Statistics
| Branch: | Revision:

root / hw / i386 / pc.c @ efec3dd6

History | View | Annotate | Download (41.1 kB)

1
/*
2
 * QEMU PC System Emulator
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/i386/pc.h"
26
#include "hw/char/serial.h"
27
#include "hw/i386/apic.h"
28
#include "hw/block/fdc.h"
29
#include "hw/ide.h"
30
#include "hw/pci/pci.h"
31
#include "monitor/monitor.h"
32
#include "hw/nvram/fw_cfg.h"
33
#include "hw/timer/hpet.h"
34
#include "hw/i386/smbios.h"
35
#include "hw/loader.h"
36
#include "elf.h"
37
#include "multiboot.h"
38
#include "hw/timer/mc146818rtc.h"
39
#include "hw/timer/i8254.h"
40
#include "hw/audio/pcspk.h"
41
#include "hw/pci/msi.h"
42
#include "hw/sysbus.h"
43
#include "sysemu/sysemu.h"
44
#include "sysemu/kvm.h"
45
#include "kvm_i386.h"
46
#include "hw/xen/xen.h"
47
#include "sysemu/blockdev.h"
48
#include "hw/block/block.h"
49
#include "ui/qemu-spice.h"
50
#include "exec/memory.h"
51
#include "exec/address-spaces.h"
52
#include "sysemu/arch_init.h"
53
#include "qemu/bitmap.h"
54
#include "qemu/config-file.h"
55
#include "hw/acpi/acpi.h"
56
#include "hw/cpu/icc_bus.h"
57
#include "hw/boards.h"
58
#include "hw/pci/pci_host.h"
59
#include "acpi-build.h"
60

    
61
/* debug PC/ISA interrupts */
62
//#define DEBUG_IRQ
63

    
64
#ifdef DEBUG_IRQ
65
#define DPRINTF(fmt, ...)                                       \
66
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
67
#else
68
#define DPRINTF(fmt, ...)
69
#endif
70

    
71
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
72
#define ACPI_DATA_SIZE       0x10000
73
#define BIOS_CFG_IOPORT 0x510
74
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
75
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
76
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
77
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
78
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
79

    
80
#define E820_NR_ENTRIES                16
81

    
82
struct e820_entry {
83
    uint64_t address;
84
    uint64_t length;
85
    uint32_t type;
86
} QEMU_PACKED __attribute((__aligned__(4)));
87

    
88
struct e820_table {
89
    uint32_t count;
90
    struct e820_entry entry[E820_NR_ENTRIES];
91
} QEMU_PACKED __attribute((__aligned__(4)));
92

    
93
static struct e820_table e820_reserve;
94
static struct e820_entry *e820_table;
95
static unsigned e820_entries;
96
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
97

    
98
void gsi_handler(void *opaque, int n, int level)
99
{
100
    GSIState *s = opaque;
101

    
102
    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
103
    if (n < ISA_NUM_IRQS) {
104
        qemu_set_irq(s->i8259_irq[n], level);
105
    }
106
    qemu_set_irq(s->ioapic_irq[n], level);
107
}
108

    
109
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
110
                           unsigned size)
111
{
112
}
113

    
114
static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
115
{
116
    return 0xffffffffffffffffULL;
117
}
118

    
119
/* MSDOS compatibility mode FPU exception support */
120
static qemu_irq ferr_irq;
121

    
122
void pc_register_ferr_irq(qemu_irq irq)
123
{
124
    ferr_irq = irq;
125
}
126

    
127
/* XXX: add IGNNE support */
128
void cpu_set_ferr(CPUX86State *s)
129
{
130
    qemu_irq_raise(ferr_irq);
131
}
132

    
133
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
134
                           unsigned size)
135
{
136
    qemu_irq_lower(ferr_irq);
137
}
138

    
139
static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
140
{
141
    return 0xffffffffffffffffULL;
142
}
143

    
144
/* TSC handling */
145
uint64_t cpu_get_tsc(CPUX86State *env)
146
{
147
    return cpu_get_ticks();
148
}
149

    
150
/* SMM support */
151

    
152
static cpu_set_smm_t smm_set;
153
static void *smm_arg;
154

    
155
void cpu_smm_register(cpu_set_smm_t callback, void *arg)
156
{
157
    assert(smm_set == NULL);
158
    assert(smm_arg == NULL);
159
    smm_set = callback;
160
    smm_arg = arg;
161
}
162

    
163
void cpu_smm_update(CPUX86State *env)
164
{
165
    if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
166
        smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
167
    }
168
}
169

    
170

    
171
/* IRQ handling */
172
int cpu_get_pic_interrupt(CPUX86State *env)
173
{
174
    int intno;
175

    
176
    intno = apic_get_interrupt(env->apic_state);
177
    if (intno >= 0) {
178
        return intno;
179
    }
180
    /* read the irq from the PIC */
181
    if (!apic_accept_pic_intr(env->apic_state)) {
182
        return -1;
183
    }
184

    
185
    intno = pic_read_irq(isa_pic);
186
    return intno;
187
}
188

    
189
static void pic_irq_request(void *opaque, int irq, int level)
190
{
191
    CPUState *cs = first_cpu;
192
    X86CPU *cpu = X86_CPU(cs);
193
    CPUX86State *env = &cpu->env;
194

