Statistics
| Branch: | Revision:

root / op-i386.c @ f4beb510

History | View | Annotate | Download (55 kB)

1
/*
2
 *  i386 micro operations
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec-i386.h"
21

    
22
/* NOTE: data are not static to force relocation generation by GCC */
23

    
24
uint8_t parity_table[256] = {
25
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
26
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
27
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
28
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
29
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
30
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
31
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
32
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
33
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
34
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
35
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
36
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
37
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
38
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
39
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
40
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
41
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
42
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
43
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
44
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
45
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
46
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
47
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
48
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
49
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
50
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
51
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
54
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
55
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
56
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
57
};
58

    
59
/* modulo 17 table */
60
const uint8_t rclw_table[32] = {
61
    0, 1, 2, 3, 4, 5, 6, 7, 
62
    8, 9,10,11,12,13,14,15,
63
   16, 0, 1, 2, 3, 4, 5, 6,
64
    7, 8, 9,10,11,12,13,14,
65
};
66

    
67
/* modulo 9 table */
68
const uint8_t rclb_table[32] = {
69
    0, 1, 2, 3, 4, 5, 6, 7, 
70
    8, 0, 1, 2, 3, 4, 5, 6,
71
    7, 8, 0, 1, 2, 3, 4, 5, 
72
    6, 7, 8, 0, 1, 2, 3, 4,
73
};
74

    
75
#ifdef USE_X86LDOUBLE
76
/* an array of Intel 80-bit FP constants, to be loaded via integer ops */
77
typedef unsigned short f15ld[5];
78
const f15ld f15rk[] =
79
{
80
/*0*/        {0x0000,0x0000,0x0000,0x0000,0x0000},
81
/*1*/        {0x0000,0x0000,0x0000,0x8000,0x3fff},
82
/*pi*/        {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
83
/*lg2*/        {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
84
/*ln2*/        {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
85
/*l2e*/        {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
86
/*l2t*/        {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
87
};
88
#else
89
/* the same, 64-bit version */
90
typedef unsigned short f15ld[4];
91
const f15ld f15rk[] =
92
{
93
#ifndef WORDS_BIGENDIAN
94
/*0*/        {0x0000,0x0000,0x0000,0x0000},
95
/*1*/        {0x0000,0x0000,0x0000,0x3ff0},
96
/*pi*/        {0x2d18,0x5444,0x21fb,0x4009},
97
/*lg2*/        {0x79ff,0x509f,0x4413,0x3fd3},
98
/*ln2*/        {0x39ef,0xfefa,0x2e42,0x3fe6},
99
/*l2e*/        {0x82fe,0x652b,0x1547,0x3ff7},
100
/*l2t*/        {0xa371,0x0979,0x934f,0x400a}
101
#else
102
/*0*/   {0x0000,0x0000,0x0000,0x0000},
103
/*1*/   {0x3ff0,0x0000,0x0000,0x0000},
104
/*pi*/  {0x4009,0x21fb,0x5444,0x2d18},
105
/*lg2*/        {0x3fd3,0x4413,0x509f,0x79ff},
106
/*ln2*/        {0x3fe6,0x2e42,0xfefa,0x39ef},
107
/*l2e*/        {0x3ff7,0x1547,0x652b,0x82fe},
108
/*l2t*/        {0x400a,0x934f,0x0979,0xa371}
109
#endif
110
};
111
#endif
112
    
113
/* n must be a constant to be efficient */
114
static inline int lshift(int x, int n)
115
{
116
    if (n >= 0)
117
        return x << n;
118
    else
119
        return x >> (-n);
120
}
121

    
122
/* we define the various pieces of code used by the JIT */
123

    
124
#define REG EAX
125
#define REGNAME _EAX
126
#include "opreg_template.h"
127
#undef REG
128
#undef REGNAME
129

    
130
#define REG ECX
131
#define REGNAME _ECX
132
#include "opreg_template.h"
133
#undef REG
134
#undef REGNAME
135

    
136
#define REG EDX
137
#define REGNAME _EDX
138
#include "opreg_template.h"
139
#undef REG
140
#undef REGNAME
141

    
142
#define REG EBX
143
#define REGNAME _EBX
144
#include "opreg_template.h"
145
#undef REG
146
#undef REGNAME
147

    
148
#define REG ESP
149
#define REGNAME _ESP
150
#include "opreg_template.h"
151
#undef REG
152
#undef REGNAME
153

    
154
#define REG EBP
155
#define REGNAME _EBP
156
#include "opreg_template.h"
157
#undef REG
158
#undef REGNAME
159

    
160
#define REG ESI
161
#define REGNAME _ESI
162
#include "opreg_template.h"
163
#undef REG
164
#undef REGNAME
165

    
166
#define REG EDI
167
#define REGNAME _EDI
168
#include "opreg_template.h"
169
#undef REG
170
#undef REGNAME
171

    
172
/* operations with flags */
173

    
174
void OPPROTO op_addl_T0_T1_cc(void)
175
{
176
    CC_SRC = T0;
177
    T0 += T1;
178
    CC_DST = T0;
179
}
180

    
181
void OPPROTO op_orl_T0_T1_cc(void)
182
{
183
    T0 |= T1;
184
    CC_DST = T0;
185
}
186

    
187
void OPPROTO op_andl_T0_T1_cc(void)
188
{
189
    T0 &= T1;
190
    CC_DST = T0;
191
}
192

    
193
void OPPROTO op_subl_T0_T1_cc(void)
194
{
195
    CC_SRC = T0;
196
    T0 -= T1;
197
    CC_DST = T0;
198
}
199

    
200
void OPPROTO op_xorl_T0_T1_cc(void)
201
{
202
    T0 ^= T1;
203
    CC_DST = T0;
204
}
205

    
206
void OPPROTO op_cmpl_T0_T1_cc(void)
207
{
208
    CC_SRC = T0;
209
    CC_DST = T0 - T1;
210
}
211

    
212
void OPPROTO op_negl_T0_cc(void)
213
{
214
    CC_SRC = 0;
215
    T0 = -T0;
216
    CC_DST = T0;
217
}
218

    
219
void OPPROTO op_incl_T0_cc(void)
220
{
221
    CC_SRC = cc_table[CC_OP].compute_c();
222
    T0++;
223
    CC_DST = T0;
224
}
225

    
226
void OPPROTO op_decl_T0_cc(void)
227
{
228
    CC_SRC = cc_table[CC_OP].compute_c();
229
    T0--;
230
    CC_DST = T0;
231
}
232

    
233
void OPPROTO op_testl_T0_T1_cc(void)
234
{
235
    CC_DST = T0 & T1;
236
}
237

    
238
/* operations without flags */
239

    
240
void OPPROTO op_addl_T0_T1(void)
241
{
242
    T0 += T1;
243
}
244

    
245
void OPPROTO op_orl_T0_T1(void)
246
{
247
    T0 |= T1;
248
}
249

    
250
void OPPROTO op_andl_T0_T1(void)
251
{
252
    T0 &= T1;
253
}
254

    
255
void OPPROTO op_subl_T0_T1(void)
256
{
257
    T0 -= T1;
258
}
259

    
260
void OPPROTO op_xorl_T0_T1(void)
261
{
262
    T0 ^= T1;
263
}
264

    
265
void OPPROTO op_negl_T0(void)
266
{
267
    T0 = -T0;
268
}
269

    
270
void OPPROTO op_incl_T0(void)
271
{
272
    T0++;
273
}
274

    
275
void OPPROTO op_decl_T0(void)
276
{
277
    T0--;
278
}
279

    
280
void OPPROTO op_notl_T0(void)
281
{
282
    T0 = ~T0;
283
}
284

    
285
void OPPROTO op_bswapl_T0(void)
286
{
287
    T0 = bswap32(T0);
288
}
289

    
290
/* multiply/divide */
291
void OPPROTO op_mulb_AL_T0(void)
292
{
293
    unsigned int res;
294
    res = (uint8_t)EAX * (uint8_t)T0;
295
    EAX = (EAX & 0xffff0000) | res;
296
    CC_SRC = (res & 0xff00);
297
}
298

