Statistics
| Branch: | Revision:

root / hw / etraxfs_timer.c @ f3e3aa8c

History | View | Annotate | Download (7.4 kB)

1
/*
2
 * QEMU ETRAX Timers
3
 *
4
 * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdio.h>
25
#include <sys/time.h>
26
#include "hw.h"
27
#include "sysemu.h"
28
#include "qemu-timer.h"
29
#include "etraxfs.h"
30

    
31
#define D(x)
32

    
33
#define RW_TMR0_DIV   0x00
34
#define R_TMR0_DATA   0x04
35
#define RW_TMR0_CTRL  0x08
36
#define RW_TMR1_DIV   0x10
37
#define R_TMR1_DATA   0x14
38
#define RW_TMR1_CTRL  0x18
39
#define R_TIME        0x38
40
#define RW_WD_CTRL    0x40
41
#define R_WD_STAT     0x44
42
#define RW_INTR_MASK  0x48
43
#define RW_ACK_INTR   0x4c
44
#define R_INTR        0x50
45
#define R_MASKED_INTR 0x54
46

    
47
struct fs_timer_t {
48
        CPUState *env;
49
        qemu_irq *irq;
50
        qemu_irq *nmi;
51

    
52
        QEMUBH *bh_t0;
53
        QEMUBH *bh_t1;
54
        QEMUBH *bh_wd;
55
        ptimer_state *ptimer_t0;
56
        ptimer_state *ptimer_t1;
57
        ptimer_state *ptimer_wd;
58
        struct timeval last;
59

    
60
        int wd_hits;
61

    
62
        /* Control registers.  */
63
        uint32_t rw_tmr0_div;
64
        uint32_t r_tmr0_data;
65
        uint32_t rw_tmr0_ctrl;
66

    
67
        uint32_t rw_tmr1_div;
68
        uint32_t r_tmr1_data;
69
        uint32_t rw_tmr1_ctrl;
70

    
71
        uint32_t rw_wd_ctrl;
72

    
73
        uint32_t rw_intr_mask;
74
        uint32_t rw_ack_intr;
75
        uint32_t r_intr;
76
        uint32_t r_masked_intr;
77
};
78

    
79
static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
80
{
81
        struct fs_timer_t *t = opaque;
82
        uint32_t r = 0;
83

    
84
        switch (addr) {
85
        case R_TMR0_DATA:
86
                r = ptimer_get_count(t->ptimer_t0);
87
                break;
88
        case R_TMR1_DATA:
89
                r = ptimer_get_count(t->ptimer_t1);
90
                break;
91
        case R_TIME:
92
                r = qemu_get_clock(vm_clock) / 10;
93
                break;
94
        case RW_INTR_MASK:
95
                r = t->rw_intr_mask;
96
                break;
97
        case R_MASKED_INTR:
98
                r = t->r_intr & t->rw_intr_mask;
99
                break;
100
        default:
101
                D(printf ("%s %x\n", __func__, addr));
102
                break;
103
        }
104
        return r;
105
}
106

    
107
#define TIMER_SLOWDOWN 1
108
static void update_ctrl(struct fs_timer_t *t, int tnum)
109
{
110
        unsigned int op;
111
        unsigned int freq;
112
        unsigned int freq_hz;
113
        unsigned int div;
114
        uint32_t ctrl;
115

    
116
        ptimer_state *timer;
117

    
118
        if (tnum == 0) {
119
                ctrl = t->rw_tmr0_ctrl;
120
                div = t->rw_tmr0_div;
121
                timer = t->ptimer_t0;
122
        } else {
123
                ctrl = t->rw_tmr1_ctrl;
124
                div = t->rw_tmr1_div;
125
                timer = t->ptimer_t1;
126
        }
127

    
128

    
129
        op = ctrl & 3;
130
        freq = ctrl >> 2;
131
        freq_hz = 32000000;
132

    
133
        switch (freq)
134
        {
135
        case 0:
136
        case 1:
137
                D(printf ("extern or disabled timer clock?\n"));
138
                break;
139
        case 4: freq_hz =  29493000; break;
140
        case 5: freq_hz =  32000000; break;
141
        case 6: freq_hz =  32768000; break;
142
        case 7: freq_hz = 100000000; break;
143
        default:
144
                abort();
145
                break;
146
        }
147

    
148
        D(printf ("freq_hz=%d div=%d\n", freq_hz, div));
149
        div = div * TIMER_SLOWDOWN;
150
        div /= 1000;
151
        freq_hz /= 1000;
152
        ptimer_set_freq(timer, freq_hz);
153
        ptimer_set_limit(timer, div, 0);
154

    
155
        switch (op)
156
        {
157
                case 0:
158
                        /* Load.  */
159
                        ptimer_set_limit(timer, div, 1);
160
                        break;
161
                case 1:
162
                        /* Hold.  */
163
                        ptimer_stop(timer);
164
                        break;
165
                case 2:
166
                        /* Run.  */
167
                        ptimer_run(timer, 0);
168
                        break;
169
                default:
170
                        abort();
171
                        break;
172
        }
173
}
174

    
175
static void timer_update_irq(struct fs_timer_t *t)
176
{
177
        t->r_intr &= ~(t->rw_ack_intr);
178
        t->r_masked_intr = t->r_intr & t->rw_intr_mask;
179

    
180
        D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr));
181
        if (t->r_masked_intr)
182
                qemu_irq_raise(t->irq[0]);
183
        else
184
                qemu_irq_lower(t->irq[0]);
185
}
186

    
187
static void timer0_hit(void *opaque)
188
{
189
        struct fs_timer_t *t = opaque;
190
        t->r_intr |= 1;
191
        timer_update_irq(t);
192
}
193