    
195
    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
196
    if (env->apic_state) {
197
        CPU_FOREACH(cs) {
198
            cpu = X86_CPU(cs);
199
            env = &cpu->env;
200
            if (apic_accept_pic_intr(env->apic_state)) {
201
                apic_deliver_pic_intr(env->apic_state, level);
202
            }
203
        }
204
    } else {
205
        if (level) {
206
            cpu_interrupt(cs, CPU_INTERRUPT_HARD);
207
        } else {
208
            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
209
        }
210
    }
211
}
212

    
213
/* PC cmos mappings */
214

    
215
#define REG_EQUIPMENT_BYTE          0x14
216

    
217
static int cmos_get_fd_drive_type(FDriveType fd0)
218
{
219
    int val;
220

    
221
    switch (fd0) {
222
    case FDRIVE_DRV_144:
223
        /* 1.44 Mb 3"5 drive */
224
        val = 4;
225
        break;
226
    case FDRIVE_DRV_288:
227
        /* 2.88 Mb 3"5 drive */
228
        val = 5;
229
        break;
230
    case FDRIVE_DRV_120:
231
        /* 1.2 Mb 5"5 drive */
232
        val = 2;
233
        break;
234
    case FDRIVE_DRV_NONE:
235
    default:
236
        val = 0;
237
        break;
238
    }
239
    return val;
240
}
241

    
242
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
243
                         int16_t cylinders, int8_t heads, int8_t sectors)
244
{
245
    rtc_set_memory(s, type_ofs, 47);
246
    rtc_set_memory(s, info_ofs, cylinders);
247
    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
248
    rtc_set_memory(s, info_ofs + 2, heads);
249
    rtc_set_memory(s, info_ofs + 3, 0xff);
250
    rtc_set_memory(s, info_ofs + 4, 0xff);
251
    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
252
    rtc_set_memory(s, info_ofs + 6, cylinders);
253
    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
254
    rtc_set_memory(s, info_ofs + 8, sectors);
255
}
256

    
257
/* convert boot_device letter to something recognizable by the bios */
258
static int boot_device2nibble(char boot_device)
259
{
260
    switch(boot_device) {
261
    case 'a':
262
    case 'b':
263
        return 0x01; /* floppy boot */
264
    case 'c':
265
        return 0x02; /* hard drive boot */
266
    case 'd':
267
        return 0x03; /* CD-ROM boot */
268
    case 'n':
269
        return 0x04; /* Network boot */
270
    }
271
    return 0;
272
}
273

    
274
static int set_boot_dev(ISADevice *s, const char *boot_device)
275
{
276
#define PC_MAX_BOOT_DEVICES 3
277
    int nbds, bds[3] = { 0, };
278
    int i;
279

    
280
    nbds = strlen(boot_device);
281
    if (nbds > PC_MAX_BOOT_DEVICES) {
282
        error_report("Too many boot devices for PC");
283
        return(1);
284
    }
285
    for (i = 0; i < nbds; i++) {
286
        bds[i] = boot_device2nibble(boot_device[i]);
287
        if (bds[i] == 0) {
288
            error_report("Invalid boot device for PC: '%c'",
289
                         boot_device[i]);
290
            return(1);
291
        }
292
    }
293
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
294
    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
295
    return(0);
296
}
297

    
298
static int pc_boot_set(void *opaque, const char *boot_device)
299
{
300
    return set_boot_dev(opaque, boot_device);
301
}
302

    
303
typedef struct pc_cmos_init_late_arg {
304
    ISADevice *rtc_state;
305
    BusState *idebus[2];
306
} pc_cmos_init_late_arg;
307

    
308
static void pc_cmos_init_late(void *opaque)
309
{
310
    pc_cmos_init_late_arg *arg = opaque;
311
    ISADevice *s = arg->rtc_state;
312
    int16_t cylinders;
313
    int8_t heads, sectors;
314
    int val;
315
    int i, trans;
316

    
317
    val = 0;
318
    if (ide_get_geometry(arg->idebus[0], 0,
319
                         &cylinders, &heads, &sectors) >= 0) {
320
        cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
321
        val |= 0xf0;
322
    }
323
    if (ide_get_geometry(arg->idebus[0], 1,
324
                         &cylinders, &heads, &sectors) >= 0) {
325
        cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
326
        val |= 0x0f;
327
    }
328
    rtc_set_memory(s, 0x12, val);
329

    
330
    val = 0;
331
    for (i = 0; i < 4; i++) {
332
        /* NOTE: ide_get_geometry() returns the physical
333
           geometry.  It is always such that: 1 <= sects <= 63, 1
334
           <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
335
           geometry can be different if a translation is done. */
336
        if (ide_get_geometry(arg->idebus[i / 2], i % 2,
337
                             &cylinders, &heads, &sectors) >= 0) {
338
            trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
339
            assert((trans & ~3) == 0);
340
            val |= trans << (i * 2);
341
        }
342
    }
343
    rtc_set_memory(s, 0x39, val);
344

    
345
    qemu_unregister_reset(pc_cmos_init_late, opaque);
346
}
347

    
348
typedef struct RTCCPUHotplugArg {
349
    Notifier cpu_added_notifier;
350
    ISADevice *rtc_state;
351
} RTCCPUHotplugArg;
352

    
353
static void rtc_notify_cpu_added(Notifier *notifier, void *data)
354
{
355
    RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
356
                                         cpu_added_notifier);
357
    ISADevice *s = arg->rtc_state;
358

    
359
    /* increment the number of CPUs */
360
    rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
361
}
362

    
363
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
364
                  const char *boot_device,
365
                  ISADevice *floppy, BusState *idebus0, BusState *idebus1,
366
                  ISADevice *s)
367
{
368
    int val, nb, i;
369
    FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
370
    static pc_cmos_init_late_arg arg;
371
    static RTCCPUHotplugArg cpu_hotplug_cb;
372

