Revision f3c507ad

b/MAINTAINERS
609 609
F: hw/char/virtio-serial-bus.c
610 610
F: hw/char/virtio-console.c
611 611

  
612
nvme
613
M: Keith Busch <keith.busch@intel.com>
614
S: Supported
615
F: hw/block/nvme*
616

  
612 617
Xilinx EDK
613 618
M: Peter Crosthwaite <peter.crosthwaite@petalogix.com>
614 619
M: Edgar E. Iglesias <edgar.iglesias@gmail.com>
b/default-configs/pci.mak
29 29
CONFIG_IPACK=y
30 30
CONFIG_WDT_IB6300ESB=y
31 31
CONFIG_PCI_TESTDEV=y
32
CONFIG_NVME_PCI=y
b/hw/block/Makefile.objs
8 8
common-obj-$(CONFIG_ECC) += ecc.o
9 9
common-obj-$(CONFIG_ONENAND) += onenand.o
10 10
common-obj-$(CONFIG_PC_SYSFW) += pc_sysfw.o
11
common-obj-$(CONFIG_NVME_PCI) += nvme.o
11 12

  
12 13
obj-$(CONFIG_SH4) += tc58128.o
13 14

  
b/hw/block/nvme.c
1
/*
2
 * QEMU NVM Express Controller
3
 *
4
 * Copyright (c) 2012, Intel Corporation
5
 *
6
 * Written by Keith Busch <keith.busch@intel.com>
7
 *
8
 * This code is licensed under the GNU GPL v2 or later.
9
 */
10

  
11
/**
12
 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
13
 *
14
 *  http://www.nvmexpress.org/resources/
15
 */
16

  
17
/**
18
 * Usage: add options:
19
 *      -drive file=<file>,if=none,id=<drive_id>
20
 *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
21
 */
22

  
23
#include <hw/block/block.h>
24
#include <hw/hw.h>
25
#include <hw/pci/msix.h>
26
#include <hw/pci/pci.h>
27

  
28
#include "nvme.h"
29

  
30
static void nvme_process_sq(void *opaque);
31

  
32
static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
33
{
34
    return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
35
}
36

  
37
static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
38
{
39
    return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
40
}
41

  
42
static void nvme_inc_cq_tail(NvmeCQueue *cq)
43
{
44
    cq->tail++;
45
    if (cq->tail >= cq->size) {
46
        cq->tail = 0;
47
        cq->phase = !cq->phase;
48
    }
49
}
50

  
51
static void nvme_inc_sq_head(NvmeSQueue *sq)
52
{
53
    sq->head = (sq->head + 1) % sq->size;
54
}
55

  
56
static uint8_t nvme_cq_full(NvmeCQueue *cq)
57
{
58
    return (cq->tail + 1) % cq->size == cq->head;
59
}
60

  
61
static uint8_t nvme_sq_empty(NvmeSQueue *sq)
62
{
63
    return sq->head == sq->tail;
64
}
65

  
66
static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
67
{
68
    if (cq->irq_enabled) {
69
        if (msix_enabled(&(n->parent_obj))) {
70
            msix_notify(&(n->parent_obj), cq->vector);
71
        } else {
72
            qemu_irq_pulse(n->parent_obj.irq[0]);
73
        }
74
    }
75
}
76

  
77
static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
78
    uint32_t len, NvmeCtrl *n)
79
{
80
    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
81
    trans_len = MIN(len, trans_len);
82
    int num_prps = (len >> n->page_bits) + 1;
83

  
84
    if (!prp1) {
85
        return NVME_INVALID_FIELD | NVME_DNR;
86
    }
87

  
88
    qemu_sglist_init(qsg, num_prps, pci_dma_context(&n->parent_obj));
89
    qemu_sglist_add(qsg, prp1, trans_len);
90
    len -= trans_len;
91
    if (len) {
92
        if (!prp2) {
93
            goto unmap;
94
        }
95
        if (len > n->page_size) {
96
            uint64_t prp_list[n->max_prp_ents];
97
            uint32_t nents, prp_trans;
98
            int i = 0;
99

  
100
            nents = (len + n->page_size - 1) >> n->page_bits;
101
            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
102
            pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
103
            while (len != 0) {
104
                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
105

  
106
                if (i == n->max_prp_ents - 1 && len > n->page_size) {
107
                    if (!prp_ent || prp_ent & (n->page_size - 1)) {
108
                        goto unmap;
109
                    }
110

  
111
                    i = 0;
112
                    nents = (len + n->page_size - 1) >> n->page_bits;
113
                    prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
114
                    pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
115
                        prp_trans);
116
                    prp_ent = le64_to_cpu(prp_list[i]);
117
                }
118

  
119
                if (!prp_ent || prp_ent & (n->page_size - 1)) {
120
                    goto unmap;
121
                }
122

  
123
                trans_len = MIN(len, n->page_size);
124
                qemu_sglist_add(qsg, prp_ent, trans_len);
125
                len -= trans_len;
126
                i++;
127
            }
128
        } else {
129
            if (prp2 & (n->page_size - 1)) {
130
                goto unmap;
131
            }
132
            qemu_sglist_add(qsg, prp2, len);
133
        }
134
    }
135
    return NVME_SUCCESS;
136

  
137
 unmap:
138
    qemu_sglist_destroy(qsg);
139
    return NVME_INVALID_FIELD | NVME_DNR;
140
}
141

  
142
static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
143
    uint64_t prp1, uint64_t prp2)
144
{
145
    QEMUSGList qsg;
146

  
147
    if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
148
        return NVME_INVALID_FIELD | NVME_DNR;
149
    }
150
    if (dma_buf_read(ptr, len, &qsg)) {
151
        qemu_sglist_destroy(&qsg);
152
        return NVME_INVALID_FIELD | NVME_DNR;
153
    }
154
    return NVME_SUCCESS;
155
}
156

  
157
static void nvme_post_cqes(void *opaque)
158
{
159
    NvmeCQueue *cq = opaque;
160
    NvmeCtrl *n = cq->ctrl;
161
    NvmeRequest *req, *next;
162

  
163
    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
164
        NvmeSQueue *sq;
165
        hwaddr addr;
166

  
167
        if (nvme_cq_full(cq)) {
168
            break;
169
        }
170

  
171
        QTAILQ_REMOVE(&cq->req_list, req, entry);
172
        sq = req->sq;
173
        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
174
        req->cqe.sq_id = cpu_to_le16(sq->sqid);
175
        req->cqe.sq_head = cpu_to_le16(sq->head);
176
        addr = cq->dma_addr + cq->tail * n->cqe_size;
177
        nvme_inc_cq_tail(cq);
178
        pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
179
            sizeof(req->cqe));
180
        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
181
    }
182
    nvme_isr_notify(n, cq);
183
}
184

  
185
static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
186
{
187
    assert(cq->cqid == req->sq->cqid);
188
    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
189
    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
190
    qemu_mod_timer(cq->timer, qemu_get_clock_ns(vm_clock) + 500);
191
}
192

  
193
static void nvme_rw_cb(void *opaque, int ret)
194
{
195
    NvmeRequest *req = opaque;
196
    NvmeSQueue *sq = req->sq;
197
    NvmeCtrl *n = sq->ctrl;
198
    NvmeCQueue *cq = n->cq[sq->cqid];
199

  
200
    bdrv_acct_done(n->conf.bs, &req->acct);
201
    if (!ret) {
202
        req->status = NVME_SUCCESS;
203
    } else {
204
        req->status = NVME_INTERNAL_DEV_ERROR;
205
    }
206