    
299
void OPPROTO op_imulb_AL_T0(void)
300
{
301
    int res;
302
    res = (int8_t)EAX * (int8_t)T0;
303
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
304
    CC_SRC = (res != (int8_t)res);
305
}
306

    
307
void OPPROTO op_mulw_AX_T0(void)
308
{
309
    unsigned int res;
310
    res = (uint16_t)EAX * (uint16_t)T0;
311
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
312
    EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
313
    CC_SRC = res >> 16;
314
}
315

    
316
void OPPROTO op_imulw_AX_T0(void)
317
{
318
    int res;
319
    res = (int16_t)EAX * (int16_t)T0;
320
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
321
    EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
322
    CC_SRC = (res != (int16_t)res);
323
}
324

    
325
void OPPROTO op_mull_EAX_T0(void)
326
{
327
    uint64_t res;
328
    res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
329
    EAX = res;
330
    EDX = res >> 32;
331
    CC_SRC = res >> 32;
332
}
333

    
334
void OPPROTO op_imull_EAX_T0(void)
335
{
336
    int64_t res;
337
    res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
338
    EAX = res;
339
    EDX = res >> 32;
340
    CC_SRC = (res != (int32_t)res);
341
}
342

    
343
void OPPROTO op_imulw_T0_T1(void)
344
{
345
    int res;
346
    res = (int16_t)T0 * (int16_t)T1;
347
    T0 = res;
348
    CC_SRC = (res != (int16_t)res);
349
}
350

    
351
void OPPROTO op_imull_T0_T1(void)
352
{
353
    int64_t res;
354
    res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
355
    T0 = res;
356
    CC_SRC = (res != (int32_t)res);
357
}
358

    
359
/* division, flags are undefined */
360
/* XXX: add exceptions for overflow */
361
void OPPROTO op_divb_AL_T0(void)
362
{
363
    unsigned int num, den, q, r;
364

    
365
    num = (EAX & 0xffff);
366
    den = (T0 & 0xff);
367
    if (den == 0) {
368
        EIP = PARAM1;
369
        raise_exception(EXCP00_DIVZ);
370
    }
371
    q = (num / den) & 0xff;
372
    r = (num % den) & 0xff;
373
    EAX = (EAX & 0xffff0000) | (r << 8) | q;
374
}
375

    
376
void OPPROTO op_idivb_AL_T0(void)
377
{
378
    int num, den, q, r;
379

    
380
    num = (int16_t)EAX;
381
    den = (int8_t)T0;
382
    if (den == 0) {
383
        EIP = PARAM1;
384
        raise_exception(EXCP00_DIVZ);
385
    }
386
    q = (num / den) & 0xff;
387
    r = (num % den) & 0xff;
388
    EAX = (EAX & 0xffff0000) | (r << 8) | q;
389
}
390

    
391
void OPPROTO op_divw_AX_T0(void)
392
{
393
    unsigned int num, den, q, r;
394

    
395
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
396
    den = (T0 & 0xffff);
397
    if (den == 0) {
398
        EIP = PARAM1;
399
        raise_exception(EXCP00_DIVZ);
400
    }
401
    q = (num / den) & 0xffff;
402
    r = (num % den) & 0xffff;
403
    EAX = (EAX & 0xffff0000) | q;
404
    EDX = (EDX & 0xffff0000) | r;
405
}
406

    
407
void OPPROTO op_idivw_AX_T0(void)
408
{
409
    int num, den, q, r;
410

    
411
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
412
    den = (int16_t)T0;
413
    if (den == 0) {
414
        EIP = PARAM1;
415
        raise_exception(EXCP00_DIVZ);
416
    }
417
    q = (num / den) & 0xffff;
418
    r = (num % den) & 0xffff;
419
    EAX = (EAX & 0xffff0000) | q;
420
    EDX = (EDX & 0xffff0000) | r;
421
}
422

    
423
#ifdef BUGGY_GCC_DIV64
424
/* gcc 2.95.4 on PowerPC does not seem to like using __udivdi3, so we
425
   call it from another function */
426
uint32_t div64(uint32_t *q_ptr, uint64_t num, uint32_t den)
427
{
428
    *q_ptr = num / den;
429
    return num % den;
430
}
431

    
432
int32_t idiv64(int32_t *q_ptr, int64_t num, int32_t den)
433
{
434
    *q_ptr = num / den;
435
    return num % den;
436
}
437
#endif
438

    
439
void OPPROTO op_divl_EAX_T0(void)
440
{
441
    unsigned int den, q, r;
442
    uint64_t num;
443
    
444
    num = EAX | ((uint64_t)EDX << 32);
445
    den = T0;
446
    if (den == 0) {
447
        EIP = PARAM1;
448
        raise_exception(EXCP00_DIVZ);
449
    }
450
#ifdef BUGGY_GCC_DIV64
451
    r = div64(&q, num, den);
452
#else
453
    q = (num / den);
454
    r = (num % den);
455
#endif
456
    EAX = q;
457
    EDX = r;
458
}
459

    
460
void OPPROTO op_idivl_EAX_T0(void)
461
{
462
    int den, q, r;
463
    int64_t num;
464
    
465
    num = EAX | ((uint64_t)EDX << 32);
466
    den = T0;
467
    if (den == 0) {
468
        EIP = PARAM1;
469
        raise_exception(EXCP00_DIVZ);
470
    }
471
#ifdef BUGGY_GCC_DIV64
472
    r = idiv64(&q, num, den);
473
#else
474
    q = (num / den);
475
    r = (num % den);
476
#endif
477
    EAX = q;
478
    EDX = r;
479
}
480

    
481
/* constant load & misc op */
482

    
483
void OPPROTO op_movl_T0_im(void)
484
{
485
    T0 = PARAM1;
486
}
487

    
488
void OPPROTO op_addl_T0_im(void)
489
{
490
    T0 += PARAM1;
491
}
492

    
493
void OPPROTO op_andl_T0_ffff(void)
494
{
495
    T0 = T0 & 0xffff;
496
}
497

    
498
void OPPROTO op_movl_T0_T1(void)
499
{
500
    T0 = T1;
501
}
502

    
503
void OPPROTO op_movl_T1_im(void)
504
{
505
    T1 = PARAM1;
506
}
507

    
508
void OPPROTO op_addl_T1_im(void)
509
{
510
    T1 += PARAM1;
511
}
512

    
513
void OPPROTO op_movl_T1_A0(void)
514
{
515
    T1 = A0;
516
}
517

    
518
void OPPROTO op_movl_A0_im(void)
519
{
520
    A0 = PARAM1;
521
}
522

    
523
void OPPROTO op_addl_A0_im(void)
524
{
525
    A0 += PARAM1;
526
}
527

    
528
void OPPROTO op_addl_A0_AL(void)
529
{
530
    A0 += (EAX & 0xff);
531
}
532

    
533
void OPPROTO op_andl_A0_ffff(void)
534
{
535
    A0 = A0 & 0xffff;
536
}
537

    
538
/* memory access */
539

    
540
void OPPROTO op_ldub_T0_A0(void)
541
{
542
    T0 = ldub((uint8_t *)A0);
543
}
544

    
545
void OPPROTO op_ldsb_T0_A0(void)
546
{
547
    T0 = ldsb((int8_t *)A0);
548
}
549

    
550
void OPPROTO op_lduw_T0_A0(void)
551
{
552
    T0 = lduw((uint8_t *)A0);
553
}
554

    
555
void OPPROTO op_ldsw_T0_A0(void)
556
{
557
    T0 = ldsw((int8_t *)A0);
558
}
559

    
560
void OPPROTO op_ldl_T0_A0(void)
561
{
562
    T0 = ldl((uint8_t *)A0);
563
}
564

    
565
void OPPROTO op_ldub_T1_A0(void)
566
{
567
    T1 = ldub((uint8_t *)A0);
568
}
569

    
570
void OPPROTO op_ldsb_T1_A0(void)
571
{
572
    T1 = ldsb((int8_t *)A0);
573
}
574

    
575
void OPPROTO op_lduw_T1_A0(void)
576
{
577
    T1 = lduw((uint8_t *)A0);
578
}
579