    
194
static void timer1_hit(void *opaque)
195
{
196
        struct fs_timer_t *t = opaque;
197
        t->r_intr |= 2;
198
        timer_update_irq(t);
199
}
200

    
201
static void watchdog_hit(void *opaque)
202
{
203
        struct fs_timer_t *t = opaque;
204
        if (t->wd_hits == 0) {
205
                /* real hw gives a single tick before reseting but we are
206
                   a bit friendlier to compensate for our slower execution.  */
207
                ptimer_set_count(t->ptimer_wd, 10);
208
                ptimer_run(t->ptimer_wd, 1);
209
                qemu_irq_raise(t->nmi[0]);
210
        }
211
        else
212
                qemu_system_reset_request();
213

    
214
        t->wd_hits++;
215
}
216

    
217
static inline void timer_watchdog_update(struct fs_timer_t *t, uint32_t value)
218
{
219
        unsigned int wd_en = t->rw_wd_ctrl & (1 << 8);
220
        unsigned int wd_key = t->rw_wd_ctrl >> 9;
221
        unsigned int wd_cnt = t->rw_wd_ctrl & 511;
222
        unsigned int new_key = value >> 9 & ((1 << 7) - 1);
223
        unsigned int new_cmd = (value >> 8) & 1;
224

    
225
        /* If the watchdog is enabled, they written key must match the
226
           complement of the previous.  */
227
        wd_key = ~wd_key & ((1 << 7) - 1);
228

    
229
        if (wd_en && wd_key != new_key)
230
                return;
231

    
232
        D(printf("en=%d new_key=%x oldkey=%x cmd=%d cnt=%d\n", 
233
                 wd_en, new_key, wd_key, new_cmd, wd_cnt));
234

    
235
        if (t->wd_hits)
236
                qemu_irq_lower(t->nmi[0]);
237

    
238
        t->wd_hits = 0;
239

    
240
        ptimer_set_freq(t->ptimer_wd, 760);
241
        if (wd_cnt == 0)
242
                wd_cnt = 256;
243
        ptimer_set_count(t->ptimer_wd, wd_cnt);
244
        if (new_cmd)
245
                ptimer_run(t->ptimer_wd, 1);
246
        else
247
                ptimer_stop(t->ptimer_wd);
248

    
249
        t->rw_wd_ctrl = value;
250
}
251

    
252
static void
253
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
254
{
255
        struct fs_timer_t *t = opaque;
256

    
257
        switch (addr)
258
        {
259
                case RW_TMR0_DIV:
260
                        t->rw_tmr0_div = value;
261
                        break;
262
                case RW_TMR0_CTRL:
263
                        D(printf ("RW_TMR0_CTRL=%x\n", value));
264
                        t->rw_tmr0_ctrl = value;
265
                        update_ctrl(t, 0);
266
                        break;
267
                case RW_TMR1_DIV:
268
                        t->rw_tmr1_div = value;
269
                        break;
270
                case RW_TMR1_CTRL:
271
                        D(printf ("RW_TMR1_CTRL=%x\n", value));
272
                        t->rw_tmr1_ctrl = value;
273
                        update_ctrl(t, 1);
274
                        break;
275
                case RW_INTR_MASK:
276
                        D(printf ("RW_INTR_MASK=%x\n", value));
277
                        t->rw_intr_mask = value;
278
                        timer_update_irq(t);
279
                        break;
280
                case RW_WD_CTRL:
281
                        timer_watchdog_update(t, value);
282
                        break;
283
                case RW_ACK_INTR:
284
                        t->rw_ack_intr = value;
285
                        timer_update_irq(t);
286
                        t->rw_ack_intr = 0;
287
                        break;
288
                default:
289
                        printf ("%s " TARGET_FMT_plx " %x\n",
290
                                __func__, addr, value);
291
                        break;
292
        }
293
}
294

    
295
static CPUReadMemoryFunc *timer_read[] = {
296
        NULL, NULL,
297
        &timer_readl,
298
};
299

    
300
static CPUWriteMemoryFunc *timer_write[] = {
301
        NULL, NULL,
302
        &timer_writel,
303
};
304

    
305
static void etraxfs_timer_reset(void *opaque)
306
{
307
        struct fs_timer_t *t = opaque;
308

    
309
        ptimer_stop(t->ptimer_t0);
310
        ptimer_stop(t->ptimer_t1);
311
        ptimer_stop(t->ptimer_wd);
312
        t->rw_wd_ctrl = 0;
313
        t->r_intr = 0;
314
        t->rw_intr_mask = 0;
315
        qemu_irq_lower(t->irq[0]);
316
}
317

    
318
void etraxfs_timer_init(CPUState *env, qemu_irq *irqs, qemu_irq *nmi,
319
                        target_phys_addr_t base)
320
{
321
        static struct fs_timer_t *t;
322
        int timer_regs;
323

    
324
        t = qemu_mallocz(sizeof *t);
325

    
326
        t->bh_t0 = qemu_bh_new(timer0_hit, t);
327
        t->bh_t1 = qemu_bh_new(timer1_hit, t);
328
        t->bh_wd = qemu_bh_new(watchdog_hit, t);
329
        t->ptimer_t0 = ptimer_init(t->bh_t0);
330
        t->ptimer_t1 = ptimer_init(t->bh_t1);
331
        t->ptimer_wd = ptimer_init(t->bh_wd);
332
        t->irq = irqs;
333
        t->nmi = nmi;
334
        t->env = env;
335

    
336
        timer_regs = cpu_register_io_memory(0, timer_read, timer_write, t);
337
        cpu_register_physical_memory (base, 0x5c, timer_regs);
338

    
339
        qemu_register_reset(etraxfs_timer_reset, t);
340
}