  
207
    qemu_sglist_destroy(&req->qsg);
208
    nvme_enqueue_req_completion(cq, req);
209
}
210

  
211
static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
212
    NvmeRequest *req)
213
{
214
    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
215
    uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
216
    uint64_t slba = le64_to_cpu(rw->slba);
217
    uint64_t prp1 = le64_to_cpu(rw->prp1);
218
    uint64_t prp2 = le64_to_cpu(rw->prp2);
219

  
220
    uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
221
    uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
222
    uint64_t data_size = nlb << data_shift;
223
    uint64_t aio_slba  = slba << (data_shift - BDRV_SECTOR_BITS);
224
    int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
225

  
226
    if ((slba + nlb) > ns->id_ns.nsze) {
227
        return NVME_LBA_RANGE | NVME_DNR;
228
    }
229
    if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
230
        return NVME_INVALID_FIELD | NVME_DNR;
231
    }
232
    assert((nlb << data_shift) == req->qsg.size);
233

  
234
    dma_acct_start(n->conf.bs, &req->acct, &req->qsg, is_write ?
235
        BDRV_ACCT_WRITE : BDRV_ACCT_READ);
236
    req->aiocb = is_write ?
237
        dma_bdrv_write(n->conf.bs, &req->qsg, aio_slba, nvme_rw_cb, req) :
238
        dma_bdrv_read(n->conf.bs, &req->qsg, aio_slba, nvme_rw_cb, req);
239

  
240
    return NVME_NO_COMPLETE;
241
}
242

  
243
static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
244
{
245
    NvmeNamespace *ns;
246
    uint32_t nsid = le32_to_cpu(cmd->nsid);
247

  
248
    if (nsid == 0 || nsid > n->num_namespaces) {
249
        return NVME_INVALID_NSID | NVME_DNR;
250
    }
251

  
252
    ns = &n->namespaces[nsid - 1];
253
    switch (cmd->opcode) {
254
    case NVME_CMD_FLUSH:
255
        return NVME_SUCCESS;
256
    case NVME_CMD_WRITE:
257
    case NVME_CMD_READ:
258
        return nvme_rw(n, ns, cmd, req);
259
    default:
260
        return NVME_INVALID_OPCODE | NVME_DNR;
261
    }
262
}
263

  
264
static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
265
{
266
    n->sq[sq->sqid] = NULL;
267
    qemu_del_timer(sq->timer);
268
    qemu_free_timer(sq->timer);
269
    g_free(sq->io_req);
270
    if (sq->sqid) {
271
        g_free(sq);
272
    }
273
}
274

  
275
static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
276
{
277
    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
278
    NvmeRequest *req, *next;
279
    NvmeSQueue *sq;
280
    NvmeCQueue *cq;
281
    uint16_t qid = le16_to_cpu(c->qid);
282

  
283
    if (!qid || nvme_check_sqid(n, qid)) {
284
        return NVME_INVALID_QID | NVME_DNR;
285
    }
286

  
287
    sq = n->sq[qid];
288
    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
289
        req = QTAILQ_FIRST(&sq->out_req_list);
290
        assert(req->aiocb);
291
        bdrv_aio_cancel(req->aiocb);
292
    }
293
    if (!nvme_check_cqid(n, sq->cqid)) {
294
        cq = n->cq[sq->cqid];
295
        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
296

  
297
        nvme_post_cqes(cq);
298
        QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
299
            if (req->sq == sq) {
300
                QTAILQ_REMOVE(&cq->req_list, req, entry);
301
                QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
302
            }
303
        }
304
    }
305

  
306
    nvme_free_sq(sq, n);
307
    return NVME_SUCCESS;
308
}
309

  
310
static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
311
    uint16_t sqid, uint16_t cqid, uint16_t size)
312
{
313
    int i;
314
    NvmeCQueue *cq;
315

  
316
    sq->ctrl = n;
317
    sq->dma_addr = dma_addr;
318
    sq->sqid = sqid;
319
    sq->size = size;
320
    sq->cqid = cqid;
321
    sq->head = sq->tail = 0;
322
    sq->io_req = g_malloc(sq->size * sizeof(*sq->io_req));
323

  
324
    QTAILQ_INIT(&sq->req_list);
325
    QTAILQ_INIT(&sq->out_req_list);
326
    for (i = 0; i < sq->size; i++) {
327
        sq->io_req[i].sq = sq;
328
        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
329
    }
330
    sq->timer = qemu_new_timer_ns(vm_clock, nvme_process_sq, sq);
331

  
332
    assert(n->cq[cqid]);
333
    cq = n->cq[cqid];
334
    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
335
    n->sq[sqid] = sq;
336
}
337

  
338
static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
339
{
340
    NvmeSQueue *sq;
341
    NvmeCreateSq *c = (NvmeCreateSq *)cmd;
342

  
343
    uint16_t cqid = le16_to_cpu(c->cqid);
344
    uint16_t sqid = le16_to_cpu(c->sqid);
345
    uint16_t qsize = le16_to_cpu(c->qsize);
346
    uint16_t qflags = le16_to_cpu(c->sq_flags);
347
    uint64_t prp1 = le64_to_cpu(c->prp1);
348

  
349
    if (!cqid || nvme_check_cqid(n, cqid)) {
350
        return NVME_INVALID_CQID | NVME_DNR;
351
    }
352
    if (!sqid || (sqid && !nvme_check_sqid(n, sqid))) {
353
        return NVME_INVALID_QID | NVME_DNR;
354
    }
355
    if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
356
        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
357
    }
358
    if (!prp1 || prp1 & (n->page_size - 1)) {
359
        return NVME_INVALID_FIELD | NVME_DNR;
360
    }
361
    if (!(NVME_SQ_FLAGS_PC(qflags))) {
362
        return NVME_INVALID_FIELD | NVME_DNR;
363
    }
364
    sq = g_malloc0(sizeof(*sq));
365
    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
366
    return NVME_SUCCESS;
367
}
368

  
369
static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
370
{
371
    n->cq[cq->cqid] = NULL;
372
    qemu_del_timer(cq->timer);
373
    qemu_free_timer(cq->timer);
374
    msix_vector_unuse(&n->parent_obj, cq->vector);
375
    if (cq->cqid) {
376
        g_free(cq);
377
    }
378
}
379

  
380
static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
381
{
382
    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
383
    NvmeCQueue *cq;
384
    uint16_t qid = le16_to_cpu(c->qid);
385

  
386
    if (!qid || nvme_check_cqid(n, qid)) {
387
        return NVME_INVALID_CQID | NVME_DNR;
388
    }
389

  
390
    cq = n->cq[qid];
391
    if (!QTAILQ_EMPTY(&cq->sq_list)) {
392
        return NVME_INVALID_QUEUE_DEL;
393
    }
394
    nvme_free_cq(cq, n);
395
    return NVME_SUCCESS;
396
}
397

  
398
static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
399
    uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
400
{
401
    cq->ctrl = n;
402
    cq->cqid = cqid;
403
    cq->size = size;
404
    cq->dma_addr = dma_addr;
405
    cq->phase = 1;
406
    cq->irq_enabled = irq_enabled;
407
    cq->vector = vector;
408
    cq->head = cq->tail = 0;
409
    QTAILQ_INIT(&cq->req_list);
410
    QTAILQ_INIT(&cq->sq_list);
411
    msix_vector_use(&n->parent_obj, cq->vector);
412
    n->cq[cqid] = cq;
413
    cq->timer = qemu_new_timer_ns(vm_clock, nvme_post_cqes, cq);
414
}
415