    
580
void OPPROTO op_ldsw_T1_A0(void)
581
{
582
    T1 = ldsw((int8_t *)A0);
583
}
584

    
585
void OPPROTO op_ldl_T1_A0(void)
586
{
587
    T1 = ldl((uint8_t *)A0);
588
}
589

    
590
void OPPROTO op_stb_T0_A0(void)
591
{
592
    stb((uint8_t *)A0, T0);
593
}
594

    
595
void OPPROTO op_stw_T0_A0(void)
596
{
597
    stw((uint8_t *)A0, T0);
598
}
599

    
600
void OPPROTO op_stl_T0_A0(void)
601
{
602
    stl((uint8_t *)A0, T0);
603
}
604

    
605
/* used for bit operations */
606

    
607
void OPPROTO op_add_bitw_A0_T1(void)
608
{
609
    A0 += ((int32_t)T1 >> 4) << 1;
610
}
611

    
612
void OPPROTO op_add_bitl_A0_T1(void)
613
{
614
    A0 += ((int32_t)T1 >> 5) << 2;
615
}
616

    
617
/* indirect jump */
618

    
619
void OPPROTO op_jmp_T0(void)
620
{
621
    EIP = T0;
622
}
623

    
624
void OPPROTO op_jmp_im(void)
625
{
626
    EIP = PARAM1;
627
}
628

    
629
#if 0
630
/* full interrupt support (only useful for real CPU emulation, not
631
   finished) - I won't do it any time soon, finish it if you want ! */
632
void raise_interrupt(int intno, int is_int, int error_code, 
633
                     unsigned int next_eip)
634
{
635
    SegmentDescriptorTable *dt;
636
    uint8_t *ptr;
637
    int type, dpl, cpl;
638
    uint32_t e1, e2;
639
    
640
    dt = &env->idt;
641
    if (intno * 8 + 7 > dt->limit)
642
        raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
643
    ptr = dt->base + intno * 8;
644
    e1 = ldl(ptr);
645
    e2 = ldl(ptr + 4);
646
    /* check gate type */
647
    type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
648
    switch(type) {
649
    case 5: /* task gate */
650
    case 6: /* 286 interrupt gate */
651
    case 7: /* 286 trap gate */
652
    case 14: /* 386 interrupt gate */
653
    case 15: /* 386 trap gate */
654
        break;
655
    default:
656
        raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
657
        break;
658
    }
659
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
660
    cpl = env->segs[R_CS] & 3;
661
    /* check privledge if software int */
662
    if (is_int && dpl < cpl)
663
        raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
664
    /* check valid bit */
665
    if (!(e2 & DESC_P_MASK))
666
        raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2);
667
}
668

669
#else
670

    
671
/*
672
 * is_int is TRUE if coming from the int instruction. next_eip is the
673
 * EIP value AFTER the interrupt instruction. It is only relevant if
674
 * is_int is TRUE.  
675
 */
676
void raise_interrupt(int intno, int is_int, int error_code, 
677
                     unsigned int next_eip)
678
{
679
    SegmentDescriptorTable *dt;
680
    uint8_t *ptr;
681
    int dpl, cpl;
682
    uint32_t e2;
683

    
684
    dt = &env->idt;
685
    ptr = dt->base + (intno * 8);
686
    e2 = ldl(ptr + 4);
687
    
688
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
689
    cpl = 3;
690
    /* check privledge if software int */
691
    if (is_int && dpl < cpl)
692
        raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
693

    
694
    /* Since we emulate only user space, we cannot do more than
695
       exiting the emulation with the suitable exception and error
696
       code */
697
    if (is_int)
698
        EIP = next_eip;
699
    env->exception_index = intno;
700
    env->error_code = error_code;
701

    
702
    cpu_loop_exit();
703
}
704

    
705
#endif
706

    
707
/* shortcuts to generate exceptions */
708
void raise_exception_err(int exception_index, int error_code)
709
{
710
    raise_interrupt(exception_index, 0, error_code, 0);
711
}
712

    
713
void raise_exception(int exception_index)
714
{
715
    raise_interrupt(exception_index, 0, 0, 0);
716
}
717

    
718
void OPPROTO op_raise_interrupt(void)
719
{
720
    int intno;
721
    unsigned int next_eip;
722
    intno = PARAM1;
723
    next_eip = PARAM2;
724
    raise_interrupt(intno, 1, 0, next_eip);
725
}
726

    
727
void OPPROTO op_raise_exception(void)
728
{
729
    int exception_index;
730
    exception_index = PARAM1;
731
    raise_exception(exception_index);
732
}
733

    
734
void OPPROTO op_into(void)
735
{
736
    int eflags;
737
    eflags = cc_table[CC_OP].compute_all();
738
    if (eflags & CC_O) {
739
        raise_interrupt(EXCP04_INTO, 1, 0, PARAM1);
740
    }
741
    FORCE_RET();
742
}
743

    
744
void OPPROTO op_cli(void)
745
{
746
    env->eflags &= ~IF_MASK;
747
}
748

    
749
void OPPROTO op_sti(void)
750
{
751
    env->eflags |= IF_MASK;
752
}
753

    
754
#if 0
755
/* vm86plus instructions */
756
void OPPROTO op_cli_vm(void)
757
{
758
    env->eflags &= ~VIF_MASK;
759
}
760

761
void OPPROTO op_sti_vm(void)
762
{
763
    env->eflags |= VIF_MASK;
764
    if (env->eflags & VIP_MASK) {
765
        EIP = PARAM1;
766
        raise_exception(EXCP0D_GPF);
767
    }
768
    FORCE_RET();
769
}
770
#endif
771

    
772
void OPPROTO op_boundw(void)
773
{
774
    int low, high, v;
775
    low = ldsw((uint8_t *)A0);
776
    high = ldsw((uint8_t *)A0 + 2);
777
    v = (int16_t)T0;
778
    if (v < low || v > high) {
779
        EIP = PARAM1;
780
        raise_exception(EXCP05_BOUND);
781
    }
782
    FORCE_RET();
783
}
784

    
785
void OPPROTO op_boundl(void)
786
{
787
    int low, high, v;
788
    low = ldl((uint8_t *)A0);
789
    high = ldl((uint8_t *)A0 + 4);
790
    v = T0;
791
    if (v < low || v > high) {
792
        EIP = PARAM1;
793
        raise_exception(EXCP05_BOUND);
794
    }
795
    FORCE_RET();
796
}
797

    
798
void OPPROTO op_cmpxchg8b(void)
799
{
800
    uint64_t d;
801
    int eflags;
802

    
803
    eflags = cc_table[CC_OP].compute_all();
804
    d = ldq((uint8_t *)A0);
805
    if (d == (((uint64_t)EDX << 32) | EAX)) {
806
        stq((uint8_t *)A0, ((uint64_t)ECX << 32) | EBX);
807
        eflags |= CC_Z;
808
    } else {
809
        EDX = d >> 32;
810
        EAX = d;
811
        eflags &= ~CC_Z;
812
    }
813
    CC_SRC = eflags;
814
    FORCE_RET();
815
}
816

    
817
#if defined(__powerpc__)
818

    
819
/* on PowerPC we patch the jump instruction directly */
820
#define JUMP_TB(tbparam, n, eip)\
821
do {\
822
    static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
823
    asm volatile ("b %0" : : "i" (&__op_jmp ## n));\
824
label ## n:\
825
    T0 = (long)(tbparam) + (n);\
826
    EIP = eip;\
827
} while (0)
828

    
829
#else
830

    
831
/* jump to next block operations (more portable code, does not need
832
   cache flushing, but slower because of indirect jump) */
833
#define JUMP_TB(tbparam, n, eip)\
834
do {\
835
    static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
836
    goto *((TranslationBlock *)tbparam)->tb_next[n];\
837
label ## n:\
838
    T0 = (long)(tbparam) + (n);\
839
    EIP = eip;\
840
} while (0)
841

    
842
#endif
843

    
844
void OPPROTO op_jmp_tb_next(void)
845
{
846
    JUMP_TB(PARAM1, 0, PARAM2);
847
}
848

