997641a8 balrog
@item
2133 997641a8 balrog
On-chip Real Time Clock
2134 997641a8 balrog
@item
2135 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
2136 997641a8 balrog
@item
2137 997641a8 balrog
Three on-chip UARTs
2138 997641a8 balrog
@end itemize
2139 997641a8 balrog
2140 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2141 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2142 9d0a8e6f bellard
2143 d2c639d6 blueswir1
@c man begin OPTIONS
2144 d2c639d6 blueswir1
2145 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
2146 d2c639d6 blueswir1
2147 d2c639d6 blueswir1
@table @option
2148 d2c639d6 blueswir1
2149 d2c639d6 blueswir1
@item -semihosting
2150 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2151 d2c639d6 blueswir1
2152 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
2153 d2c639d6 blueswir1
2154 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2155 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2156 d2c639d6 blueswir1
2157 d2c639d6 blueswir1
@end table
2158 d2c639d6 blueswir1
2159 24d4de45 ths
@node ColdFire System emulator
2160 24d4de45 ths
@section ColdFire System emulator
2161 7544a042 Stefan Weil
@cindex system emulation (ColdFire)
2162 7544a042 Stefan Weil
@cindex system emulation (M68K)
2163 209a4e69 pbrook
2164 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2165 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2166 707e011b pbrook
2167 707e011b pbrook
The M5208EVB emulation includes the following devices:
2168 707e011b pbrook
2169 707e011b pbrook
@itemize @minus
2170 5fafdf24 ths
@item
2171 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2172 707e011b pbrook
@item
2173 707e011b pbrook
Three Two on-chip UARTs.
2174 707e011b pbrook
@item
2175 707e011b pbrook
Fast Ethernet Controller (FEC)
2176 707e011b pbrook
@end itemize
2177 707e011b pbrook
2178 707e011b pbrook
The AN5206 emulation includes the following devices:
2179 209a4e69 pbrook
2180 209a4e69 pbrook
@itemize @minus
2181 5fafdf24 ths
@item
2182 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2183 209a4e69 pbrook
@item
2184 209a4e69 pbrook
Two on-chip UARTs.
2185 209a4e69 pbrook
@end itemize
2186 209a4e69 pbrook
2187 d2c639d6 blueswir1
@c man begin OPTIONS
2188 d2c639d6 blueswir1
2189 7544a042 Stefan Weil
The following options are specific to the ColdFire emulation:
2190 d2c639d6 blueswir1
2191 d2c639d6 blueswir1
@table @option
2192 d2c639d6 blueswir1
2193 d2c639d6 blueswir1
@item -semihosting
2194 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2195 d2c639d6 blueswir1
2196 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2197 d2c639d6 blueswir1
2198 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2199 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2200 d2c639d6 blueswir1
2201 d2c639d6 blueswir1
@end table
2202 d2c639d6 blueswir1
2203 7544a042 Stefan Weil
@node Cris System emulator
2204 7544a042 Stefan Weil
@section Cris System emulator
2205 7544a042 Stefan Weil
@cindex system emulation (Cris)
2206 7544a042 Stefan Weil
2207 7544a042 Stefan Weil
TODO
2208 7544a042 Stefan Weil
2209 7544a042 Stefan Weil
@node Microblaze System emulator
2210 7544a042 Stefan Weil
@section Microblaze System emulator
2211 7544a042 Stefan Weil
@cindex system emulation (Microblaze)
2212 7544a042 Stefan Weil
2213 7544a042 Stefan Weil
TODO
2214 7544a042 Stefan Weil
2215 7544a042 Stefan Weil
@node SH4 System emulator
2216 7544a042 Stefan Weil
@section SH4 System emulator
2217 7544a042 Stefan Weil
@cindex system emulation (SH4)
2218 7544a042 Stefan Weil
2219 7544a042 Stefan Weil
TODO
2220 7544a042 Stefan Weil
2221 3aeaea65 Max Filippov
@node Xtensa System emulator
2222 3aeaea65 Max Filippov
@section Xtensa System emulator
2223 3aeaea65 Max Filippov
@cindex system emulation (Xtensa)
2224 3aeaea65 Max Filippov
2225 3aeaea65 Max Filippov
Two executables cover simulation of both Xtensa endian options,
2226 3aeaea65 Max Filippov
@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2227 3aeaea65 Max Filippov
Two different machine types are emulated:
2228 3aeaea65 Max Filippov
2229 3aeaea65 Max Filippov
@itemize @minus
2230 3aeaea65 Max Filippov
@item
2231 3aeaea65 Max Filippov
Xtensa emulator pseudo board "sim"
2232 3aeaea65 Max Filippov
@item
2233 3aeaea65 Max Filippov
Avnet LX60/LX110/LX200 board
2234 3aeaea65 Max Filippov
@end itemize
2235 3aeaea65 Max Filippov
2236 b5e4946f Stefan Weil
The sim pseudo board emulation provides an environment similar
2237 3aeaea65 Max Filippov
to one provided by the proprietary Tensilica ISS.