  
416
static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
417
{
418
    NvmeCQueue *cq;
419
    NvmeCreateCq *c = (NvmeCreateCq *)cmd;
420
    uint16_t cqid = le16_to_cpu(c->cqid);
421
    uint16_t vector = le16_to_cpu(c->irq_vector);
422
    uint16_t qsize = le16_to_cpu(c->qsize);
423
    uint16_t qflags = le16_to_cpu(c->cq_flags);
424
    uint64_t prp1 = le64_to_cpu(c->prp1);
425

  
426
    if (!cqid || (cqid && !nvme_check_cqid(n, cqid))) {
427
        return NVME_INVALID_CQID | NVME_DNR;
428
    }
429
    if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
430
        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
431
    }
432
    if (!prp1) {
433
        return NVME_INVALID_FIELD | NVME_DNR;
434
    }
435
    if (vector > n->num_queues) {
436
        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
437
    }
438
    if (!(NVME_CQ_FLAGS_PC(qflags))) {
439
        return NVME_INVALID_FIELD | NVME_DNR;
440
    }
441

  
442
    cq = g_malloc0(sizeof(*cq));
443
    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
444
        NVME_CQ_FLAGS_IEN(qflags));
445
    return NVME_SUCCESS;
446
}
447

  
448
static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
449
{
450
    NvmeNamespace *ns;
451
    NvmeIdentify *c = (NvmeIdentify *)cmd;
452
    uint32_t cns  = le32_to_cpu(c->cns);
453
    uint32_t nsid = le32_to_cpu(c->nsid);
454
    uint64_t prp1 = le64_to_cpu(c->prp1);
455
    uint64_t prp2 = le64_to_cpu(c->prp2);
456

  
457
    if (cns) {
458
        return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
459
            prp1, prp2);
460
    }
461
    if (nsid == 0 || nsid > n->num_namespaces) {
462
        return NVME_INVALID_NSID | NVME_DNR;
463
    }
464

  
465
    ns = &n->namespaces[nsid - 1];
466
    return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
467
        prp1, prp2);
468
}
469

  
470
static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
471
{
472
    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
473

  
474
    switch (dw10) {
475
    case NVME_NUMBER_OF_QUEUES:
476
        req->cqe.result = cpu_to_le32(n->num_queues);
477
        break;
478
    default:
479
        return NVME_INVALID_FIELD | NVME_DNR;
480
    }
481
    return NVME_SUCCESS;
482
}
483

  
484
static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
485
{
486
    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
487

  
488
    switch (dw10) {
489
    case NVME_NUMBER_OF_QUEUES:
490
        req->cqe.result = cpu_to_le32(n->num_queues);
491
        break;
492
    default:
493
        return NVME_INVALID_FIELD | NVME_DNR;
494
    }
495
    return NVME_SUCCESS;
496
}
497

  
498
static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
499
{
500
    switch (cmd->opcode) {
501
    case NVME_ADM_CMD_DELETE_SQ:
502
        return nvme_del_sq(n, cmd);
503
    case NVME_ADM_CMD_CREATE_SQ:
504
        return nvme_create_sq(n, cmd);
505
    case NVME_ADM_CMD_DELETE_CQ:
506
        return nvme_del_cq(n, cmd);
507
    case NVME_ADM_CMD_CREATE_CQ:
508
        return nvme_create_cq(n, cmd);
509
    case NVME_ADM_CMD_IDENTIFY:
510
        return nvme_identify(n, cmd);
511
    case NVME_ADM_CMD_SET_FEATURES:
512
        return nvme_set_feature(n, cmd, req);
513
    case NVME_ADM_CMD_GET_FEATURES:
514
        return nvme_get_feature(n, cmd, req);
515
    default:
516
        return NVME_INVALID_OPCODE | NVME_DNR;
517
    }
518
}
519

  
520
static void nvme_process_sq(void *opaque)
521
{
522
    NvmeSQueue *sq = opaque;
523
    NvmeCtrl *n = sq->ctrl;
524
    NvmeCQueue *cq = n->cq[sq->cqid];
525

  
526
    uint16_t status;
527
    hwaddr addr;
528
    NvmeCmd cmd;
529
    NvmeRequest *req;
530

  
531
    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
532
        addr = sq->dma_addr + sq->head * n->sqe_size;
533
        pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
534
        nvme_inc_sq_head(sq);
535

  
536
        req = QTAILQ_FIRST(&sq->req_list);
537
        QTAILQ_REMOVE(&sq->req_list, req, entry);
538
        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
539
        memset(&req->cqe, 0, sizeof(req->cqe));
540
        req->cqe.cid = cmd.cid;
541

  
542
        status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
543
            nvme_admin_cmd(n, &cmd, req);
544
        if (status != NVME_NO_COMPLETE) {
545
            req->status = status;
546
            nvme_enqueue_req_completion(cq, req);
547
        }
548
    }
549
}
550

  
551
static void nvme_clear_ctrl(NvmeCtrl *n)
552
{
553
    int i;
554

  
555
    for (i = 0; i < n->num_queues; i++) {
556
        if (n->sq[i] != NULL) {
557
            nvme_free_sq(n->sq[i], n);
558
        }
559
    }
560
    for (i = 0; i < n->num_queues; i++) {
561
        if (n->cq[i] != NULL) {
562
            nvme_free_cq(n->cq[i], n);
563
        }
564
    }
565

  
566
    bdrv_flush(n->conf.bs);
567
    n->bar.cc = 0;
568
}
569

  
570
static int nvme_start_ctrl(NvmeCtrl *n)
571
{
572
    uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
573
    uint32_t page_size = 1 << page_bits;
574

  
575
    if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
576
            n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
577
            NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
578
            NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
579
            NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
580
            NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
581
            NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
582
            NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
583
            !NVME_AQA_ASQS(n->bar.aqa) || NVME_AQA_ASQS(n->bar.aqa) > 4095 ||
584
            !NVME_AQA_ACQS(n->bar.aqa) || NVME_AQA_ACQS(n->bar.aqa) > 4095) {
585
        return -1;
586
    }
587

  
588
    n->page_bits = page_bits;
589
    n->page_size = page_size;
590
    n->max_prp_ents = n->page_size / sizeof(uint64_t);
591
    n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
592
    n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
593
    nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
594
        NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
595
    nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
596
        NVME_AQA_ASQS(n->bar.aqa) + 1);
597

  
598
    return 0;
599
}
600

  
601
static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
602
    unsigned size)
603
{
604
    switch (offset) {
605
    case 0xc:
606
        n->bar.intms |= data & 0xffffffff;
607
        n->bar.intmc = n->bar.intms;
608
        break;
609
    case 0x10:
610
        n->bar.intms &= ~(data & 0xffffffff);
611
        n->bar.intmc = n->bar.intms;
612
        break;
613
    case 0x14:
614
        if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
615
            n->bar.cc = data;
616
            if (nvme_start_ctrl(n)) {
617
                n->bar.csts = NVME_CSTS_FAILED;
618
            } else {
619
                n->bar.csts = NVME_CSTS_READY;
620
            }
621
        } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
622
            nvme_clear_ctrl(n);
623
            n->bar.csts &= ~NVME_CSTS_READY;
624
        }
625
        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
626
                nvme_clear_ctrl(n);
627
                n->bar.cc = data;
628
                n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
629
        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
630
                n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
631
                n->bar.cc = data;
632
        }
633
        break;
634
    case 0x24:
635
        n->bar.aqa = data & 0xffffffff;
636
        break;
637
    case 0x28:
638
        n->bar.asq = data;
639
        break;
640
    case 0x2c:
641
        n->bar.asq |= data << 32;
642
        break;
643
    case 0x30:
644
        n->bar.acq = data;
645
        break;
646
    case 0x34:
647
        n->bar.acq |= data << 32;
648
        break;
649
    default:
650
        break;
651
    }
652
}
653