    
849
void OPPROTO op_movl_T0_0(void)
850
{
851
    T0 = 0;
852
}
853

    
854
/* multiple size ops */
855

    
856
#define ldul ldl
857

    
858
#define SHIFT 0
859
#include "ops_template.h"
860
#undef SHIFT
861

    
862
#define SHIFT 1
863
#include "ops_template.h"
864
#undef SHIFT
865

    
866
#define SHIFT 2
867
#include "ops_template.h"
868
#undef SHIFT
869

    
870
/* sign extend */
871

    
872
void OPPROTO op_movsbl_T0_T0(void)
873
{
874
    T0 = (int8_t)T0;
875
}
876

    
877
void OPPROTO op_movzbl_T0_T0(void)
878
{
879
    T0 = (uint8_t)T0;
880
}
881

    
882
void OPPROTO op_movswl_T0_T0(void)
883
{
884
    T0 = (int16_t)T0;
885
}
886

    
887
void OPPROTO op_movzwl_T0_T0(void)
888
{
889
    T0 = (uint16_t)T0;
890
}
891

    
892
void OPPROTO op_movswl_EAX_AX(void)
893
{
894
    EAX = (int16_t)EAX;
895
}
896

    
897
void OPPROTO op_movsbw_AX_AL(void)
898
{
899
    EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
900
}
901

    
902
void OPPROTO op_movslq_EDX_EAX(void)
903
{
904
    EDX = (int32_t)EAX >> 31;
905
}
906

    
907
void OPPROTO op_movswl_DX_AX(void)
908
{
909
    EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
910
}
911

    
912
/* push/pop */
913

    
914
void op_pushl_T0(void)
915
{
916
    uint32_t offset;
917
    offset = ESP - 4;
918
    stl((void *)offset, T0);
919
    /* modify ESP after to handle exceptions correctly */
920
    ESP = offset;
921
}
922

    
923
void op_pushw_T0(void)
924
{
925
    uint32_t offset;
926
    offset = ESP - 2;
927
    stw((void *)offset, T0);
928
    /* modify ESP after to handle exceptions correctly */
929
    ESP = offset;
930
}
931

    
932
void op_pushl_ss32_T0(void)
933
{
934
    uint32_t offset;
935
    offset = ESP - 4;
936
    stl(env->seg_cache[R_SS].base + offset, T0);
937
    /* modify ESP after to handle exceptions correctly */
938
    ESP = offset;
939
}
940

    
941
void op_pushw_ss32_T0(void)
942
{
943
    uint32_t offset;
944
    offset = ESP - 2;
945
    stw(env->seg_cache[R_SS].base + offset, T0);
946
    /* modify ESP after to handle exceptions correctly */
947
    ESP = offset;
948
}
949

    
950
void op_pushl_ss16_T0(void)
951
{
952
    uint32_t offset;
953
    offset = (ESP - 4) & 0xffff;
954
    stl(env->seg_cache[R_SS].base + offset, T0);
955
    /* modify ESP after to handle exceptions correctly */
956
    ESP = (ESP & ~0xffff) | offset;
957
}
958

    
959
void op_pushw_ss16_T0(void)
960
{
961
    uint32_t offset;
962
    offset = (ESP - 2) & 0xffff;
963
    stw(env->seg_cache[R_SS].base + offset, T0);
964
    /* modify ESP after to handle exceptions correctly */
965
    ESP = (ESP & ~0xffff) | offset;
966
}
967

    
968
/* NOTE: ESP update is done after */
969
void op_popl_T0(void)
970
{
971
    T0 = ldl((void *)ESP);
972
}
973

    
974
void op_popw_T0(void)
975
{
976
    T0 = lduw((void *)ESP);
977
}
978

    
979
void op_popl_ss32_T0(void)
980
{
981
    T0 = ldl(env->seg_cache[R_SS].base + ESP);
982
}
983

    
984
void op_popw_ss32_T0(void)
985
{
986
    T0 = lduw(env->seg_cache[R_SS].base + ESP);
987
}
988

    
989
void op_popl_ss16_T0(void)
990
{
991
    T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff));
992
}
993

    
994
void op_popw_ss16_T0(void)
995
{
996
    T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff));
997
}
998

    
999
void op_addl_ESP_4(void)
1000
{
1001
    ESP += 4;
1002
}
1003

    
1004
void op_addl_ESP_2(void)
1005
{
1006
    ESP += 2;
1007
}
1008

    
1009
void op_addw_ESP_4(void)
1010
{
1011
    ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
1012
}
1013

    
1014
void op_addw_ESP_2(void)
1015
{
1016
    ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
1017
}
1018

    
1019
void op_addl_ESP_im(void)
1020
{
1021
    ESP += PARAM1;
1022
}
1023

    
1024
void op_addw_ESP_im(void)
1025
{
1026
    ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
1027
}
1028

    
1029
/* rdtsc */
1030
#ifndef __i386__
1031
uint64_t emu_time;
1032
#endif
1033

    
1034
void OPPROTO op_rdtsc(void)
1035
{
1036
    uint64_t val;
1037
#ifdef __i386__
1038
    asm("rdtsc" : "=A" (val));
1039
#else
1040
    /* better than nothing: the time increases */
1041
    val = emu_time++;
1042
#endif
1043
    EAX = val;
1044
    EDX = val >> 32;
1045
}
1046

    
1047
/* We simulate a pre-MMX pentium as in valgrind */
1048
#define CPUID_FP87 (1 << 0)
1049
#define CPUID_VME  (1 << 1)
1050
#define CPUID_DE   (1 << 2)
1051
#define CPUID_PSE  (1 << 3)
1052
#define CPUID_TSC  (1 << 4)
1053
#define CPUID_MSR  (1 << 5)
1054
#define CPUID_PAE  (1 << 6)
1055
#define CPUID_MCE  (1 << 7)
1056
#define CPUID_CX8  (1 << 8)
1057
#define CPUID_APIC (1 << 9)
1058
#define CPUID_SEP  (1 << 11) /* sysenter/sysexit */
1059
#define CPUID_MTRR (1 << 12)
1060
#define CPUID_PGE  (1 << 13)
1061
#define CPUID_MCA  (1 << 14)
1062
#define CPUID_CMOV (1 << 15)
1063
/* ... */
1064
#define CPUID_MMX  (1 << 23)
1065
#define CPUID_FXSR (1 << 24)
1066
#define CPUID_SSE  (1 << 25)
1067
#define CPUID_SSE2 (1 << 26)
1068

    
1069
void helper_cpuid(void)
1070
{
1071
    if (EAX == 0) {
1072
        EAX = 1; /* max EAX index supported */
1073
        EBX = 0x756e6547;
1074
        ECX = 0x6c65746e;
1075
        EDX = 0x49656e69;
1076
    } else {
1077
        /* EAX = 1 info */
1078
        EAX = 0x52b;
1079
        EBX = 0;
1080
        ECX = 0;
1081
        EDX = CPUID_FP87 | CPUID_DE | CPUID_PSE |
1082
            CPUID_TSC | CPUID_MSR | CPUID_MCE |
1083
            CPUID_CX8;
1084
    }
1085
}
1086

    
1087
void OPPROTO op_cpuid(void)
1088
{
1089
    helper_cpuid();
1090
}
1091

    
1092
/* bcd */
1093

    
1094
/* XXX: exception */
1095
void OPPROTO op_aam(void)
1096
{
1097
    int base = PARAM1;
1098
    int al, ah;
1099
    al = EAX & 0xff;
1100
    ah = al / base;
1101
    al = al % base;
1102
    EAX = (EAX & ~0xffff) | al | (ah << 8);
1103
    CC_DST = al;
1104
}
1105

    
1106
void OPPROTO op_aad(void)
1107
{
1108
    int base = PARAM1;
1109
    int al, ah;
1110
    al = EAX & 0xff;
1111
    ah = (EAX >> 8) & 0xff;
1112
    al = ((ah * base) + al) & 0xff;
1113
    EAX = (EAX & ~0xffff) | al;
1114
    CC_DST = al;
1115
}
1116

    
1117
void OPPROTO op_aaa(void)
1118
{
1119
    int icarry;
1120
    int al, ah, af;
1121
    int eflags;
1122