2238 3aeaea65 Max Filippov
It supports:
2239 3aeaea65 Max Filippov
2240 3aeaea65 Max Filippov
@itemize @minus
2241 3aeaea65 Max Filippov
@item
2242 3aeaea65 Max Filippov
A range of Xtensa CPUs, default is the DC232B
2243 3aeaea65 Max Filippov
@item
2244 3aeaea65 Max Filippov
Console and filesystem access via semihosting calls
2245 3aeaea65 Max Filippov
@end itemize
2246 3aeaea65 Max Filippov
2247 3aeaea65 Max Filippov
The Avnet LX60/LX110/LX200 emulation supports:
2248 3aeaea65 Max Filippov
2249 3aeaea65 Max Filippov
@itemize @minus
2250 3aeaea65 Max Filippov
@item
2251 3aeaea65 Max Filippov
A range of Xtensa CPUs, default is the DC232B
2252 3aeaea65 Max Filippov
@item
2253 3aeaea65 Max Filippov
16550 UART
2254 3aeaea65 Max Filippov
@item
2255 3aeaea65 Max Filippov
OpenCores 10/100 Mbps Ethernet MAC
2256 3aeaea65 Max Filippov
@end itemize
2257 3aeaea65 Max Filippov
2258 3aeaea65 Max Filippov
@c man begin OPTIONS
2259 3aeaea65 Max Filippov
2260 3aeaea65 Max Filippov
The following options are specific to the Xtensa emulation:
2261 3aeaea65 Max Filippov
2262 3aeaea65 Max Filippov
@table @option
2263 3aeaea65 Max Filippov
2264 3aeaea65 Max Filippov
@item -semihosting
2265 3aeaea65 Max Filippov
Enable semihosting syscall emulation.
2266 3aeaea65 Max Filippov
2267 3aeaea65 Max Filippov
Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2268 3aeaea65 Max Filippov
Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2269 3aeaea65 Max Filippov
2270 3aeaea65 Max Filippov
Note that this allows guest direct access to the host filesystem,
2271 3aeaea65 Max Filippov
so should only be used with trusted guest OS.
2272 3aeaea65 Max Filippov
2273 3aeaea65 Max Filippov
@end table
2274 5fafdf24 ths
@node QEMU User space emulator
2275 5fafdf24 ths
@chapter QEMU User space emulator
2276 83195237 bellard
2277 83195237 bellard
@menu
2278 83195237 bellard
* Supported Operating Systems ::
2279 83195237 bellard
* Linux User space emulator::
2280 84778508 blueswir1
* BSD User space emulator ::
2281 83195237 bellard
@end menu
2282 83195237 bellard
2283 83195237 bellard
@node Supported Operating Systems
2284 83195237 bellard
@section Supported Operating Systems
2285 83195237 bellard
2286 83195237 bellard
The following OS are supported in user space emulation:
2287 83195237 bellard
2288 83195237 bellard
@itemize @minus
2289 83195237 bellard
@item
2290 4be456f1 ths
Linux (referred as qemu-linux-user)
2291 83195237 bellard
@item
2292 84778508 blueswir1
BSD (referred as qemu-bsd-user)
2293 83195237 bellard
@end itemize
2294 83195237 bellard
2295 83195237 bellard
@node Linux User space emulator
2296 83195237 bellard
@section Linux User space emulator
2297 386405f7 bellard
2298 debc7065 bellard
@menu
2299 debc7065 bellard
* Quick Start::
2300 debc7065 bellard
* Wine launch::
2301 debc7065 bellard
* Command line options::
2302 79737e4a pbrook
* Other binaries::
2303 debc7065 bellard
@end menu
2304 debc7065 bellard
2305 debc7065 bellard
@node Quick Start
2306 83195237 bellard
@subsection Quick Start
2307 df0f11a0 bellard
2308 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2309 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2310 386405f7 bellard
2311 1f673135 bellard
@itemize
2312 386405f7 bellard
2313 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2314 1f673135 bellard
libraries:
2315 386405f7 bellard
2316 5fafdf24 ths
@example
2317 1f673135 bellard
qemu-i386 -L / /bin/ls
2318 1f673135 bellard
@end example
2319 386405f7 bellard
2320 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2321 1f673135 bellard
@file{/} prefix.