  
654
static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
655
{
656
    NvmeCtrl *n = (NvmeCtrl *)opaque;
657
    uint8_t *ptr = (uint8_t *)&n->bar;
658
    uint64_t val = 0;
659

  
660
    if (addr < sizeof(n->bar)) {
661
        memcpy(&val, ptr + addr, size);
662
    }
663
    return val;
664
}
665

  
666
static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
667
{
668
    uint32_t qid;
669

  
670
    if (addr & ((1 << 2) - 1)) {
671
        return;
672
    }
673

  
674
    if (((addr - 0x1000) >> 2) & 1) {
675
        uint16_t new_head = val & 0xffff;
676
        int start_sqs;
677
        NvmeCQueue *cq;
678

  
679
        qid = (addr - (0x1000 + (1 << 2))) >> 3;
680
        if (nvme_check_cqid(n, qid)) {
681
            return;
682
        }
683

  
684
        cq = n->cq[qid];
685
        if (new_head >= cq->size) {
686
            return;
687
        }
688

  
689
        start_sqs = nvme_cq_full(cq) ? 1 : 0;
690
        cq->head = new_head;
691
        if (start_sqs) {
692
            NvmeSQueue *sq;
693
            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
694
                qemu_mod_timer(sq->timer, qemu_get_clock_ns(vm_clock) + 500);
695
            }
696
            qemu_mod_timer(cq->timer, qemu_get_clock_ns(vm_clock) + 500);
697
        }
698

  
699
        if (cq->tail != cq->head) {
700
            nvme_isr_notify(n, cq);
701
        }
702
    } else {
703
        uint16_t new_tail = val & 0xffff;
704
        NvmeSQueue *sq;
705

  
706
        qid = (addr - 0x1000) >> 3;
707
        if (nvme_check_sqid(n, qid)) {
708
            return;
709
        }
710

  
711
        sq = n->sq[qid];
712
        if (new_tail >= sq->size) {
713
            return;
714
        }
715

  
716
        sq->tail = new_tail;
717
        qemu_mod_timer(sq->timer, qemu_get_clock_ns(vm_clock) + 500);
718
    }
719
}
720

  
721
static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
722
    unsigned size)
723
{
724
    NvmeCtrl *n = (NvmeCtrl *)opaque;
725
    if (addr < sizeof(n->bar)) {
726
        nvme_write_bar(n, addr, data, size);
727
    } else if (addr >= 0x1000) {
728
        nvme_process_db(n, addr, data);
729
    }
730
}
731

  
732
static const MemoryRegionOps nvme_mmio_ops = {
733
    .read = nvme_mmio_read,
734
    .write = nvme_mmio_write,
735
    .endianness = DEVICE_LITTLE_ENDIAN,
736
    .impl = {
737
        .min_access_size = 2,
738
        .max_access_size = 8,
739
    },
740
};
741

  
742
static int nvme_init(PCIDevice *pci_dev)
743
{
744
    NvmeCtrl *n = NVME(pci_dev);
745
    NvmeIdCtrl *id = &n->id_ctrl;
746

  
747
    int i;
748
    int64_t bs_size;
749
    uint8_t *pci_conf;
750

  
751
    if (!(n->conf.bs)) {
752
        return -1;
753
    }
754

  
755
    bs_size =  bdrv_getlength(n->conf.bs);
756
    if (bs_size <= 0) {
757
        return -1;
758
    }
759

  
760
    blkconf_serial(&n->conf, &n->serial);
761
    if (!n->serial) {
762
        return -1;
763
    }
764

  
765
    pci_conf = pci_dev->config;
766
    pci_conf[PCI_INTERRUPT_PIN] = 1;
767
    pci_config_set_prog_interface(pci_dev->config, 0x2);
768
    pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
769
    pcie_endpoint_cap_init(&n->parent_obj, 0x80);
770

  
771
    n->num_namespaces = 1;
772
    n->num_queues = 64;
773
    n->reg_size = 1 << qemu_fls(0x1004 + 2 * (n->num_queues + 1) * 4);
774
    n->ns_size = bs_size / (uint64_t)n->num_namespaces;
775

  
776
    n->namespaces = g_malloc0(sizeof(*n->namespaces)*n->num_namespaces);
777
    n->sq = g_malloc0(sizeof(*n->sq)*n->num_queues);
778
    n->cq = g_malloc0(sizeof(*n->cq)*n->num_queues);
779

  
780
    memory_region_init_io(&n->iomem, &nvme_mmio_ops, n, "nvme", n->reg_size);
781
    pci_register_bar(&n->parent_obj, 0,
782
        PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
783
        &n->iomem);
784
    msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4);
785

  
786
    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
787
    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
788
    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
789
    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
790
    strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
791
    id->rab = 6;
792
    id->ieee[0] = 0x00;
793
    id->ieee[1] = 0x02;
794
    id->ieee[2] = 0xb3;
795
    id->oacs = cpu_to_le16(0);
796
    id->frmw = 7 << 1;
797
    id->lpa = 1 << 0;
798
    id->sqes = (0x6 << 4) | 0x6;
799
    id->cqes = (0x4 << 4) | 0x4;
800
    id->nn = cpu_to_le32(n->num_namespaces);
801
    id->psd[0].mp = cpu_to_le16(0x9c4);
802
    id->psd[0].enlat = cpu_to_le32(0x10);
803
    id->psd[0].exlat = cpu_to_le32(0x4);
804

  
805
    n->bar.cap = 0;
806
    NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
807
    NVME_CAP_SET_CQR(n->bar.cap, 1);
808
    NVME_CAP_SET_AMS(n->bar.cap, 1);
809
    NVME_CAP_SET_TO(n->bar.cap, 0xf);
810
    NVME_CAP_SET_CSS(n->bar.cap, 1);
811

  
812
    n->bar.vs = 0x00010001;
813
    n->bar.intmc = n->bar.intms = 0;
814

  
815
    for (i = 0; i < n->num_namespaces; i++) {
816
        NvmeNamespace *ns = &n->namespaces[i];
817
        NvmeIdNs *id_ns = &ns->id_ns;
818
        id_ns->nsfeat = 0;
819
        id_ns->nlbaf = 0;
820
        id_ns->flbas = 0;
821
        id_ns->mc = 0;
822
        id_ns->dpc = 0;
823
        id_ns->dps = 0;
824
        id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
825
        id_ns->ncap  = id_ns->nuse = id_ns->nsze =
826
            cpu_to_le64(n->ns_size >>
827
                id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
828
    }
829
    return 0;
830
}
831

  
832
static void nvme_exit(PCIDevice *pci_dev)
833
{
834
    NvmeCtrl *n = NVME(pci_dev);
835