    
1123
    eflags = cc_table[CC_OP].compute_all();
1124
    af = eflags & CC_A;
1125
    al = EAX & 0xff;
1126
    ah = (EAX >> 8) & 0xff;
1127

    
1128
    icarry = (al > 0xf9);
1129
    if (((al & 0x0f) > 9 ) || af) {
1130
        al = (al + 6) & 0x0f;
1131
        ah = (ah + 1 + icarry) & 0xff;
1132
        eflags |= CC_C | CC_A;
1133
    } else {
1134
        eflags &= ~(CC_C | CC_A);
1135
        al &= 0x0f;
1136
    }
1137
    EAX = (EAX & ~0xffff) | al | (ah << 8);
1138
    CC_SRC = eflags;
1139
}
1140

    
1141
void OPPROTO op_aas(void)
1142
{
1143
    int icarry;
1144
    int al, ah, af;
1145
    int eflags;
1146

    
1147
    eflags = cc_table[CC_OP].compute_all();
1148
    af = eflags & CC_A;
1149
    al = EAX & 0xff;
1150
    ah = (EAX >> 8) & 0xff;
1151

    
1152
    icarry = (al < 6);
1153
    if (((al & 0x0f) > 9 ) || af) {
1154
        al = (al - 6) & 0x0f;
1155
        ah = (ah - 1 - icarry) & 0xff;
1156
        eflags |= CC_C | CC_A;
1157
    } else {
1158
        eflags &= ~(CC_C | CC_A);
1159
        al &= 0x0f;
1160
    }
1161
    EAX = (EAX & ~0xffff) | al | (ah << 8);
1162
    CC_SRC = eflags;
1163
}
1164

    
1165
void OPPROTO op_daa(void)
1166
{
1167
    int al, af, cf;
1168
    int eflags;
1169

    
1170
    eflags = cc_table[CC_OP].compute_all();
1171
    cf = eflags & CC_C;
1172
    af = eflags & CC_A;
1173
    al = EAX & 0xff;
1174

    
1175
    eflags = 0;
1176
    if (((al & 0x0f) > 9 ) || af) {
1177
        al = (al + 6) & 0xff;
1178
        eflags |= CC_A;
1179
    }
1180
    if ((al > 0x9f) || cf) {
1181
        al = (al + 0x60) & 0xff;
1182
        eflags |= CC_C;
1183
    }
1184
    EAX = (EAX & ~0xff) | al;
1185
    /* well, speed is not an issue here, so we compute the flags by hand */
1186
    eflags |= (al == 0) << 6; /* zf */
1187
    eflags |= parity_table[al]; /* pf */
1188
    eflags |= (al & 0x80); /* sf */
1189
    CC_SRC = eflags;
1190
}
1191

    
1192
void OPPROTO op_das(void)
1193
{
1194
    int al, al1, af, cf;
1195
    int eflags;
1196

    
1197
    eflags = cc_table[CC_OP].compute_all();
1198
    cf = eflags & CC_C;
1199
    af = eflags & CC_A;
1200
    al = EAX & 0xff;
1201

    
1202
    eflags = 0;
1203
    al1 = al;
1204
    if (((al & 0x0f) > 9 ) || af) {
1205
        eflags |= CC_A;
1206
        if (al < 6 || cf)
1207
            eflags |= CC_C;
1208
        al = (al - 6) & 0xff;
1209
    }
1210
    if ((al1 > 0x99) || cf) {
1211
        al = (al - 0x60) & 0xff;
1212
        eflags |= CC_C;
1213
    }
1214
    EAX = (EAX & ~0xff) | al;
1215
    /* well, speed is not an issue here, so we compute the flags by hand */
1216
    eflags |= (al == 0) << 6; /* zf */
1217
    eflags |= parity_table[al]; /* pf */
1218
    eflags |= (al & 0x80); /* sf */
1219
    CC_SRC = eflags;
1220
}
1221

    
1222
/* segment handling */
1223

    
1224
/* only works if protected mode and not VM86 */
1225
void load_seg(int seg_reg, int selector, unsigned cur_eip)
1226
{
1227
    SegmentCache *sc;
1228
    SegmentDescriptorTable *dt;
1229
    int index;
1230
    uint32_t e1, e2;
1231
    uint8_t *ptr;
1232

    
1233
    sc = &env->seg_cache[seg_reg];
1234
    if ((selector & 0xfffc) == 0) {
1235
        /* null selector case */
1236
        if (seg_reg == R_SS) {
1237
            EIP = cur_eip;
1238
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
1239
        } else {
1240
            /* XXX: each access should trigger an exception */
1241
            sc->base = NULL;
1242
            sc->limit = 0;
1243
            sc->seg_32bit = 1;
1244
        }
1245
    } else {
1246
        if (selector & 0x4)
1247
            dt = &env->ldt;
1248
        else
1249
            dt = &env->gdt;
1250
        index = selector & ~7;
1251
        if ((index + 7) > dt->limit) {
1252
            EIP = cur_eip;
1253
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
1254
        }
1255
        ptr = dt->base + index;
1256
        e1 = ldl(ptr);
1257
        e2 = ldl(ptr + 4);
1258
        if (!(e2 & DESC_S_MASK) ||
1259
            (e2 & (DESC_CS_MASK | DESC_R_MASK)) == DESC_CS_MASK) {
1260
            EIP = cur_eip;
1261
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
1262
        }
1263

    
1264
        if (seg_reg == R_SS) {
1265
            if ((e2 & (DESC_CS_MASK | DESC_W_MASK)) == 0) {
1266
                EIP = cur_eip;
1267
                raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
1268
            }
1269
        } else {
1270
            if ((e2 & (DESC_CS_MASK | DESC_R_MASK)) == DESC_CS_MASK) {
1271
                EIP = cur_eip;
1272
                raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
1273
            }
1274
        }
1275

    
1276
        if (!(e2 & DESC_P_MASK)) {
1277
            EIP = cur_eip;
1278
            if (seg_reg == R_SS)
1279
                raise_exception_err(EXCP0C_STACK, selector & 0xfffc);
1280
            else
1281
                raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
1282
        }
1283
        
1284
        sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1285
        sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1286
        if (e2 & (1 << 23))
1287
            sc->limit = (sc->limit << 12) | 0xfff;
1288
        sc->seg_32bit = (e2 >> 22) & 1;
1289
#if 0
1290
        fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n", 
1291
                selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
1292
#endif
1293
    }
1294
    env->segs[seg_reg] = selector;
1295
}
1296

    
1297
void OPPROTO op_movl_seg_T0(void)
1298
{
1299
    load_seg(PARAM1, T0 & 0xffff, PARAM2);
1300
}
1301

    
1302
/* faster VM86 version */
1303
void OPPROTO op_movl_seg_T0_vm(void)
1304
{
1305
    int selector;
1306
    
1307
    selector = T0 & 0xffff;
1308
    /* env->segs[] access */
1309
    *(uint32_t *)((char *)env + PARAM1) = selector;
1310
    /* env->seg_cache[] access */
1311
    ((SegmentCache *)((char *)env + PARAM2))->base = (void *)(selector << 4);
1312
}
1313

    
1314
void OPPROTO op_movl_T0_seg(void)
1315
{
1316
    T0 = env->segs[PARAM1];
1317
}
1318

    
1319
void OPPROTO op_movl_A0_seg(void)
1320
{
1321
    A0 = *(unsigned long *)((char *)env + PARAM1);
1322
}
1323

    
1324
void OPPROTO op_addl_A0_seg(void)
1325
{
1326
    A0 += *(unsigned long *)((char *)env + PARAM1);
1327
}
1328

    
1329
void helper_lsl(void)
1330
{
1331
    unsigned int selector, limit;
1332
    SegmentDescriptorTable *dt;
1333
    int index;
1334
    uint32_t e1, e2;
1335
    uint8_t *ptr;
1336