2322 386405f7 bellard
2323 b65ee4fa Stefan Weil
@item Since QEMU is also a linux process, you can launch QEMU with
2324 b65ee4fa Stefan Weil
QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2325 386405f7 bellard
2326 5fafdf24 ths
@example
2327 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2328 1f673135 bellard
@end example
2329 386405f7 bellard
2330 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2331 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2332 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2333 df0f11a0 bellard
2334 1f673135 bellard
@example
2335 5fafdf24 ths
unset LD_LIBRARY_PATH
2336 1f673135 bellard
@end example
2337 1eb87257 bellard
2338 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2339 1eb87257 bellard
2340 1f673135 bellard
@example
2341 1f673135 bellard
qemu-i386 tests/i386/ls
2342 1f673135 bellard
@end example
2343 4c3b5a48 Blue Swirl
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2344 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2345 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2346 1f673135 bellard
Linux kernel.
2347 1eb87257 bellard
2348 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2349 1f673135 bellard
@example
2350 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2351 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2352 1f673135 bellard
@end example
2353 1eb20527 bellard
2354 1f673135 bellard
@end itemize
2355 1eb20527 bellard
2356 debc7065 bellard
@node Wine launch
2357 83195237 bellard
@subsection Wine launch
2358 1eb20527 bellard
2359 1f673135 bellard
@itemize
2360 386405f7 bellard
2361 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2362 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2363 1f673135 bellard
able to do:
2364 386405f7 bellard
2365 1f673135 bellard
@example
2366 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2367 1f673135 bellard
@end example
2368 386405f7 bellard
2369 1f673135 bellard
@item Download the binary x86 Wine install
2370 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2371 386405f7 bellard
2372 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2373 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2374 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2375 386405f7 bellard
2376 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2377 386405f7 bellard
2378 1f673135 bellard
@example
2379 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2380 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2381 1f673135 bellard
@end example
2382 386405f7 bellard
2383 1f673135 bellard
@end itemize
2384 fd429f2f bellard
2385 debc7065 bellard
@node Command line options
2386 83195237 bellard
@subsection Command line options
2387 1eb20527 bellard
2388 1f673135 bellard
@example
2389 68a1c816 Paul Brook
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2390 1f673135 bellard
@end example
2391 1eb20527 bellard
2392 1f673135 bellard
@table @option
2393 1f673135 bellard
@item -h
2394 1f673135 bellard
Print the help
2395 3b46e624 ths
@item -L path
2396 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2397 1f673135 bellard
@item -s size
2398 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2399 34a3d239 blueswir1
@item -cpu model
2400 c8057f95 Peter Maydell
Select CPU model (-cpu help for list and additional feature selection)
2401 f66724c9 Stefan Weil
@item -ignore-environment
2402 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2403 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2404 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2405 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2406 f66724c9 Stefan Weil
@item -U @var{var}
2407 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2408 379f6698 Paul Brook
@item -B offset
2409 379f6698 Paul Brook
Offset guest address by the specified number of bytes.  This is useful when
2410 1f5c3f8c Stefan Weil
the address region required by guest applications is reserved on the host.
2411 1f5c3f8c Stefan Weil
This option is currently only supported on some hosts.
2412 68a1c816 Paul Brook
@item -R size
2413 68a1c816 Paul Brook
Pre-allocate a guest virtual address space of the given size (in bytes).
2414 0d6753e5 Stefan Weil
"G", "M", and "k" suffixes may be used when specifying the size.