  
836
    nvme_clear_ctrl(n);
837
    g_free(n->namespaces);
838
    g_free(n->cq);
839
    g_free(n->sq);
840
    msix_uninit_exclusive_bar(pci_dev);
841
    memory_region_destroy(&n->iomem);
842
}
843

  
844
static Property nvme_props[] = {
845
    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
846
    DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
847
    DEFINE_PROP_END_OF_LIST(),
848
};
849

  
850
static const VMStateDescription nvme_vmstate = {
851
    .name = "nvme",
852
    .unmigratable = 1,
853
};
854

  
855
static void nvme_class_init(ObjectClass *oc, void *data)
856
{
857
    DeviceClass *dc = DEVICE_CLASS(oc);
858
    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
859

  
860
    pc->init = nvme_init;
861
    pc->exit = nvme_exit;
862
    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
863
    pc->vendor_id = PCI_VENDOR_ID_INTEL;
864
    pc->device_id = 0x5845;
865
    pc->revision = 1;
866
    pc->is_express = 1;
867

  
868
    dc->desc = "Non-Volatile Memory Express";
869
    dc->props = nvme_props;
870
    dc->vmsd = &nvme_vmstate;
871
}
872

  
873
static const TypeInfo nvme_info = {
874
    .name          = "nvme",
875
    .parent        = TYPE_PCI_DEVICE,
876
    .instance_size = sizeof(NvmeCtrl),
877
    .class_init    = nvme_class_init,
878
};
879

  
880
static void nvme_register_types(void)
881
{
882
    type_register_static(&nvme_info);
883
}
884

  
885
type_init(nvme_register_types)
b/hw/block/nvme.h
1
#ifndef HW_NVME_H
2
#define HW_NVME_H
3

  
4
typedef struct NvmeBar {
5
    uint64_t    cap;
6
    uint32_t    vs;
7
    uint32_t    intms;
8
    uint32_t    intmc;
9
    uint32_t    cc;
10
    uint32_t    rsvd1;
11
    uint32_t    csts;
12
    uint32_t    nssrc;
13
    uint32_t    aqa;
14
    uint64_t    asq;
15
    uint64_t    acq;
16
} NvmeBar;
17

  
18
enum NvmeCapShift {
19
    CAP_MQES_SHIFT     = 0,
20
    CAP_CQR_SHIFT      = 16,
21
    CAP_AMS_SHIFT      = 17,
22
    CAP_TO_SHIFT       = 24,
23
    CAP_DSTRD_SHIFT    = 32,
24
    CAP_NSSRS_SHIFT    = 33,
25
    CAP_CSS_SHIFT      = 37,
26
    CAP_MPSMIN_SHIFT   = 48,
27
    CAP_MPSMAX_SHIFT   = 52,
28
};
29

  
30
enum NvmeCapMask {
31
    CAP_MQES_MASK      = 0xffff,
32
    CAP_CQR_MASK       = 0x1,
33
    CAP_AMS_MASK       = 0x3,
34
    CAP_TO_MASK        = 0xff,
35
    CAP_DSTRD_MASK     = 0xf,
36
    CAP_NSSRS_MASK     = 0x1,
37
    CAP_CSS_MASK       = 0xff,
38
    CAP_MPSMIN_MASK    = 0xf,
39
    CAP_MPSMAX_MASK    = 0xf,
40
};
41

  
42
#define NVME_CAP_MQES(cap)  (((cap) >> CAP_MQES_SHIFT)   & CAP_MQES_MASK)
43
#define NVME_CAP_CQR(cap)   (((cap) >> CAP_CQR_SHIFT)    & CAP_CQR_MASK)
44
#define NVME_CAP_AMS(cap)   (((cap) >> CAP_AMS_SHIFT)    & CAP_AMS_MASK)
45
#define NVME_CAP_TO(cap)    (((cap) >> CAP_TO_SHIFT)     & CAP_TO_MASK)
46
#define NVME_CAP_DSTRD(cap) (((cap) >> CAP_DSTRD_SHIFT)  & CAP_DSTRD_MASK)
47
#define NVME_CAP_NSSRS(cap) (((cap) >> CAP_NSSRS_SHIFT)  & CAP_NSSRS_MASK)
48
#define NVME_CAP_CSS(cap)   (((cap) >> CAP_CSS_SHIFT)    & CAP_CSS_MASK)
49
#define NVME_CAP_MPSMIN(cap)(((cap) >> CAP_MPSMIN_SHIFT) & CAP_MPSMIN_MASK)
50
#define NVME_CAP_MPSMAX(cap)(((cap) >> CAP_MPSMAX_SHIFT) & CAP_MPSMAX_MASK)
51

  
52
#define NVME_CAP_SET_MQES(cap, val)   (cap |= (uint64_t)(val & CAP_MQES_MASK)  \
53
                                                           << CAP_MQES_SHIFT)
54
#define NVME_CAP_SET_CQR(cap, val)    (cap |= (uint64_t)(val & CAP_CQR_MASK)   \
55
                                                           << CAP_CQR_SHIFT)
56
#define NVME_CAP_SET_AMS(cap, val)    (cap |= (uint64_t)(val & CAP_AMS_MASK)   \
57
                                                           << CAP_AMS_SHIFT)
58
#define NVME_CAP_SET_TO(cap, val)     (cap |= (uint64_t)(val & CAP_TO_MASK)    \
59
                                                           << CAP_TO_SHIFT)
60
#define NVME_CAP_SET_DSTRD(cap, val)  (cap |= (uint64_t)(val & CAP_DSTRD_MASK) \
61
                                                           << CAP_DSTRD_SHIFT)
62
#define NVME_CAP_SET_NSSRS(cap, val)  (cap |= (uint64_t)(val & CAP_NSSRS_MASK) \
63
                                                           << CAP_NSSRS_SHIFT)
64
#define NVME_CAP_SET_CSS(cap, val)    (cap |= (uint64_t)(val & CAP_CSS_MASK)   \
65
                                                           << CAP_CSS_SHIFT)
66
#define NVME_CAP_SET_MPSMIN(cap, val) (cap |= (uint64_t)(val & CAP_MPSMIN_MASK)\
67
                                                           << CAP_MPSMIN_SHIFT)
68
#define NVME_CAP_SET_MPSMAX(cap, val) (cap |= (uint64_t)(val & CAP_MPSMAX_MASK)\
69
                                                            << CAP_MPSMAX_SHIFT)
70

  
71
enum NvmeCcShift {
72
    CC_EN_SHIFT     = 0,
73
    CC_CSS_SHIFT    = 4,
74
    CC_MPS_SHIFT    = 7,
75
    CC_AMS_SHIFT    = 11,
76
    CC_SHN_SHIFT    = 14,
77
    CC_IOSQES_SHIFT = 16,
78
    CC_IOCQES_SHIFT = 20,
79
};
80

  
81
enum NvmeCcMask {
82
    CC_EN_MASK      = 0x1,
83
    CC_CSS_MASK     = 0x7,
84
    CC_MPS_MASK     = 0xf,
85
    CC_AMS_MASK     = 0x7,
86
    CC_SHN_MASK     = 0x3,
87
    CC_IOSQES_MASK  = 0xf,
88
    CC_IOCQES_MASK  = 0xf,
89
};
90