    
1337
    CC_SRC = cc_table[CC_OP].compute_all() & ~CC_Z;
1338
    selector = T0 & 0xffff;
1339
    if (selector & 0x4)
1340
        dt = &env->ldt;
1341
    else
1342
        dt = &env->gdt;
1343
    index = selector & ~7;
1344
    if ((index + 7) > dt->limit)
1345
        return;
1346
    ptr = dt->base + index;
1347
    e1 = ldl(ptr);
1348
    e2 = ldl(ptr + 4);
1349
    limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1350
    if (e2 & (1 << 23))
1351
        limit = (limit << 12) | 0xfff;
1352
    T1 = limit;
1353
    CC_SRC |= CC_Z;
1354
}
1355

    
1356
void OPPROTO op_lsl(void)
1357
{
1358
    helper_lsl();
1359
}
1360

    
1361
void helper_lar(void)
1362
{
1363
    unsigned int selector;
1364
    SegmentDescriptorTable *dt;
1365
    int index;
1366
    uint32_t e2;
1367
    uint8_t *ptr;
1368

    
1369
    CC_SRC = cc_table[CC_OP].compute_all() & ~CC_Z;
1370
    selector = T0 & 0xffff;
1371
    if (selector & 0x4)
1372
        dt = &env->ldt;
1373
    else
1374
        dt = &env->gdt;
1375
    index = selector & ~7;
1376
    if ((index + 7) > dt->limit)
1377
        return;
1378
    ptr = dt->base + index;
1379
    e2 = ldl(ptr + 4);
1380
    T1 = e2 & 0x00f0ff00;
1381
    CC_SRC |= CC_Z;
1382
}
1383

    
1384
void OPPROTO op_lar(void)
1385
{
1386
    helper_lar();
1387
}
1388

    
1389
/* flags handling */
1390

    
1391
/* slow jumps cases : in order to avoid calling a function with a
1392
   pointer (which can generate a stack frame on PowerPC), we use
1393
   op_setcc to set T0 and then call op_jcc. */
1394
void OPPROTO op_jcc(void)
1395
{
1396
    if (T0)
1397
        JUMP_TB(PARAM1, 0, PARAM2);
1398
    else
1399
        JUMP_TB(PARAM1, 1, PARAM3);
1400
    FORCE_RET();
1401
}
1402

    
1403
/* slow set cases (compute x86 flags) */
1404
void OPPROTO op_seto_T0_cc(void)
1405
{
1406
    int eflags;
1407
    eflags = cc_table[CC_OP].compute_all();
1408
    T0 = (eflags >> 11) & 1;
1409
}
1410

    
1411
void OPPROTO op_setb_T0_cc(void)
1412
{
1413
    T0 = cc_table[CC_OP].compute_c();
1414
}
1415

    
1416
void OPPROTO op_setz_T0_cc(void)
1417
{
1418
    int eflags;
1419
    eflags = cc_table[CC_OP].compute_all();
1420
    T0 = (eflags >> 6) & 1;
1421
}
1422

    
1423
void OPPROTO op_setbe_T0_cc(void)
1424
{
1425
    int eflags;
1426
    eflags = cc_table[CC_OP].compute_all();
1427
    T0 = (eflags & (CC_Z | CC_C)) != 0;
1428
}
1429

    
1430
void OPPROTO op_sets_T0_cc(void)
1431
{
1432
    int eflags;
1433
    eflags = cc_table[CC_OP].compute_all();
1434
    T0 = (eflags >> 7) & 1;
1435
}
1436

    
1437
void OPPROTO op_setp_T0_cc(void)
1438
{
1439
    int eflags;
1440
    eflags = cc_table[CC_OP].compute_all();
1441
    T0 = (eflags >> 2) & 1;
1442
}
1443

    
1444
void OPPROTO op_setl_T0_cc(void)
1445
{
1446
    int eflags;
1447
    eflags = cc_table[CC_OP].compute_all();
1448
    T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1449
}
1450

    
1451
void OPPROTO op_setle_T0_cc(void)
1452
{
1453
    int eflags;
1454
    eflags = cc_table[CC_OP].compute_all();
1455
    T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1456
}
1457

    
1458
void OPPROTO op_xor_T0_1(void)
1459
{
1460
    T0 ^= 1;
1461
}
1462

    
1463
void OPPROTO op_set_cc_op(void)
1464
{
1465
    CC_OP = PARAM1;
1466
}
1467

    
1468
#define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
1469
#define FL_UPDATE_MASK16 (TF_MASK)
1470

    
1471
void OPPROTO op_movl_eflags_T0(void)
1472
{
1473
    int eflags;
1474
    eflags = T0;
1475
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1476
    DF = 1 - (2 * ((eflags >> 10) & 1));
1477
    /* we also update some system flags as in user mode */
1478
    env->eflags = (env->eflags & ~FL_UPDATE_MASK32) | (eflags & FL_UPDATE_MASK32);
1479
}
1480

    
1481
void OPPROTO op_movw_eflags_T0(void)
1482
{
1483
    int eflags;
1484
    eflags = T0;
1485
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1486
    DF = 1 - (2 * ((eflags >> 10) & 1));
1487
    /* we also update some system flags as in user mode */
1488
    env->eflags = (env->eflags & ~FL_UPDATE_MASK16) | (eflags & FL_UPDATE_MASK16);
1489
}
1490

    
1491
#if 0
1492
/* vm86plus version */
1493
void OPPROTO op_movw_eflags_T0_vm(void)
1494
{
1495
    int eflags;
1496
    eflags = T0;
1497
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1498
    DF = 1 - (2 * ((eflags >> 10) & 1));
1499
    /* we also update some system flags as in user mode */
1500
    env->eflags = (env->eflags & ~(FL_UPDATE_MASK16 | VIF_MASK)) |
1501
        (eflags & FL_UPDATE_MASK16);
1502
    if (eflags & IF_MASK) {
1503
        env->eflags |= VIF_MASK;
1504
        if (env->eflags & VIP_MASK) {
1505
            EIP = PARAM1;
1506
            raise_exception(EXCP0D_GPF);
1507
        }
1508
    }
1509
    FORCE_RET();
1510
}
1511

1512
void OPPROTO op_movl_eflags_T0_vm(void)
1513
{
1514
    int eflags;
1515
    eflags = T0;
1516
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1517
    DF = 1 - (2 * ((eflags >> 10) & 1));
1518
    /* we also update some system flags as in user mode */
1519
    env->eflags = (env->eflags & ~(FL_UPDATE_MASK32 | VIF_MASK)) |
1520
        (eflags & FL_UPDATE_MASK32);
1521
    if (eflags & IF_MASK) {
1522
        env->eflags |= VIF_MASK;
1523
        if (env->eflags & VIP_MASK) {
1524
            EIP = PARAM1;
1525
            raise_exception(EXCP0D_GPF);
1526
        }
1527
    }
1528
    FORCE_RET();
1529
}
1530
#endif
1531

    
1532
/* XXX: compute only O flag */
1533
void OPPROTO op_movb_eflags_T0(void)
1534
{
1535
    int of;
1536
    of = cc_table[CC_OP].compute_all() & CC_O;
1537
    CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
1538
}
1539

    
1540
void OPPROTO op_movl_T0_eflags(void)
1541
{
1542
    int eflags;
1543
    eflags = cc_table[CC_OP].compute_all();
1544
    eflags |= (DF & DF_MASK);
1545
    eflags |= env->eflags & ~(VM_MASK | RF_MASK);
1546
    T0 = eflags;
1547
}
1548

    
1549
/* vm86plus version */
1550
#if 0
1551
void OPPROTO op_movl_T0_eflags_vm(void)
1552
{
1553
    int eflags;
1554
    eflags = cc_table[CC_OP].compute_all();
1555
    eflags |= (DF & DF_MASK);
1556
    eflags |= env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
1557
    if (env->eflags & VIF_MASK)
1558
        eflags |= IF_MASK;
1559
    T0 = eflags;
1560
}
1561
#endif
1562

    
1563
void OPPROTO op_cld(void)
1564
{
1565
    DF = 1;
1566
}
1567

    
1568
void OPPROTO op_std(void)
1569
{
1570
    DF = -1;
1571
}
1572

    
1573
void OPPROTO op_clc(void)
1574
{
1575
    int eflags;
1576
    eflags = cc_table[CC_OP].compute_all();
1577
    eflags &= ~CC_C;
1578
    CC_SRC = eflags;
1579
}
1580