2415 386405f7 bellard
@end table
2416 386405f7 bellard
2417 1f673135 bellard
Debug options:
2418 386405f7 bellard
2419 1f673135 bellard
@table @option
2420 1f673135 bellard
@item -d
2421 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2422 1f673135 bellard
@item -p pagesize
2423 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2424 34a3d239 blueswir1
@item -g port
2425 34a3d239 blueswir1
Wait gdb connection to port
2426 1b530a6d aurel32
@item -singlestep
2427 1b530a6d aurel32
Run the emulation in single step mode.
2428 1f673135 bellard
@end table
2429 386405f7 bellard
2430 b01bcae6 balrog
Environment variables:
2431 b01bcae6 balrog
2432 b01bcae6 balrog
@table @env
2433 b01bcae6 balrog
@item QEMU_STRACE
2434 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2435 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2436 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2437 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2438 b01bcae6 balrog
format are printed with information for six arguments.  Many
2439 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2440 5cfdf930 ths
@end table
2441 b01bcae6 balrog
2442 79737e4a pbrook
@node Other binaries
2443 83195237 bellard
@subsection Other binaries
2444 79737e4a pbrook
2445 7544a042 Stefan Weil
@cindex user mode (Alpha)
2446 7544a042 Stefan Weil
@command{qemu-alpha} TODO.
2447 7544a042 Stefan Weil
2448 7544a042 Stefan Weil
@cindex user mode (ARM)
2449 7544a042 Stefan Weil
@command{qemu-armeb} TODO.
2450 7544a042 Stefan Weil
2451 7544a042 Stefan Weil
@cindex user mode (ARM)
2452 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2453 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2454 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2455 79737e4a pbrook
2456 7544a042 Stefan Weil
@cindex user mode (ColdFire)
2457 7544a042 Stefan Weil
@cindex user mode (M68K)
2458 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2459 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2460 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2461 e6e5906b pbrook
2462 79737e4a pbrook
The binary format is detected automatically.
2463 79737e4a pbrook
2464 7544a042 Stefan Weil
@cindex user mode (Cris)
2465 7544a042 Stefan Weil
@command{qemu-cris} TODO.
2466 7544a042 Stefan Weil
2467 7544a042 Stefan Weil
@cindex user mode (i386)
2468 7544a042 Stefan Weil
@command{qemu-i386} TODO.
2469 7544a042 Stefan Weil
@command{qemu-x86_64} TODO.
2470 7544a042 Stefan Weil
2471 7544a042 Stefan Weil
@cindex user mode (Microblaze)
2472 7544a042 Stefan Weil
@command{qemu-microblaze} TODO.
2473 7544a042 Stefan Weil
2474 7544a042 Stefan Weil
@cindex user mode (MIPS)
2475 7544a042 Stefan Weil
@command{qemu-mips} TODO.
2476 7544a042 Stefan Weil
@command{qemu-mipsel} TODO.
2477 7544a042 Stefan Weil
2478 7544a042 Stefan Weil
@cindex user mode (PowerPC)
2479 7544a042 Stefan Weil
@command{qemu-ppc64abi32} TODO.
2480 7544a042 Stefan Weil
@command{qemu-ppc64} TODO.
2481 7544a042 Stefan Weil
@command{qemu-ppc} TODO.
2482 7544a042 Stefan Weil
2483 7544a042 Stefan Weil
@cindex user mode (SH4)
2484 7544a042 Stefan Weil
@command{qemu-sh4eb} TODO.
2485 7544a042 Stefan Weil
@command{qemu-sh4} TODO.
2486 7544a042 Stefan Weil
2487 7544a042 Stefan Weil
@cindex user mode (SPARC)
2488 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2489 34a3d239 blueswir1
2490 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2491 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2492 a785e42e blueswir1
2493 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2494 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2495 a785e42e blueswir1
2496 84778508 blueswir1
@node BSD User space emulator
2497 84778508 blueswir1
@section BSD User space emulator
2498 84778508 blueswir1
2499 84778508 blueswir1
@menu
2500 84778508 blueswir1
* BSD Status::
2501 84778508 blueswir1
* BSD Quick Start::
2502 84778508 blueswir1
* BSD Command line options::
2503 84778508 blueswir1
@end menu
2504 84778508 blueswir1
2505 84778508 blueswir1
@node BSD Status
2506 84778508 blueswir1
@subsection BSD Status
2507 84778508 blueswir1
2508 84778508 blueswir1
@itemize @minus
2509 84778508 blueswir1
@item
2510 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
2511 84778508 blueswir1
@end itemize
2512 84778508 blueswir1
2513 84778508 blueswir1
@node BSD Quick Start
2514 84778508 blueswir1
@subsection Quick Start
2515 84778508 blueswir1
2516 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
2517 84778508 blueswir1
itself and all the target dynamic libraries used by it.