  
91
#define NVME_CC_EN(cc)     ((cc >> CC_EN_SHIFT)     & CC_EN_MASK)
92
#define NVME_CC_CSS(cc)    ((cc >> CC_CSS_SHIFT)    & CC_CSS_MASK)
93
#define NVME_CC_MPS(cc)    ((cc >> CC_MPS_SHIFT)    & CC_MPS_MASK)
94
#define NVME_CC_AMS(cc)    ((cc >> CC_AMS_SHIFT)    & CC_AMS_MASK)
95
#define NVME_CC_SHN(cc)    ((cc >> CC_SHN_SHIFT)    & CC_SHN_MASK)
96
#define NVME_CC_IOSQES(cc) ((cc >> CC_IOSQES_SHIFT) & CC_IOSQES_MASK)
97
#define NVME_CC_IOCQES(cc) ((cc >> CC_IOCQES_SHIFT) & CC_IOCQES_MASK)
98

  
99
enum NvmeCstsShift {
100
    CSTS_RDY_SHIFT      = 0,
101
    CSTS_CFS_SHIFT      = 1,
102
    CSTS_SHST_SHIFT     = 2,
103
    CSTS_NSSRO_SHIFT    = 4,
104
};
105

  
106
enum NvmeCstsMask {
107
    CSTS_RDY_MASK   = 0x1,
108
    CSTS_CFS_MASK   = 0x1,
109
    CSTS_SHST_MASK  = 0x3,
110
    CSTS_NSSRO_MASK = 0x1,
111
};
112

  
113
enum NvmeCsts {
114
    NVME_CSTS_READY         = 1 << CSTS_RDY_SHIFT,
115
    NVME_CSTS_FAILED        = 1 << CSTS_CFS_SHIFT,
116
    NVME_CSTS_SHST_NORMAL   = 0 << CSTS_SHST_SHIFT,
117
    NVME_CSTS_SHST_PROGRESS = 1 << CSTS_SHST_SHIFT,
118
    NVME_CSTS_SHST_COMPLETE = 2 << CSTS_SHST_SHIFT,
119
    NVME_CSTS_NSSRO         = 1 << CSTS_NSSRO_SHIFT,
120
};
121

  
122
#define NVME_CSTS_RDY(csts)     ((csts >> CSTS_RDY_SHIFT)   & CSTS_RDY_MASK)
123
#define NVME_CSTS_CFS(csts)     ((csts >> CSTS_CFS_SHIFT)   & CSTS_CFS_MASK)
124
#define NVME_CSTS_SHST(csts)    ((csts >> CSTS_SHST_SHIFT)  & CSTS_SHST_MASK)
125
#define NVME_CSTS_NSSRO(csts)   ((csts >> CSTS_NSSRO_SHIFT) & CSTS_NSSRO_MASK)
126

  
127
enum NvmeAqaShift {
128
    AQA_ASQS_SHIFT  = 0,
129
    AQA_ACQS_SHIFT  = 16,
130
};
131

  
132
enum NvmeAqaMask {
133
    AQA_ASQS_MASK   = 0xfff,
134
    AQA_ACQS_MASK   = 0xfff,
135
};
136

  
137
#define NVME_AQA_ASQS(aqa) ((aqa >> AQA_ASQS_SHIFT) & AQA_ASQS_MASK)
138
#define NVME_AQA_ACQS(aqa) ((aqa >> AQA_ACQS_SHIFT) & AQA_ACQS_MASK)
139

  
140
typedef struct NvmeCmd {
141
    uint8_t     opcode;
142
    uint8_t     fuse;
143
    uint16_t    cid;
144
    uint32_t    nsid;
145
    uint64_t    res1;
146
    uint64_t    mptr;
147
    uint64_t    prp1;
148
    uint64_t    prp2;
149
    uint32_t    cdw10;
150
    uint32_t    cdw11;
151
    uint32_t    cdw12;
152
    uint32_t    cdw13;
153
    uint32_t    cdw14;
154
    uint32_t    cdw15;
155
} NvmeCmd;
156

  
157
enum NvmeAdminCommands {
158
    NVME_ADM_CMD_DELETE_SQ      = 0x00,
159
    NVME_ADM_CMD_CREATE_SQ      = 0x01,
160
    NVME_ADM_CMD_GET_LOG_PAGE   = 0x02,
161
    NVME_ADM_CMD_DELETE_CQ      = 0x04,
162
    NVME_ADM_CMD_CREATE_CQ      = 0x05,
163
    NVME_ADM_CMD_IDENTIFY       = 0x06,
164
    NVME_ADM_CMD_ABORT          = 0x08,
165
    NVME_ADM_CMD_SET_FEATURES   = 0x09,
166
    NVME_ADM_CMD_GET_FEATURES   = 0x0a,
167
    NVME_ADM_CMD_ASYNC_EV_REQ   = 0x0c,
168
    NVME_ADM_CMD_ACTIVATE_FW    = 0x10,
169
    NVME_ADM_CMD_DOWNLOAD_FW    = 0x11,
170
    NVME_ADM_CMD_FORMAT_NVM     = 0x80,
171
    NVME_ADM_CMD_SECURITY_SEND  = 0x81,
172
    NVME_ADM_CMD_SECURITY_RECV  = 0x82,
173
};
174

  
175
enum NvmeIoCommands {
176
    NVME_CMD_FLUSH              = 0x00,
177
    NVME_CMD_WRITE              = 0x01,
178
    NVME_CMD_READ               = 0x02,
179
    NVME_CMD_WRITE_UNCOR        = 0x04,
180
    NVME_CMD_COMPARE            = 0x05,
181
    NVME_CMD_DSM                = 0x09,
182
};
183

  
184
typedef struct NvmeDeleteQ {
185
    uint8_t     opcode;
186
    uint8_t     flags;
187
    uint16_t    cid;
188
    uint32_t    rsvd1[9];
189
    uint16_t    qid;
190
    uint16_t    rsvd10;
191
    uint32_t    rsvd11[5];
192
} NvmeDeleteQ;
193

  
194
typedef struct NvmeCreateCq {
195
    uint8_t     opcode;
196
    uint8_t     flags;
197
    uint16_t    cid;
198
    uint32_t    rsvd1[5];
199
    uint64_t    prp1;
200
    uint64_t    rsvd8;
201
    uint16_t    cqid;
202
    uint16_t    qsize;
203
    uint16_t    cq_flags;
204
    uint16_t    irq_vector;
205
    uint32_t    rsvd12[4];
206
} NvmeCreateCq;
207

  
208
#define NVME_CQ_FLAGS_PC(cq_flags)  (cq_flags & 0x1)
209
#define NVME_CQ_FLAGS_IEN(cq_flags) ((cq_flags >> 1) & 0x1)
210

  
211
typedef struct NvmeCreateSq {
212
    uint8_t     opcode;
213
    uint8_t     flags;
214
    uint16_t    cid;
215
    uint32_t    rsvd1[5];
216
    uint64_t    prp1;
217
    uint64_t    rsvd8;
218
    uint16_t    sqid;
219
    uint16_t    qsize;
220
    uint16_t    sq_flags;
221
    uint16_t    cqid;
222
    uint32_t    rsvd12[4];
223
} NvmeCreateSq;
224

  
225
#define NVME_SQ_FLAGS_PC(sq_flags)      (sq_flags & 0x1)
226
#define NVME_SQ_FLAGS_QPRIO(sq_flags)   ((sq_flags >> 1) & 0x3)
227

  
228
enum NvmeQueueFlags {
229
    NVME_Q_PC           = 1,
230
    NVME_Q_PRIO_URGENT  = 0,
231
    NVME_Q_PRIO_HIGH    = 1,
232
    NVME_Q_PRIO_NORMAL  = 2,
233
    NVME_Q_PRIO_LOW     = 3,
234
};
235