    
1581
void OPPROTO op_stc(void)
1582
{
1583
    int eflags;
1584
    eflags = cc_table[CC_OP].compute_all();
1585
    eflags |= CC_C;
1586
    CC_SRC = eflags;
1587
}
1588

    
1589
void OPPROTO op_cmc(void)
1590
{
1591
    int eflags;
1592
    eflags = cc_table[CC_OP].compute_all();
1593
    eflags ^= CC_C;
1594
    CC_SRC = eflags;
1595
}
1596

    
1597
void OPPROTO op_salc(void)
1598
{
1599
    int cf;
1600
    cf = cc_table[CC_OP].compute_c();
1601
    EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1602
}
1603

    
1604
static int compute_all_eflags(void)
1605
{
1606
    return CC_SRC;
1607
}
1608

    
1609
static int compute_c_eflags(void)
1610
{
1611
    return CC_SRC & CC_C;
1612
}
1613

    
1614
static int compute_c_mul(void)
1615
{
1616
    int cf;
1617
    cf = (CC_SRC != 0);
1618
    return cf;
1619
}
1620

    
1621
static int compute_all_mul(void)
1622
{
1623
    int cf, pf, af, zf, sf, of;
1624
    cf = (CC_SRC != 0);
1625
    pf = 0; /* undefined */
1626
    af = 0; /* undefined */
1627
    zf = 0; /* undefined */
1628
    sf = 0; /* undefined */
1629
    of = cf << 11;
1630
    return cf | pf | af | zf | sf | of;
1631
}
1632
    
1633
CCTable cc_table[CC_OP_NB] = {
1634
    [CC_OP_DYNAMIC] = { /* should never happen */ },
1635

    
1636
    [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1637

    
1638
    [CC_OP_MUL] = { compute_all_mul, compute_c_mul },
1639

    
1640
    [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1641
    [CC_OP_ADDW] = { compute_all_addw, compute_c_addw  },
1642
    [CC_OP_ADDL] = { compute_all_addl, compute_c_addl  },
1643

    
1644
    [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1645
    [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw  },
1646
    [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl  },
1647

    
1648
    [CC_OP_SUBB] = { compute_all_subb, compute_c_subb  },
1649
    [CC_OP_SUBW] = { compute_all_subw, compute_c_subw  },
1650
    [CC_OP_SUBL] = { compute_all_subl, compute_c_subl  },
1651
    
1652
    [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb  },
1653
    [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw  },
1654
    [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl  },
1655
    
1656
    [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1657
    [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1658
    [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1659
    
1660
    [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1661
    [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1662
    [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1663
    
1664
    [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1665
    [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1666
    [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1667
    
1668
    [CC_OP_SHLB] = { compute_all_shlb, compute_c_shlb },
1669
    [CC_OP_SHLW] = { compute_all_shlw, compute_c_shlw },
1670
    [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1671

    
1672
    [CC_OP_SARB] = { compute_all_sarb, compute_c_sarl },
1673
    [CC_OP_SARW] = { compute_all_sarw, compute_c_sarl },
1674
    [CC_OP_SARL] = { compute_all_sarl, compute_c_sarl },
1675
};
1676

    
1677
/* floating point support. Some of the code for complicated x87
1678
   functions comes from the LGPL'ed x86 emulator found in the Willows
1679
   TWIN windows emulator. */
1680

    
1681
#ifdef USE_X86LDOUBLE
1682
/* use long double functions */
1683
#define lrint lrintl
1684
#define llrint llrintl
1685
#define fabs fabsl
1686
#define sin sinl
1687
#define cos cosl
1688
#define sqrt sqrtl
1689
#define pow powl
1690
#define log logl
1691
#define tan tanl
1692
#define atan2 atan2l
1693
#define floor floorl
1694
#define ceil ceill
1695
#define rint rintl
1696
#endif
1697

    
1698
extern int lrint(CPU86_LDouble x);
1699
extern int64_t llrint(CPU86_LDouble x);
1700
extern CPU86_LDouble fabs(CPU86_LDouble x);
1701
extern CPU86_LDouble sin(CPU86_LDouble x);
1702
extern CPU86_LDouble cos(CPU86_LDouble x);
1703
extern CPU86_LDouble sqrt(CPU86_LDouble x);
1704
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
1705
extern CPU86_LDouble log(CPU86_LDouble x);
1706
extern CPU86_LDouble tan(CPU86_LDouble x);
1707
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
1708
extern CPU86_LDouble floor(CPU86_LDouble x);
1709
extern CPU86_LDouble ceil(CPU86_LDouble x);
1710
extern CPU86_LDouble rint(CPU86_LDouble x);
1711

    
1712
#if defined(__powerpc__)
1713
extern CPU86_LDouble copysign(CPU86_LDouble, CPU86_LDouble);
1714

    
1715
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
1716
double qemu_rint(double x)
1717
{
1718
    double y = 4503599627370496.0;
1719
    if (fabs(x) >= y)
1720
        return x;
1721
    if (x < 0) 
1722
        y = -y;
1723
    y = (x + y) - y;
1724
    if (y == 0.0)
1725
        y = copysign(y, x);
1726
    return y;
1727
}
1728

    
1729
#define rint qemu_rint
1730
#endif
1731

    
1732
#define RC_MASK         0xc00
1733
#define RC_NEAR                0x000
1734
#define RC_DOWN                0x400
1735
#define RC_UP                0x800
1736
#define RC_CHOP                0xc00
1737

    
1738
#define MAXTAN 9223372036854775808.0
1739

    
1740
#ifdef USE_X86LDOUBLE
1741

    
1742
/* only for x86 */
1743
typedef union {
1744
    long double d;
1745
    struct {
1746
        unsigned long long lower;
1747
        unsigned short upper;
1748
    } l;
1749
} CPU86_LDoubleU;
1750

    
1751
/* the following deal with x86 long double-precision numbers */
1752
#define MAXEXPD 0x7fff
1753
#define EXPBIAS 16383
1754
#define EXPD(fp)        (fp.l.upper & 0x7fff)
1755
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
1756
#define MANTD(fp)       (fp.l.lower)
1757
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
1758

    
1759
#else
1760

    
1761
typedef union {
1762
    double d;
1763
#ifndef WORDS_BIGENDIAN
1764
    struct {
1765
        unsigned long lower;
1766
        long upper;
1767
    } l;
1768
#else
1769
    struct {
1770
        long upper;
1771
        unsigned long lower;
1772
    } l;
1773
#endif
1774
    long long ll;
1775
} CPU86_LDoubleU;
1776

    
1777
/* the following deal with IEEE double-precision numbers */
1778
#define MAXEXPD 0x7ff
1779
#define EXPBIAS 1023
1780
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
1781
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
1782
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
1783
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
1784
#endif
1785

    
1786
/* fp load FT0 */
1787

    
1788
void OPPROTO op_flds_FT0_A0(void)
1789
{
1790
#ifdef USE_FP_CONVERT
1791
    FP_CONVERT.i32 = ldl((void *)A0);
1792
    FT0 = FP_CONVERT.f;
1793
#else
1794
    FT0 = ldfl((void *)A0);
1795
#endif
1796
}
1797

    
1798
void OPPROTO op_fldl_FT0_A0(void)
1799
{
1800
#ifdef USE_FP_CONVERT
1801
    FP_CONVERT.i64 = ldq((void *)A0);
1802
    FT0 = FP_CONVERT.d;
1803
#else
1804
    FT0 = ldfq((void *)A0);
1805
#endif
1806
}
1807

    
1808
/* helpers are needed to avoid static constant reference. XXX: find a better way */
1809
#ifdef USE_INT_TO_FLOAT_HELPERS
1810

    
1811
void helper_fild_FT0_A0(void)
1812
{
1813
    FT0 = (CPU86_LDouble)ldsw((void *)A0);
1814
}
1815

    
1816
void helper_fildl_FT0_A0(void)
1817
{
1818
    FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1819
}
1820

    
1821
void helper_fildll_FT0_A0(void)
1822
{
1823
    FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1824
}
1825

    
1826
void OPPROTO op_fild_FT0_A0(void)
1827
{
1828
    helper_fild_FT0_A0();
1829
}
1830