    
373
    /* various important CMOS locations needed by PC/Bochs bios */
374

    
375
    /* memory size */
376
    /* base memory (first MiB) */
377
    val = MIN(ram_size / 1024, 640);
378
    rtc_set_memory(s, 0x15, val);
379
    rtc_set_memory(s, 0x16, val >> 8);
380
    /* extended memory (next 64MiB) */
381
    if (ram_size > 1024 * 1024) {
382
        val = (ram_size - 1024 * 1024) / 1024;
383
    } else {
384
        val = 0;
385
    }
386
    if (val > 65535)
387
        val = 65535;
388
    rtc_set_memory(s, 0x17, val);
389
    rtc_set_memory(s, 0x18, val >> 8);
390
    rtc_set_memory(s, 0x30, val);
391
    rtc_set_memory(s, 0x31, val >> 8);
392
    /* memory between 16MiB and 4GiB */
393
    if (ram_size > 16 * 1024 * 1024) {
394
        val = (ram_size - 16 * 1024 * 1024) / 65536;
395
    } else {
396
        val = 0;
397
    }
398
    if (val > 65535)
399
        val = 65535;
400
    rtc_set_memory(s, 0x34, val);
401
    rtc_set_memory(s, 0x35, val >> 8);
402
    /* memory above 4GiB */
403
    val = above_4g_mem_size / 65536;
404
    rtc_set_memory(s, 0x5b, val);
405
    rtc_set_memory(s, 0x5c, val >> 8);
406
    rtc_set_memory(s, 0x5d, val >> 16);
407

    
408
    /* set the number of CPU */
409
    rtc_set_memory(s, 0x5f, smp_cpus - 1);
410
    /* init CPU hotplug notifier */
411
    cpu_hotplug_cb.rtc_state = s;
412
    cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
413
    qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
414

    
415
    if (set_boot_dev(s, boot_device)) {
416
        exit(1);
417
    }
418

    
419
    /* floppy type */
420
    if (floppy) {
421
        for (i = 0; i < 2; i++) {
422
            fd_type[i] = isa_fdc_get_drive_type(floppy, i);
423
        }
424
    }
425
    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
426
        cmos_get_fd_drive_type(fd_type[1]);
427
    rtc_set_memory(s, 0x10, val);
428

    
429
    val = 0;
430
    nb = 0;
431
    if (fd_type[0] < FDRIVE_DRV_NONE) {
432
        nb++;
433
    }
434
    if (fd_type[1] < FDRIVE_DRV_NONE) {
435
        nb++;
436
    }
437
    switch (nb) {
438
    case 0:
439
        break;
440
    case 1:
441
        val |= 0x01; /* 1 drive, ready for boot */
442
        break;
443
    case 2:
444
        val |= 0x41; /* 2 drives, ready for boot */
445
        break;
446
    }
447
    val |= 0x02; /* FPU is there */
448
    val |= 0x04; /* PS/2 mouse installed */
449
    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
450

    
451
    /* hard drives */
452
    arg.rtc_state = s;
453
    arg.idebus[0] = idebus0;
454
    arg.idebus[1] = idebus1;
455
    qemu_register_reset(pc_cmos_init_late, &arg);
456
}
457

    
458
#define TYPE_PORT92 "port92"
459
#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
460

    
461
/* port 92 stuff: could be split off */
462
typedef struct Port92State {
463
    ISADevice parent_obj;
464

    
465
    MemoryRegion io;
466
    uint8_t outport;
467
    qemu_irq *a20_out;
468
} Port92State;
469

    
470
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
471
                         unsigned size)
472
{
473
    Port92State *s = opaque;
474

    
475
    DPRINTF("port92: write 0x%02x\n", val);
476
    s->outport = val;
477
    qemu_set_irq(*s->a20_out, (val >> 1) & 1);
478
    if (val & 1) {
479
        qemu_system_reset_request();
480
    }
481
}
482

    
483
static uint64_t port92_read(void *opaque, hwaddr addr,
484
                            unsigned size)
485
{
486
    Port92State *s = opaque;
487
    uint32_t ret;
488

    
489
    ret = s->outport;
490
    DPRINTF("port92: read 0x%02x\n", ret);
491
    return ret;
492
}
493

    
494
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
495
{
496
    Port92State *s = PORT92(dev);
497

    
498
    s->a20_out = a20_out;
499
}
500

    
501
static const VMStateDescription vmstate_port92_isa = {
502
    .name = "port92",
503
    .version_id = 1,
504
    .minimum_version_id = 1,
505
    .minimum_version_id_old = 1,
506
    .fields      = (VMStateField []) {
507
        VMSTATE_UINT8(outport, Port92State),
508
        VMSTATE_END_OF_LIST()
509
    }
510
};
511

    
512
static void port92_reset(DeviceState *d)
513
{
514
    Port92State *s = PORT92(d);
515

    
516
    s->outport &= ~1;
517
}
518

    
519
static const MemoryRegionOps port92_ops = {
520
    .read = port92_read,
521
    .write = port92_write,
522
    .impl = {
523
        .min_access_size = 1,
524
        .max_access_size = 1,
525
    },
526
    .endianness = DEVICE_LITTLE_ENDIAN,
527
};
528

    
529
static void port92_initfn(Object *obj)
530
{
531
    Port92State *s = PORT92(obj);
532

    
533
    memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
534

    
535
    s->outport = 0;
536
}
537

    
538
static void port92_realizefn(DeviceState *dev, Error **errp)
539
{
540
    ISADevice *isadev = ISA_DEVICE(dev);
541
    Port92State *s = PORT92(dev);
542