  
236
typedef struct NvmeIdentify {
237
    uint8_t     opcode;
238
    uint8_t     flags;
239
    uint16_t    cid;
240
    uint32_t    nsid;
241
    uint64_t    rsvd2[2];
242
    uint64_t    prp1;
243
    uint64_t    prp2;
244
    uint32_t    cns;
245
    uint32_t    rsvd11[5];
246
} NvmeIdentify;
247

  
248
typedef struct NvmeRwCmd {
249
    uint8_t     opcode;
250
    uint8_t     flags;
251
    uint16_t    cid;
252
    uint32_t    nsid;
253
    uint64_t    rsvd2;
254
    uint64_t    mptr;
255
    uint64_t    prp1;
256
    uint64_t    prp2;
257
    uint64_t    slba;
258
    uint16_t    nlb;
259
    uint16_t    control;
260
    uint32_t    dsmgmt;
261
    uint32_t    reftag;
262
    uint16_t    apptag;
263
    uint16_t    appmask;
264
} NvmeRwCmd;
265

  
266
enum {
267
    NVME_RW_LR                  = 1 << 15,
268
    NVME_RW_FUA                 = 1 << 14,
269
    NVME_RW_DSM_FREQ_UNSPEC     = 0,
270
    NVME_RW_DSM_FREQ_TYPICAL    = 1,
271
    NVME_RW_DSM_FREQ_RARE       = 2,
272
    NVME_RW_DSM_FREQ_READS      = 3,
273
    NVME_RW_DSM_FREQ_WRITES     = 4,
274
    NVME_RW_DSM_FREQ_RW         = 5,
275
    NVME_RW_DSM_FREQ_ONCE       = 6,
276
    NVME_RW_DSM_FREQ_PREFETCH   = 7,
277
    NVME_RW_DSM_FREQ_TEMP       = 8,
278
    NVME_RW_DSM_LATENCY_NONE    = 0 << 4,
279
    NVME_RW_DSM_LATENCY_IDLE    = 1 << 4,
280
    NVME_RW_DSM_LATENCY_NORM    = 2 << 4,
281
    NVME_RW_DSM_LATENCY_LOW     = 3 << 4,
282
    NVME_RW_DSM_SEQ_REQ         = 1 << 6,
283
    NVME_RW_DSM_COMPRESSED      = 1 << 7,
284
    NVME_RW_PRINFO_PRACT        = 1 << 13,
285
    NVME_RW_PRINFO_PRCHK_GUARD  = 1 << 12,
286
    NVME_RW_PRINFO_PRCHK_APP    = 1 << 11,
287
    NVME_RW_PRINFO_PRCHK_REF    = 1 << 10,
288
};
289

  
290
typedef struct NvmeDsmCmd {
291
    uint8_t     opcode;
292
    uint8_t     flags;
293
    uint16_t    cid;
294
    uint32_t    nsid;
295
    uint64_t    rsvd2[2];
296
    uint64_t    prp1;
297
    uint64_t    prp2;
298
    uint32_t    nr;
299
    uint32_t    attributes;
300
    uint32_t    rsvd12[4];
301
} NvmeDsmCmd;
302

  
303
enum {
304
    NVME_DSMGMT_IDR = 1 << 0,
305
    NVME_DSMGMT_IDW = 1 << 1,
306
    NVME_DSMGMT_AD  = 1 << 2,
307
};
308

  
309
typedef struct NvmeDsmRange {
310
    uint32_t    cattr;
311
    uint32_t    nlb;
312
    uint64_t    slba;
313
} NvmeDsmRange;
314

  
315
enum NvmeAsyncEventRequest {
316
    NVME_AER_TYPE_ERROR                     = 0,
317
    NVME_AER_TYPE_SMART                     = 1,
318
    NVME_AER_TYPE_IO_SPECIFIC               = 6,
319
    NVME_AER_TYPE_VENDOR_SPECIFIC           = 7,
320
    NVME_AER_INFO_ERR_INVALID_SQ            = 0,
321
    NVME_AER_INFO_ERR_INVALID_DB            = 1,
322
    NVME_AER_INFO_ERR_DIAG_FAIL             = 2,
323
    NVME_AER_INFO_ERR_PERS_INTERNAL_ERR     = 3,
324
    NVME_AER_INFO_ERR_TRANS_INTERNAL_ERR    = 4,
325
    NVME_AER_INFO_ERR_FW_IMG_LOAD_ERR       = 5,
326
    NVME_AER_INFO_SMART_RELIABILITY         = 0,
327
    NVME_AER_INFO_SMART_TEMP_THRESH         = 1,
328
    NVME_AER_INFO_SMART_SPARE_THRESH        = 2,
329
};
330

  
331
typedef struct NvmeAerResult {
332
    uint8_t event_type;
333
    uint8_t event_info;
334
    uint8_t log_page;
335
    uint8_t resv;
336
} NvmeAerResult;
337

  
338
typedef struct NvmeCqe {
339
    uint32_t    result;
340
    uint32_t    rsvd;
341
    uint16_t    sq_head;
342
    uint16_t    sq_id;
343
    uint16_t    cid;
344
    uint16_t    status;
345
} NvmeCqe;
346

  
347
enum NvmeStatusCodes {
348
    NVME_SUCCESS                = 0x0000,
349
    NVME_INVALID_OPCODE         = 0x0001,
350
    NVME_INVALID_FIELD          = 0x0002,
351
    NVME_CID_CONFLICT           = 0x0003,
352
    NVME_DATA_TRAS_ERROR        = 0x0004,
353
    NVME_POWER_LOSS_ABORT       = 0x0005,
354
    NVME_INTERNAL_DEV_ERROR     = 0x0006,
355
    NVME_CMD_ABORT_REQ          = 0x0007,
356
    NVME_CMD_ABORT_SQ_DEL       = 0x0008,
357
    NVME_CMD_ABORT_FAILED_FUSE  = 0x0009,
358
    NVME_CMD_ABORT_MISSING_FUSE = 0x000a,
359
    NVME_INVALID_NSID           = 0x000b,
360
    NVME_CMD_SEQ_ERROR          = 0x000c,
361
    NVME_LBA_RANGE              = 0x0080,
362
    NVME_CAP_EXCEEDED           = 0x0081,
363
    NVME_NS_NOT_READY           = 0x0082,
364
    NVME_NS_RESV_CONFLICT       = 0x0083,
365
    NVME_INVALID_CQID           = 0x0100,
366
    NVME_INVALID_QID            = 0x0101,
367
    NVME_MAX_QSIZE_EXCEEDED     = 0x0102,
368
    NVME_ACL_EXCEEDED           = 0x0103,
369
    NVME_RESERVED               = 0x0104,
370
    NVME_AER_LIMIT_EXCEEDED     = 0x0105,
371
    NVME_INVALID_FW_SLOT        = 0x0106,
372
    NVME_INVALID_FW_IMAGE       = 0x0107,
373
    NVME_INVALID_IRQ_VECTOR     = 0x0108,
374
    NVME_INVALID_LOG_ID         = 0x0109,
375
    NVME_INVALID_FORMAT         = 0x010a,
376
    NVME_FW_REQ_RESET           = 0x010b,
377
    NVME_INVALID_QUEUE_DEL      = 0x010c,
378
    NVME_FID_NOT_SAVEABLE       = 0x010d,
379
    NVME_FID_NOT_NSID_SPEC      = 0x010f,
380
    NVME_FW_REQ_SUSYSTEM_RESET  = 0x0110,
381
    NVME_CONFLICTING_ATTRS      = 0x0180,
382
    NVME_INVALID_PROT_INFO      = 0x0181,
383
    NVME_WRITE_TO_RO            = 0x0182,
384
    NVME_WRITE_FAULT            = 0x0280,
385
    NVME_UNRECOVERED_READ       = 0x0281,
386
    NVME_E2E_GUARD_ERROR        = 0x0282,
387
    NVME_E2E_APP_ERROR          = 0x0283,
388
    NVME_E2E_REF_ERROR          = 0x0284,
389
    NVME_CMP_FAILURE            = 0x0285,
390
    NVME_ACCESS_DENIED          = 0x0286,
391
    NVME_MORE                   = 0x2000,
392
    NVME_DNR                    = 0x4000,
393
    NVME_NO_COMPLETE            = 0xffff,
394
};
395