2518 84778508 blueswir1
2519 84778508 blueswir1
@itemize
2520 84778508 blueswir1
2521 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
2522 84778508 blueswir1
libraries:
2523 84778508 blueswir1
2524 84778508 blueswir1
@example
2525 84778508 blueswir1
qemu-sparc64 /bin/ls
2526 84778508 blueswir1
@end example
2527 84778508 blueswir1
2528 84778508 blueswir1
@end itemize
2529 84778508 blueswir1
2530 84778508 blueswir1
@node BSD Command line options
2531 84778508 blueswir1
@subsection Command line options
2532 84778508 blueswir1
2533 84778508 blueswir1
@example
2534 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2535 84778508 blueswir1
@end example
2536 84778508 blueswir1
2537 84778508 blueswir1
@table @option
2538 84778508 blueswir1
@item -h
2539 84778508 blueswir1
Print the help
2540 84778508 blueswir1
@item -L path
2541 84778508 blueswir1
Set the library root path (default=/)
2542 84778508 blueswir1
@item -s size
2543 84778508 blueswir1
Set the stack size in bytes (default=524288)
2544 f66724c9 Stefan Weil
@item -ignore-environment
2545 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2546 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2547 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2548 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2549 f66724c9 Stefan Weil
@item -U @var{var}
2550 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2551 84778508 blueswir1
@item -bsd type
2552 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
2553 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
2554 84778508 blueswir1
@end table
2555 84778508 blueswir1
2556 84778508 blueswir1
Debug options:
2557 84778508 blueswir1
2558 84778508 blueswir1
@table @option
2559 84778508 blueswir1
@item -d
2560 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
2561 84778508 blueswir1
@item -p pagesize
2562 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
2563 1b530a6d aurel32
@item -singlestep
2564 1b530a6d aurel32
Run the emulation in single step mode.
2565 84778508 blueswir1
@end table
2566 84778508 blueswir1
2567 15a34c63 bellard
@node compilation
2568 15a34c63 bellard
@chapter Compilation from the sources
2569 15a34c63 bellard
2570 debc7065 bellard
@menu
2571 debc7065 bellard
* Linux/Unix::
2572 debc7065 bellard
* Windows::
2573 debc7065 bellard
* Cross compilation for Windows with Linux::
2574 debc7065 bellard
* Mac OS X::
2575 47eacb4f Stefan Weil
* Make targets::
2576 debc7065 bellard
@end menu
2577 debc7065 bellard
2578 debc7065 bellard
@node Linux/Unix
2579 7c3fc84d bellard
@section Linux/Unix
2580 7c3fc84d bellard
2581 7c3fc84d bellard
@subsection Compilation
2582 7c3fc84d bellard
2583 7c3fc84d bellard
First you must decompress the sources:
2584 7c3fc84d bellard
@example
2585 7c3fc84d bellard
cd /tmp
2586 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2587 7c3fc84d bellard
cd qemu-x.y.z
2588 7c3fc84d bellard
@end example
2589 7c3fc84d bellard
2590 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2591 7c3fc84d bellard
@example
2592 7c3fc84d bellard
./configure
2593 7c3fc84d bellard
make
2594 7c3fc84d bellard
@end example
2595 7c3fc84d bellard
2596 7c3fc84d bellard
Then type as root user:
2597 7c3fc84d bellard
@example
2598 7c3fc84d bellard
make install
2599 7c3fc84d bellard
@end example
2600 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2601 7c3fc84d bellard
2602 debc7065 bellard
@node Windows
2603 15a34c63 bellard
@section Windows
2604 15a34c63 bellard
2605 15a34c63 bellard
@itemize
2606 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2607 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2608 15a34c63 bellard
instructions in the download section and the FAQ.
2609 15a34c63 bellard
2610 5fafdf24 ths
@item Download
2611 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2612 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2613 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2614 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2615 15a34c63 bellard
correct SDL directory when invoked.