    
543
    isa_register_ioport(isadev, &s->io, 0x92);
544
}
545

    
546
static void port92_class_initfn(ObjectClass *klass, void *data)
547
{
548
    DeviceClass *dc = DEVICE_CLASS(klass);
549

    
550
    dc->cannot_instantiate_with_device_add_yet = true; /* FIXME explain why */
551
    dc->realize = port92_realizefn;
552
    dc->reset = port92_reset;
553
    dc->vmsd = &vmstate_port92_isa;
554
}
555

    
556
static const TypeInfo port92_info = {
557
    .name          = TYPE_PORT92,
558
    .parent        = TYPE_ISA_DEVICE,
559
    .instance_size = sizeof(Port92State),
560
    .instance_init = port92_initfn,
561
    .class_init    = port92_class_initfn,
562
};
563

    
564
static void port92_register_types(void)
565
{
566
    type_register_static(&port92_info);
567
}
568

    
569
type_init(port92_register_types)
570

    
571
static void handle_a20_line_change(void *opaque, int irq, int level)
572
{
573
    X86CPU *cpu = opaque;
574

    
575
    /* XXX: send to all CPUs ? */
576
    /* XXX: add logic to handle multiple A20 line sources */
577
    x86_cpu_set_a20(cpu, level);
578
}
579

    
580
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
581
{
582
    int index = le32_to_cpu(e820_reserve.count);
583
    struct e820_entry *entry;
584

    
585
    if (type != E820_RAM) {
586
        /* old FW_CFG_E820_TABLE entry -- reservations only */
587
        if (index >= E820_NR_ENTRIES) {
588
            return -EBUSY;
589
        }
590
        entry = &e820_reserve.entry[index++];
591

    
592
        entry->address = cpu_to_le64(address);
593
        entry->length = cpu_to_le64(length);
594
        entry->type = cpu_to_le32(type);
595

    
596
        e820_reserve.count = cpu_to_le32(index);
597
    }
598

    
599
    /* new "etc/e820" file -- include ram too */
600
    e820_table = g_realloc(e820_table,
601
                           sizeof(struct e820_entry) * (e820_entries+1));
602
    e820_table[e820_entries].address = cpu_to_le64(address);
603
    e820_table[e820_entries].length = cpu_to_le64(length);
604
    e820_table[e820_entries].type = cpu_to_le32(type);
605
    e820_entries++;
606

    
607
    return e820_entries;
608
}
609

    
610
/* Calculates the limit to CPU APIC ID values
611
 *
612
 * This function returns the limit for the APIC ID value, so that all
613
 * CPU APIC IDs are < pc_apic_id_limit().
614
 *
615
 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
616
 */
617
static unsigned int pc_apic_id_limit(unsigned int max_cpus)
618
{
619
    return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
620
}
621

    
622
static FWCfgState *bochs_bios_init(void)
623
{
624
    FWCfgState *fw_cfg;
625
    uint8_t *smbios_table;
626
    size_t smbios_len;
627
    uint64_t *numa_fw_cfg;
628
    int i, j;
629
    unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
630

    
631
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
632
    /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
633
     *
634
     * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
635
     * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
636
     * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
637
     * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
638
     * may see".
639
     *
640
     * So, this means we must not use max_cpus, here, but the maximum possible
641
     * APIC ID value, plus one.
642
     *
643
     * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
644
     *     the APIC ID, not the "CPU index"
645
     */
646
    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
647
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
648
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
649
    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
650
                     acpi_tables, acpi_tables_len);
651
    fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
652

    
653
    smbios_table = smbios_get_table(&smbios_len);
654
    if (smbios_table)
655
        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
656
                         smbios_table, smbios_len);
657
    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
658
                     &e820_reserve, sizeof(e820_reserve));
659
    fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
660
                    sizeof(struct e820_entry) * e820_entries);
661

    
662
    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
663
    /* allocate memory for the NUMA channel: one (64bit) word for the number
664
     * of nodes, one word for each VCPU->node and one word for each node to
665
     * hold the amount of memory.
666
     */
667
    numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
668
    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
669
    for (i = 0; i < max_cpus; i++) {
670
        unsigned int apic_id = x86_cpu_apic_id_from_index(i);
671
        assert(apic_id < apic_id_limit);
672
        for (j = 0; j < nb_numa_nodes; j++) {
673
            if (test_bit(i, node_cpumask[j])) {
674
                numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
675
                break;
676
            }
677
        }
678
    }
679
    for (i = 0; i < nb_numa_nodes; i++) {
680
        numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
681
    }
682
    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
683
                     (1 + apic_id_limit + nb_numa_nodes) *
684
                     sizeof(*numa_fw_cfg));
685

    
686
    return fw_cfg;
687
}
688

    
689
static long get_file_size(FILE *f)
690
{
691
    long where, size;
692

    
693
    /* XXX: on Unix systems, using fstat() probably makes more sense */
694

    
695
    where = ftell(f);
696
    fseek(f, 0, SEEK_END);
697
    size = ftell(f);
698
    fseek(f, where, SEEK_SET);
699

    
700
    return size;
701
}
702

    
703
static void load_linux(FWCfgState *fw_cfg,
704
                       const char *kernel_filename,
705
                       const char *initrd_filename,
706
                       const char *kernel_cmdline,
707
                       hwaddr max_ram_size)
708
{
709
    uint16_t protocol;
710
    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
711
    uint32_t initrd_max;
712
    uint8_t header[8192], *setup, *kernel, *initrd_data;
713
    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
714
    FILE *f;
715
    char *vmode;
716