  
396
typedef struct NvmeFwSlotInfoLog {
397
    uint8_t     afi;
398
    uint8_t     reserved1[7];
399
    uint8_t     frs1[8];
400
    uint8_t     frs2[8];
401
    uint8_t     frs3[8];
402
    uint8_t     frs4[8];
403
    uint8_t     frs5[8];
404
    uint8_t     frs6[8];
405
    uint8_t     frs7[8];
406
    uint8_t     reserved2[448];
407
} NvmeFwSlotInfoLog;
408

  
409
typedef struct NvmeErrorLog {
410
    uint64_t    error_count;
411
    uint16_t    sqid;
412
    uint16_t    cid;
413
    uint16_t    status_field;
414
    uint16_t    param_error_location;
415
    uint64_t    lba;
416
    uint32_t    nsid;
417
    uint8_t     vs;
418
    uint8_t     resv[35];
419
} NvmeErrorLog;
420

  
421
typedef struct NvmeSmartLog {
422
    uint8_t     critical_warning;
423
    uint8_t     temperature[2];
424
    uint8_t     available_spare;
425
    uint8_t     available_spare_threshold;
426
    uint8_t     percentage_used;
427
    uint8_t     reserved1[26];
428
    uint64_t    data_units_read[2];
429
    uint64_t    data_units_written[2];
430
    uint64_t    host_read_commands[2];
431
    uint64_t    host_write_commands[2];
432
    uint64_t    controller_busy_time[2];
433
    uint64_t    power_cycles[2];
434
    uint64_t    power_on_hours[2];
435
    uint64_t    unsafe_shutdowns[2];
436
    uint64_t    media_errors[2];
437
    uint64_t    number_of_error_log_entries[2];
438
    uint8_t     reserved2[320];
439
} NvmeSmartLog;
440

  
441
enum NvmeSmartWarn {
442
    NVME_SMART_SPARE                  = 1 << 0,
443
    NVME_SMART_TEMPERATURE            = 1 << 1,
444
    NVME_SMART_RELIABILITY            = 1 << 2,
445
    NVME_SMART_MEDIA_READ_ONLY        = 1 << 3,
446
    NVME_SMART_FAILED_VOLATILE_MEDIA  = 1 << 4,
447
};
448

  
449
enum LogIdentifier {
450
    NVME_LOG_ERROR_INFO     = 0x01,
451
    NVME_LOG_SMART_INFO     = 0x02,
452
    NVME_LOG_FW_SLOT_INFO   = 0x03,
453
};
454

  
455
typedef struct NvmePSD {
456
    uint16_t    mp;
457
    uint16_t    reserved;
458
    uint32_t    enlat;
459
    uint32_t    exlat;
460
    uint8_t     rrt;
461
    uint8_t     rrl;
462
    uint8_t     rwt;
463
    uint8_t     rwl;
464
    uint8_t     resv[16];
465
} NvmePSD;
466

  
467
typedef struct NvmeIdCtrl {
468
    uint16_t    vid;
469
    uint16_t    ssvid;
470
    uint8_t     sn[20];
471
    uint8_t     mn[40];
472
    uint8_t     fr[8];
473
    uint8_t     rab;
474
    uint8_t     ieee[3];
475
    uint8_t     cmic;
476
    uint8_t     mdts;
477
    uint8_t     rsvd255[178];
478
    uint16_t    oacs;
479
    uint8_t     acl;
480
    uint8_t     aerl;
481
    uint8_t     frmw;
482
    uint8_t     lpa;
483
    uint8_t     elpe;
484
    uint8_t     npss;
485
    uint8_t     rsvd511[248];
486
    uint8_t     sqes;
487
    uint8_t     cqes;
488
    uint16_t    rsvd515;
489
    uint32_t    nn;
490
    uint16_t    oncs;
491
    uint16_t    fuses;
492
    uint8_t     fna;
493
    uint8_t     vwc;
494
    uint16_t    awun;
495
    uint16_t    awupf;
496
    uint8_t     rsvd703[174];
497
    uint8_t     rsvd2047[1344];
498
    NvmePSD     psd[32];
499
    uint8_t     vs[1024];
500
} NvmeIdCtrl;
501

  
502
enum NvmeIdCtrlOacs {
503
    NVME_OACS_SECURITY  = 1 << 0,
504
    NVME_OACS_FORMAT    = 1 << 1,
505
    NVME_OACS_FW        = 1 << 2,
506
};
507

  
508
enum NvmeIdCtrlOncs {
509
    NVME_ONCS_COMPARE       = 1 << 0,
510
    NVME_ONCS_WRITE_UNCORR  = 1 << 1,
511
    NVME_ONCS_DSM           = 1 << 2,
512
    NVME_ONCS_WRITE_ZEROS   = 1 << 3,
513
    NVME_ONCS_FEATURES      = 1 << 4,
514
    NVME_ONCS_RESRVATIONS   = 1 << 5,
515
};
516

  
517
#define NVME_CTRL_SQES_MIN(sqes) ((sqes) & 0xf)
518
#define NVME_CTRL_SQES_MAX(sqes) (((sqes) >> 4) & 0xf)
519
#define NVME_CTRL_CQES_MIN(cqes) ((cqes) & 0xf)
520
#define NVME_CTRL_CQES_MAX(cqes) (((cqes) >> 4) & 0xf)
521

  
522
typedef struct NvmeFeatureVal {
523
    uint32_t    arbitration;
524
    uint32_t    power_mgmt;
525
    uint32_t    temp_thresh;
526
    uint32_t    err_rec;
527
    uint32_t    volatile_wc;
528
    uint32_t    num_queues;
529
    uint32_t    int_coalescing;
530
    uint32_t    *int_vector_config;
531
    uint32_t    write_atomicity;
532
    uint32_t    async_config;
533
    uint32_t    sw_prog_marker;
534
} NvmeFeatureVal;
535

  
536
#define NVME_ARB_AB(arb)    (arb & 0x7)
537
#define NVME_ARB_LPW(arb)   ((arb >> 8) & 0xff)
538
#define NVME_ARB_MPW(arb)   ((arb >> 16) & 0xff)
539
#define NVME_ARB_HPW(arb)   ((arb >> 24) & 0xff)
540

  
541
#define NVME_INTC_THR(intc)     (intc & 0xff)
542
#define NVME_INTC_TIME(intc)    ((intc >> 8) & 0xff)
543

  
... This diff was truncated because it exceeds the maximum size that can be displayed.

Also available in: Unified diff