2616 15a34c63 bellard
2617 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2618 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2619 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2620 d0a96f3d Scott Tsai
2621 15a34c63 bellard
@item Extract the current version of QEMU.
2622 5fafdf24 ths
2623 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2624 15a34c63 bellard
2625 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2626 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2627 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2628 15a34c63 bellard
2629 c5ec15ea Stefan Weil
@item You can install QEMU in @file{Program Files/QEMU} by typing
2630 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2631 c5ec15ea Stefan Weil
@file{Program Files/QEMU}.
2632 15a34c63 bellard
2633 15a34c63 bellard
@end itemize
2634 15a34c63 bellard
2635 debc7065 bellard
@node Cross compilation for Windows with Linux
2636 15a34c63 bellard
@section Cross compilation for Windows with Linux
2637 15a34c63 bellard
2638 15a34c63 bellard
@itemize
2639 15a34c63 bellard
@item
2640 15a34c63 bellard
Install the MinGW cross compilation tools available at
2641 15a34c63 bellard
@url{http://www.mingw.org/}.
2642 15a34c63 bellard
2643 d0a96f3d Scott Tsai
@item Download
2644 d0a96f3d Scott Tsai
the MinGW development library of SDL 1.2.x
2645 d0a96f3d Scott Tsai
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2646 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2647 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2648 d0a96f3d Scott Tsai
correct SDL directory when invoked.  Set up the @code{PATH} environment
2649 d0a96f3d Scott Tsai
variable so that @file{sdl-config} can be launched by
2650 15a34c63 bellard
the QEMU configuration script.
2651 15a34c63 bellard
2652 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2653 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2654 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2655 d0a96f3d Scott Tsai
2656 5fafdf24 ths
@item
2657 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2658 15a34c63 bellard
@example
2659 d0a96f3d Scott Tsai
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2660 d0a96f3d Scott Tsai
@end example
2661 d0a96f3d Scott Tsai
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2662 d0a96f3d Scott Tsai
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2663 40c5c6cd Stefan Weil
We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2664 d0a96f3d Scott Tsai
use --cross-prefix to specify the name of the cross compiler.
2665 c5ec15ea Stefan Weil
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
2666 d0a96f3d Scott Tsai
2667 d0a96f3d Scott Tsai
Under Fedora Linux, you can run:
2668 d0a96f3d Scott Tsai
@example
2669 d0a96f3d Scott Tsai
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2670 15a34c63 bellard
@end example
2671 d0a96f3d Scott Tsai
to get a suitable cross compilation environment.
2672 15a34c63 bellard
2673 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2674 d0a96f3d Scott Tsai
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2675 5fafdf24 ths
installation directory.
2676 15a34c63 bellard
2677 15a34c63 bellard
@end itemize
2678 15a34c63 bellard
2679 3804da9d Stefan Weil
Wine can be used to launch the resulting qemu-system-i386.exe
2680 3804da9d Stefan Weil
and all other qemu-system-@var{target}.exe compiled for Win32.
2681 15a34c63 bellard
2682 debc7065 bellard
@node Mac OS X
2683 15a34c63 bellard
@section Mac OS X
2684 15a34c63 bellard
2685 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2686 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2687 15a34c63 bellard
information.
2688 15a34c63 bellard
2689 47eacb4f Stefan Weil
@node Make targets
2690 47eacb4f Stefan Weil
@section Make targets
2691 47eacb4f Stefan Weil
2692 47eacb4f Stefan Weil
@table @code
2693 47eacb4f Stefan Weil
2694 47eacb4f Stefan Weil
@item make
2695 47eacb4f Stefan Weil
@item make all
2696 47eacb4f Stefan Weil
Make everything which is typically needed.
2697 47eacb4f Stefan Weil
2698 47eacb4f Stefan Weil
@item install
2699 47eacb4f Stefan Weil
TODO
2700 47eacb4f Stefan Weil
2701 47eacb4f Stefan Weil
@item install-doc
2702 47eacb4f Stefan Weil
TODO
2703 47eacb4f Stefan Weil
2704 47eacb4f Stefan Weil
@item make clean
2705 47eacb4f Stefan Weil
Remove most files which were built during make.
2706 47eacb4f Stefan Weil
2707 47eacb4f Stefan Weil
@item make distclean
2708 47eacb4f Stefan Weil
Remove everything which was built during make.