    
717
    /* Align to 16 bytes as a paranoia measure */
718
    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
719

    
720
    /* load the kernel header */
721
    f = fopen(kernel_filename, "rb");
722
    if (!f || !(kernel_size = get_file_size(f)) ||
723
        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
724
        MIN(ARRAY_SIZE(header), kernel_size)) {
725
        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
726
                kernel_filename, strerror(errno));
727
        exit(1);
728
    }
729

    
730
    /* kernel protocol version */
731
#if 0
732
    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
733
#endif
734
    if (ldl_p(header+0x202) == 0x53726448) {
735
        protocol = lduw_p(header+0x206);
736
    } else {
737
        /* This looks like a multiboot kernel. If it is, let's stop
738
           treating it like a Linux kernel. */
739
        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
740
                           kernel_cmdline, kernel_size, header)) {
741
            return;
742
        }
743
        protocol = 0;
744
    }
745

    
746
    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
747
        /* Low kernel */
748
        real_addr    = 0x90000;
749
        cmdline_addr = 0x9a000 - cmdline_size;
750
        prot_addr    = 0x10000;
751
    } else if (protocol < 0x202) {
752
        /* High but ancient kernel */
753
        real_addr    = 0x90000;
754
        cmdline_addr = 0x9a000 - cmdline_size;
755
        prot_addr    = 0x100000;
756
    } else {
757
        /* High and recent kernel */
758
        real_addr    = 0x10000;
759
        cmdline_addr = 0x20000;
760
        prot_addr    = 0x100000;
761
    }
762

    
763
#if 0
764
    fprintf(stderr,
765
            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
766
            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
767
            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
768
            real_addr,
769
            cmdline_addr,
770
            prot_addr);
771
#endif
772

    
773
    /* highest address for loading the initrd */
774
    if (protocol >= 0x203) {
775
        initrd_max = ldl_p(header+0x22c);
776
    } else {
777
        initrd_max = 0x37ffffff;
778
    }
779

    
780
    if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
781
            initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
782

    
783
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
784
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
785
    fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
786

    
787
    if (protocol >= 0x202) {
788
        stl_p(header+0x228, cmdline_addr);
789
    } else {
790
        stw_p(header+0x20, 0xA33F);
791
        stw_p(header+0x22, cmdline_addr-real_addr);
792
    }
793

    
794
    /* handle vga= parameter */
795
    vmode = strstr(kernel_cmdline, "vga=");
796
    if (vmode) {
797
        unsigned int video_mode;
798
        /* skip "vga=" */
799
        vmode += 4;
800
        if (!strncmp(vmode, "normal", 6)) {
801
            video_mode = 0xffff;
802
        } else if (!strncmp(vmode, "ext", 3)) {
803
            video_mode = 0xfffe;
804
        } else if (!strncmp(vmode, "ask", 3)) {
805
            video_mode = 0xfffd;
806
        } else {
807
            video_mode = strtol(vmode, NULL, 0);
808
        }
809
        stw_p(header+0x1fa, video_mode);
810
    }
811

    
812
    /* loader type */
813
    /* High nybble = B reserved for QEMU; low nybble is revision number.
814
       If this code is substantially changed, you may want to consider
815
       incrementing the revision. */
816
    if (protocol >= 0x200) {
817
        header[0x210] = 0xB0;
818
    }
819
    /* heap */
820
    if (protocol >= 0x201) {
821
        header[0x211] |= 0x80;        /* CAN_USE_HEAP */
822
        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
823
    }
824

    
825
    /* load initrd */
826
    if (initrd_filename) {
827
        if (protocol < 0x200) {
828
            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
829
            exit(1);
830
        }
831

    
832
        initrd_size = get_image_size(initrd_filename);
833
        if (initrd_size < 0) {
834
            fprintf(stderr, "qemu: error reading initrd %s\n",
835
                    initrd_filename);
836
            exit(1);
837
        }
838

    
839
        initrd_addr = (initrd_max-initrd_size) & ~4095;
840

    
841
        initrd_data = g_malloc(initrd_size);
842
        load_image(initrd_filename, initrd_data);
843

    
844
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
845
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
846
        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
847

    
848
        stl_p(header+0x218, initrd_addr);
849
        stl_p(header+0x21c, initrd_size);
850
    }
851

    
852
    /* load kernel and setup */
853
    setup_size = header[0x1f1];
854
    if (setup_size == 0) {
855
        setup_size = 4;
856
    }
857
    setup_size = (setup_size+1)*512;
858
    kernel_size -= setup_size;
859

    
860
    setup  = g_malloc(setup_size);
861
    kernel = g_malloc(kernel_size);
862
    fseek(f, 0, SEEK_SET);
863
    if (fread(setup, 1, setup_size, f) != setup_size) {
864
        fprintf(stderr, "fread() failed\n");
865
        exit(1);
866
    }
867
    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
868
        fprintf(stderr, "fread() failed\n");
869
        exit(1);
870
    }
871
    fclose(f);
872
    memcpy(setup, header, MIN(sizeof(header), setup_size));
873

    
874
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
875
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
876
    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
877

    
878
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
879
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
880
    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
881

    
882
    option_rom[nb_option_roms].name = "linuxboot.bin";
883
    option_rom[nb_option_roms].bootindex = 0;
884
    nb_option_roms++;
885
}
886

    
887
#define NE2000_NB_MAX 6
888

    
889
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
890
                                              0x280, 0x380 };
891
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
892