2709 47eacb4f Stefan Weil
2710 47eacb4f Stefan Weil
@item make dvi
2711 47eacb4f Stefan Weil
@item make html
2712 47eacb4f Stefan Weil
@item make info
2713 47eacb4f Stefan Weil
@item make pdf
2714 47eacb4f Stefan Weil
Create documentation in dvi, html, info or pdf format.
2715 47eacb4f Stefan Weil
2716 47eacb4f Stefan Weil
@item make cscope
2717 47eacb4f Stefan Weil
TODO
2718 47eacb4f Stefan Weil
2719 47eacb4f Stefan Weil
@item make defconfig
2720 47eacb4f Stefan Weil
(Re-)create some build configuration files.
2721 47eacb4f Stefan Weil
User made changes will be overwritten.
2722 47eacb4f Stefan Weil
2723 47eacb4f Stefan Weil
@item tar
2724 47eacb4f Stefan Weil
@item tarbin
2725 47eacb4f Stefan Weil
TODO
2726 47eacb4f Stefan Weil
2727 47eacb4f Stefan Weil
@end table
2728 47eacb4f Stefan Weil
2729 7544a042 Stefan Weil
@node License
2730 7544a042 Stefan Weil
@appendix License
2731 7544a042 Stefan Weil
2732 7544a042 Stefan Weil
QEMU is a trademark of Fabrice Bellard.
2733 7544a042 Stefan Weil
2734 7544a042 Stefan Weil
QEMU is released under the GNU General Public License (TODO: add link).
2735 7544a042 Stefan Weil
Parts of QEMU have specific licenses, see file LICENSE.
2736 7544a042 Stefan Weil
2737 7544a042 Stefan Weil
TODO (refer to file LICENSE, include it, include the GPL?)
2738 7544a042 Stefan Weil
2739 debc7065 bellard
@node Index
2740 7544a042 Stefan Weil
@appendix Index
2741 7544a042 Stefan Weil
@menu
2742 7544a042 Stefan Weil
* Concept Index::
2743 7544a042 Stefan Weil
* Function Index::
2744 7544a042 Stefan Weil
* Keystroke Index::
2745 7544a042 Stefan Weil
* Program Index::
2746 7544a042 Stefan Weil
* Data Type Index::
2747 7544a042 Stefan Weil
* Variable Index::
2748 7544a042 Stefan Weil
@end menu
2749 7544a042 Stefan Weil
2750 7544a042 Stefan Weil
@node Concept Index
2751 7544a042 Stefan Weil
@section Concept Index
2752 7544a042 Stefan Weil
This is the main index. Should we combine all keywords in one index? TODO
2753 debc7065 bellard
@printindex cp
2754 debc7065 bellard
2755 7544a042 Stefan Weil
@node Function Index
2756 7544a042 Stefan Weil
@section Function Index
2757 7544a042 Stefan Weil
This index could be used for command line options and monitor functions.
2758 7544a042 Stefan Weil
@printindex fn
2759 7544a042 Stefan Weil
2760 7544a042 Stefan Weil
@node Keystroke Index
2761 7544a042 Stefan Weil
@section Keystroke Index
2762 7544a042 Stefan Weil
2763 7544a042 Stefan Weil
This is a list of all keystrokes which have a special function
2764 7544a042 Stefan Weil
in system emulation.
2765 7544a042 Stefan Weil
2766 7544a042 Stefan Weil
@printindex ky
2767 7544a042 Stefan Weil
2768 7544a042 Stefan Weil
@node Program Index
2769 7544a042 Stefan Weil
@section Program Index
2770 7544a042 Stefan Weil
@printindex pg
2771 7544a042 Stefan Weil
2772 7544a042 Stefan Weil
@node Data Type Index
2773 7544a042 Stefan Weil
@section Data Type Index
2774 7544a042 Stefan Weil
2775 7544a042 Stefan Weil
This index could be used for qdev device names and options.
2776 7544a042 Stefan Weil
2777 7544a042 Stefan Weil
@printindex tp
2778 7544a042 Stefan Weil
2779 7544a042 Stefan Weil
@node Variable Index
2780 7544a042 Stefan Weil
@section Variable Index
2781 7544a042 Stefan Weil
@printindex vr
2782 7544a042 Stefan Weil
2783 debc7065 bellard
@bye