    
893
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
894
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
895

    
896
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
897
{
898
    static int nb_ne2k = 0;
899

    
900
    if (nb_ne2k == NE2000_NB_MAX)
901
        return;
902
    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
903
                    ne2000_irq[nb_ne2k], nd);
904
    nb_ne2k++;
905
}
906

    
907
DeviceState *cpu_get_current_apic(void)
908
{
909
    if (current_cpu) {
910
        X86CPU *cpu = X86_CPU(current_cpu);
911
        return cpu->env.apic_state;
912
    } else {
913
        return NULL;
914
    }
915
}
916

    
917
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
918
{
919
    X86CPU *cpu = opaque;
920

    
921
    if (level) {
922
        cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
923
    }
924
}
925

    
926
static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
927
                          DeviceState *icc_bridge, Error **errp)
928
{
929
    X86CPU *cpu;
930
    Error *local_err = NULL;
931

    
932
    cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
933
    if (local_err != NULL) {
934
        error_propagate(errp, local_err);
935
        return NULL;
936
    }
937

    
938
    object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
939
    object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
940

    
941
    if (local_err) {
942
        error_propagate(errp, local_err);
943
        object_unref(OBJECT(cpu));
944
        cpu = NULL;
945
    }
946
    return cpu;
947
}
948

    
949
static const char *current_cpu_model;
950

    
951
void pc_hot_add_cpu(const int64_t id, Error **errp)
952
{
953
    DeviceState *icc_bridge;
954
    int64_t apic_id = x86_cpu_apic_id_from_index(id);
955

    
956
    if (id < 0) {
957
        error_setg(errp, "Invalid CPU id: %" PRIi64, id);
958
        return;
959
    }
960

    
961
    if (cpu_exists(apic_id)) {
962
        error_setg(errp, "Unable to add CPU: %" PRIi64
963
                   ", it already exists", id);
964
        return;
965
    }
966

    
967
    if (id >= max_cpus) {
968
        error_setg(errp, "Unable to add CPU: %" PRIi64
969
                   ", max allowed: %d", id, max_cpus - 1);
970
        return;
971
    }
972

    
973
    icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
974
                                                 TYPE_ICC_BRIDGE, NULL));
975
    pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
976
}
977

    
978
void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
979
{
980
    int i;
981
    X86CPU *cpu = NULL;
982
    Error *error = NULL;
983

    
984
    /* init CPUs */
985
    if (cpu_model == NULL) {
986
#ifdef TARGET_X86_64
987
        cpu_model = "qemu64";
988
#else
989
        cpu_model = "qemu32";
990
#endif
991
    }
992
    current_cpu_model = cpu_model;
993

    
994
    for (i = 0; i < smp_cpus; i++) {
995
        cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
996
                         icc_bridge, &error);
997
        if (error) {
998
            error_report("%s", error_get_pretty(error));
999
            error_free(error);
1000
            exit(1);
1001
        }
1002
    }
1003

    
1004
    /* map APIC MMIO area if CPU has APIC */
1005
    if (cpu && cpu->env.apic_state) {
1006
        /* XXX: what if the base changes? */
1007
        sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1008
                                APIC_DEFAULT_ADDRESS, 0x1000);
1009
    }
1010
}
1011

    
1012
/* pci-info ROM file. Little endian format */
1013
typedef struct PcRomPciInfo {
1014
    uint64_t w32_min;
1015
    uint64_t w32_max;
1016
    uint64_t w64_min;
1017
    uint64_t w64_max;
1018
} PcRomPciInfo;
1019

    
1020
static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1021
{
1022
    PcRomPciInfo *info;
1023
    Object *pci_info;
1024
    bool ambiguous = false;
1025

    
1026
    if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1027
        return;
1028
    }
1029
    pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
1030
    g_assert(!ambiguous);
1031
    if (!pci_info) {
1032
        return;
1033
    }
1034

    
1035
    info = g_malloc(sizeof *info);
1036
    info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
1037
                                PCI_HOST_PROP_PCI_HOLE_START, NULL));
1038
    info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
1039
                                PCI_HOST_PROP_PCI_HOLE_END, NULL));
1040
    info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
1041
                                PCI_HOST_PROP_PCI_HOLE64_START, NULL));
1042
    info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
1043
                                PCI_HOST_PROP_PCI_HOLE64_END, NULL));
1044
    /* Pass PCI hole info to guest via a side channel.
1045
     * Required so guest PCI enumeration does the right thing. */
1046
    fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1047
}
1048

    
1049
typedef struct PcGuestInfoState {
1050
    PcGuestInfo info;
1051
    Notifier machine_done;
1052
} PcGuestInfoState;
1053

    
1054
static
1055
void pc_guest_info_machine_done(Notifier *notifier, void *data)
1056
{
1057
    PcGuestInfoState *guest_info_state = container_of(notifier,
1058
                                                      PcGuestInfoState,
1059
                                                      machine_done);
1060
    pc_fw_cfg_guest_info(&guest_info_state->info);
1061
    acpi_setup(&guest_info_state->info);
1062
}
1063

    
1064
PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1065
                                ram_addr_t above_4g_mem_size)
1066
{
1067
    PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1068
    PcGuestInfo *guest_info = &guest_info_state->info;
1069
    int i, j;
1070

    
1071
    guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1072
    guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1073
    guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1074
    guest_info->numa_nodes = nb_numa_nodes;
1075
    guest_info->node_mem = g_memdup(node_mem, guest_info->numa_nodes *
1076
                                    sizeof *guest_info->node_mem);
1077
    guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1078
                                     sizeof *guest_info->node_cpu);
1079

    
1080
    for (i = 0; i < max_cpus; i++) {
1081
        unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1082
        assert(apic_id < guest_info->apic_id_limit);
1083
        for (j = 0; j < nb_numa_nodes; j++) {
1084
            if (test_bit(i, node_cpumask[j])) {
1085
                guest_info->node_cpu[apic_id] = j;
1086
                break;
1087
            }
1088
        }
1089
    }
1090

    
1091
    guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1092
    qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1093
    return guest_info;
1094
}
1095

    
1096
/* setup pci memory address space mapping into system address space */
1097
void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1098
                            MemoryRegion *pci_address_space)
1099
{
1100
    /* Set to lower priority than RAM */
1101
    memory_region_add_subregion_overlap(system_memory, 0x0,
1102
                                        pci_address_space, -1);
1103
}
1104

    
1105
void pc_acpi_init(const char *default_dsdt)
1106
{
1107
    char *filename;
1108

    
1109
    if (acpi_tables != NULL) {
1110
        /* manually set via -acpitable, leave it alone */
1111
        return;
1112
    }
1113

    
1114
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1115
    if (filename == NULL) {
1116
        fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1117
    } else {
1118
        char *arg;
1119
        QemuOpts *opts;
1120
        Error *err = NULL;
1121

    
1122
        arg = g_strdup_printf("file=%s", filename);
1123

    
1124
        /* creates a deep copy of "arg" */
1125
        opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1126
        g_assert(opts != NULL);
1127

    
1128
        acpi_table_add_builtin(opts, &err);
1129
        if (err) {
1130
            error_report("WARNING: failed to load %s: %s", filename,
1131
                         error_get_pretty(err));
1132
            error_free(err);
1133
        }
1134
        g_free(arg);
1135
        g_free(filename);
1136
    }
1137
}
1138

    
1139
FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1140
                           const char *kernel_filename,
1141
                           const char *kernel_cmdline,
1142
                           const char *initrd_filename,
1143
                           ram_addr_t below_4g_mem_size,
1144
                           ram_addr_t above_4g_mem_size,
1145
                           MemoryRegion *rom_memory,
1146
                           MemoryRegion **ram_memory,
1147
                           PcGuestInfo *guest_info)
1148
{
1149
    int linux_boot, i;
1150
    MemoryRegion *ram, *option_rom_mr;
1151
    MemoryRegion *ram_below_4g, *ram_above_4g;
1152
    FWCfgState *fw_cfg;
1153

    
1154
    linux_boot = (kernel_filename != NULL);
1155

    
1156
    /* Allocate RAM.  We allocate it as a single memory region and use
1157
     * aliases to address portions of it, mostly for backwards compatibility
1158
     * with older qemus that used qemu_ram_alloc().
1159
     */
1160
    ram = g_malloc(sizeof(*ram));
1161
    memory_region_init_ram(ram, NULL, "pc.ram",
1162
                           below_4g_mem_size + above_4g_mem_size);
1163
    vmstate_register_ram_global(ram);
1164
    *ram_memory = ram;
1165
    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1166
    memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1167
                             0, below_4g_mem_size);
1168
    memory_region_add_subregion(system_memory, 0, ram_below_4g);
1169
    e820_add_entry(0, below_4g_mem_size, E820_RAM);
1170
    if (above_4g_mem_size > 0) {
1171
        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1172
        memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1173
                                 below_4g_mem_size, above_4g_mem_size);
1174
        memory_region_add_subregion(system_memory, 0x100000000ULL,
1175
                                    ram_above_4g);
1176
        e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1177
    }
1178

    
1179

    
1180
    /* Initialize PC system firmware */
1181
    pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1182

    
1183
    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1184
    memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1185
    vmstate_register_ram_global(option_rom_mr);
1186
    memory_region_add_subregion_overlap(rom_memory,
1187
                                        PC_ROM_MIN_VGA,
1188
                                        option_rom_mr,
1189
                                        1);
1190

    
1191
    fw_cfg = bochs_bios_init();
1192
    rom_set_fw(fw_cfg);
1193

    
1194
    if (linux_boot) {
1195
        load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1196
    }
1197

    
1198
    for (i = 0; i < nb_option_roms; i++) {
1199
        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1200
    }
1201
    guest_info->fw_cfg = fw_cfg;
1202
    return fw_cfg;
1203
}
1204

    
1205
qemu_irq *pc_allocate_cpu_irq(void)
1206
{
1207
    return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1208
}
1209

    
1210
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1211
{
1212
    DeviceState *dev = NULL;
1213

    
1214
    if (pci_bus) {
1215
        PCIDevice *pcidev = pci_vga_init(pci_bus);
1216
        dev = pcidev ? &pcidev->qdev : NULL;
1217
    } else if (isa_bus) {
1218
        ISADevice *isadev = isa_vga_init(isa_bus);
1219
        dev = isadev ? DEVICE(isadev) : NULL;
1220
    }
1221
    return dev;
1222
}
1223

    
1224
static void cpu_request_exit(void *opaque, int irq, int level)
1225
{
1226
    CPUState *cpu = current_cpu;
1227

    
1228
    if (cpu && level) {
1229
        cpu_exit(cpu);
1230
    }
1231
}
1232

    
1233
static const MemoryRegionOps ioport80_io_ops = {
1234
    .write = ioport80_write,
1235
    .read = ioport80_read,
1236
    .endianness = DEVICE_NATIVE_ENDIAN,
1237
    .impl = {
1238
        .min_access_size = 1,
1239
        .max_access_size = 1,
1240
    },
1241
};
1242

    
1243
static const MemoryRegionOps ioportF0_io_ops = {
1244
    .write = ioportF0_write,
1245
    .read = ioportF0_read,
1246
    .endianness = DEVICE_NATIVE_ENDIAN,
1247
    .impl = {
1248
        .min_access_size = 1,
1249
        .max_access_size = 1,
1250
    },
1251
};
1252

    
1253
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1254
                          ISADevice **rtc_state,
1255
                          ISADevice **floppy,
1256
                          bool no_vmport,
1257
                          uint32 hpet_irqs)
1258
{
1259
    int i;
1260
    DriveInfo *fd[MAX_FD];
1261
    DeviceState *hpet = NULL;
1262
    int pit_isa_irq = 0;
1263
    qemu_irq pit_alt_irq = NULL;
1264
    qemu_irq rtc_irq = NULL;
1265
    qemu_irq *a20_line;
1266
    ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1267
    qemu_irq *cpu_exit_irq;
1268
    MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1269
    MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1270

    
1271
    memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1272
    memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1273

    
1274
    memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1275
    memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1276

    
1277
    /*
1278
     * Check if an HPET shall be created.
1279
     *
1280
     * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1281
     * when the HPET wants to take over. Thus we have to disable the latter.
1282
     */
1283
    if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1284
        /* In order to set property, here not using sysbus_try_create_simple */
1285
        hpet = qdev_try_create(NULL, TYPE_HPET);
1286
        if (hpet) {
1287
            /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1288
             * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1289
             * IRQ8 and IRQ2.
1290
             */
1291
            uint8_t compat = object_property_get_int(OBJECT(hpet),
1292
                    HPET_INTCAP, NULL);
1293
            if (!compat) {
1294
                qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1295
            }
1296
            qdev_init_nofail(hpet);
1297
            sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1298

    
1299
            for (i = 0; i < GSI_NUM_PINS; i++) {
1300
                sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1301
            }
1302
            pit_isa_irq = -1;
1303
            pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1304
            rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1305
        }
1306
    }
1307
    *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1308

    
1309
    qemu_register_boot_set(pc_boot_set, *rtc_state);
1310

    
1311
    if (!xen_enabled()) {
1312
        if (kvm_irqchip_in_kernel()) {
1313
            pit = kvm_pit_init(isa_bus, 0x40);
1314
        } else {
1315
            pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1316
        }
1317
        if (hpet) {
1318
            /* connect PIT to output control line of the HPET */
1319
            qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1320
        }
1321
        pcspk_init(isa_bus, pit);
1322
    }
1323

    
1324
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1325
        if (serial_hds[i]) {
1326
            serial_isa_init(isa_bus, i, serial_hds[i]);
1327
        }
1328
    }
1329

    
1330
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1331
        if (parallel_hds[i]) {
1332
            parallel_init(isa_bus, i, parallel_hds[i]);
1333
        }
1334
    }
1335

    
1336
    a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1337
    i8042 = isa_create_simple(isa_bus, "i8042");
1338
    i8042_setup_a20_line(i8042, &a20_line[0]);
1339
    if (!no_vmport) {
1340
        vmport_init(isa_bus);
1341
        vmmouse = isa_try_create(isa_bus, "vmmouse");
1342
    } else {
1343
        vmmouse = NULL;
1344
    }
1345
    if (vmmouse) {
1346
        DeviceState *dev = DEVICE(vmmouse);
1347
        qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1348
        qdev_init_nofail(dev);
1349
    }
1350
    port92 = isa_create_simple(isa_bus, "port92");
1351
    port92_init(port92, &a20_line[1]);
1352

    
1353
    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1354
    DMA_init(0, cpu_exit_irq);
1355

    
1356
    for(i = 0; i < MAX_FD; i++) {
1357
        fd[i] = drive_get(IF_FLOPPY, 0, i);
1358
    }
1359
    *floppy = fdctrl_init_isa(isa_bus, fd);
1360
}
1361

    
1362
void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1363
{
1364
    int i;
1365

    
1366
    for (i = 0; i < nb_nics; i++) {
1367
        NICInfo *nd = &nd_table[i];
1368

    
1369
        if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1370
            pc_init_ne2k_isa(isa_bus, nd);
1371
        } else {
1372
            pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1373
        }
1374
    }
1375
}
1376

    
1377
void pc_pci_device_init(PCIBus *pci_bus)
1378
{
1379
    int max_bus;
1380
    int bus;
1381

    
1382
    max_bus = drive_get_max_bus(IF_SCSI);
1383
    for (bus = 0; bus <= max_bus; bus++) {
1384
        pci_create_simple(pci_bus, -1, "lsi53c895a");
1385
    }
1386
}
1387

    
1388
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1389
{
1390
    DeviceState *dev;
1391
    SysBusDevice *d;
1392
    unsigned int i;
1393

    
1394
    if (kvm_irqchip_in_kernel()) {
1395
        dev = qdev_create(NULL, "kvm-ioapic");
1396
    } else {
1397
        dev = qdev_create(NULL, "ioapic");
1398
    }
1399
    if (parent_name) {
1400
        object_property_add_child(object_resolve_path(parent_name, NULL),
1401
                                  "ioapic", OBJECT(dev), NULL);
1402
    }
1403
    qdev_init_nofail(dev);
1404
    d = SYS_BUS_DEVICE(dev);
1405
    sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1406

    
1407
    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1408
        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1409
    }
1410
}