    
1831
void OPPROTO op_fildl_FT0_A0(void)
1832
{
1833
    helper_fildl_FT0_A0();
1834
}
1835

    
1836
void OPPROTO op_fildll_FT0_A0(void)
1837
{
1838
    helper_fildll_FT0_A0();
1839
}
1840

    
1841
#else
1842

    
1843
void OPPROTO op_fild_FT0_A0(void)
1844
{
1845
#ifdef USE_FP_CONVERT
1846
    FP_CONVERT.i32 = ldsw((void *)A0);
1847
    FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1848
#else
1849
    FT0 = (CPU86_LDouble)ldsw((void *)A0);
1850
#endif
1851
}
1852

    
1853
void OPPROTO op_fildl_FT0_A0(void)
1854
{
1855
#ifdef USE_FP_CONVERT
1856
    FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1857
    FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1858
#else
1859
    FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1860
#endif
1861
}
1862

    
1863
void OPPROTO op_fildll_FT0_A0(void)
1864
{
1865
#ifdef USE_FP_CONVERT
1866
    FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1867
    FT0 = (CPU86_LDouble)FP_CONVERT.i64;
1868
#else
1869
    FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1870
#endif
1871
}
1872
#endif
1873

    
1874
/* fp load ST0 */
1875

    
1876
void OPPROTO op_flds_ST0_A0(void)
1877
{
1878
#ifdef USE_FP_CONVERT
1879
    FP_CONVERT.i32 = ldl((void *)A0);
1880
    ST0 = FP_CONVERT.f;
1881
#else
1882
    ST0 = ldfl((void *)A0);
1883
#endif
1884
}
1885

    
1886
void OPPROTO op_fldl_ST0_A0(void)
1887
{
1888
#ifdef USE_FP_CONVERT
1889
    FP_CONVERT.i64 = ldq((void *)A0);
1890
    ST0 = FP_CONVERT.d;
1891
#else
1892
    ST0 = ldfq((void *)A0);
1893
#endif
1894
}
1895

    
1896
#ifdef USE_X86LDOUBLE
1897
void OPPROTO op_fldt_ST0_A0(void)
1898
{
1899
    ST0 = *(long double *)A0;
1900
}
1901
#else
1902
void helper_fldt_ST0_A0(void)
1903
{
1904
    CPU86_LDoubleU temp;
1905
    int upper, e;
1906
    /* mantissa */
1907
    upper = lduw((uint8_t *)A0 + 8);
1908
    /* XXX: handle overflow ? */
1909
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
1910
    e |= (upper >> 4) & 0x800; /* sign */
1911
    temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
1912
    ST0 = temp.d;
1913
}
1914

    
1915
void OPPROTO op_fldt_ST0_A0(void)
1916
{
1917
    helper_fldt_ST0_A0();
1918
}
1919
#endif
1920

    
1921
/* helpers are needed to avoid static constant reference. XXX: find a better way */
1922
#ifdef USE_INT_TO_FLOAT_HELPERS
1923

    
1924
void helper_fild_ST0_A0(void)
1925
{
1926
    ST0 = (CPU86_LDouble)ldsw((void *)A0);
1927
}
1928

    
1929
void helper_fildl_ST0_A0(void)
1930
{
1931
    ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1932
}
1933

    
1934
void helper_fildll_ST0_A0(void)
1935
{
1936
    ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1937
}
1938

    
1939
void OPPROTO op_fild_ST0_A0(void)
1940
{
1941
    helper_fild_ST0_A0();
1942
}
1943

    
1944
void OPPROTO op_fildl_ST0_A0(void)
1945
{
1946
    helper_fildl_ST0_A0();
1947
}
1948

    
1949
void OPPROTO op_fildll_ST0_A0(void)
1950
{
1951
    helper_fildll_ST0_A0();
1952
}
1953

    
1954
#else
1955

    
1956
void OPPROTO op_fild_ST0_A0(void)
1957
{
1958
#ifdef USE_FP_CONVERT
1959
    FP_CONVERT.i32 = ldsw((void *)A0);
1960
    ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1961
#else
1962
    ST0 = (CPU86_LDouble)ldsw((void *)A0);
1963
#endif
1964
}
1965

    
1966
void OPPROTO op_fildl_ST0_A0(void)
1967
{
1968
#ifdef USE_FP_CONVERT
1969
    FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1970
    ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1971
#else
1972
    ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1973
#endif
1974
}
1975

    
1976
void OPPROTO op_fildll_ST0_A0(void)
1977
{
1978
#ifdef USE_FP_CONVERT
1979
    FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1980
    ST0 = (CPU86_LDouble)FP_CONVERT.i64;
1981
#else
1982
    ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1983
#endif
1984
}
1985

    
1986
#endif
1987

    
1988
/* fp store */
1989

    
1990
void OPPROTO op_fsts_ST0_A0(void)
1991
{
1992
#ifdef USE_FP_CONVERT
1993
    FP_CONVERT.d = ST0;
1994
    stfl((void *)A0, FP_CONVERT.f);
1995
#else
1996
    stfl((void *)A0, (float)ST0);
1997
#endif
1998
}
1999

    
2000
void OPPROTO op_fstl_ST0_A0(void)
2001
{
2002
    stfq((void *)A0, (double)ST0);
2003
}
2004

    
2005
#ifdef USE_X86LDOUBLE
2006
void OPPROTO op_fstt_ST0_A0(void)
2007
{
2008
    *(long double *)A0 = ST0;
2009
}
2010
#else
2011
void helper_fstt_ST0_A0(void)
2012
{
2013
    CPU86_LDoubleU temp;
2014
    int e;
2015
    temp.d = ST0;
2016
    /* mantissa */
2017
    stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
2018
    /* exponent + sign */
2019
    e = EXPD(temp) - EXPBIAS + 16383;
2020
    e |= SIGND(temp) >> 16;
2021
    stw((uint8_t *)A0 + 8, e);
2022
}
2023

    
2024
void OPPROTO op_fstt_ST0_A0(void)
2025
{
2026
    helper_fstt_ST0_A0();
2027
}
2028
#endif
2029

    
2030
void OPPROTO op_fist_ST0_A0(void)
2031
{
2032
#if defined(__sparc__) && !defined(__sparc_v9__)
2033
    register CPU86_LDouble d asm("o0");
2034
#else
2035
    CPU86_LDouble d;
2036
#endif
2037
    int val;
2038

    
2039
    d = ST0;
2040
    val = lrint(d);
2041
    stw((void *)A0, val);
2042
}
2043

    
2044
void OPPROTO op_fistl_ST0_A0(void)
2045
{
2046
#if defined(__sparc__) && !defined(__sparc_v9__)
2047
    register CPU86_LDouble d asm("o0");
2048
#else
2049
    CPU86_LDouble d;
2050
#endif
2051
    int val;
2052

    
2053
    d = ST0;
2054
    val = lrint(d);
2055
    stl((void *)A0, val);
2056
}
2057

    
2058
void OPPROTO op_fistll_ST0_A0(void)
2059
{
2060
#if defined(__sparc__) && !defined(__sparc_v9__)
2061
    register CPU86_LDouble d asm("o0");
2062
#else
2063
    CPU86_LDouble d;
2064
#endif
2065
    int64_t val;
2066

    
2067
    d = ST0;
2068
    val = llrint(d);
2069
    stq((void *)A0, val);
2070
}
2071

    
2072
/* BCD ops */
2073

    
2074
#define MUL10(iv) ( iv + iv + (iv << 3) )
2075

    
2076
void helper_fbld_ST0_A0(void)
2077
{
2078
    uint8_t *seg;
2079
    CPU86_LDouble fpsrcop;
2080
    int m32i;
2081
    unsigned int v;
2082

    
2083
    /* in this code, seg/m32i will be used as temporary ptr/int */
2084
    seg = (uint8_t *)A0 + 8;
2085
    v = ldub(seg--);
2086
    /* XXX: raise exception */
2087
    if (v != 0)
2088
        return;
2089
    v = ldub(seg--);
2090
    /* XXX: raise exception */
2091
    if ((v & 0xf0) != 0)
2092
        return;
2093
    m32i = v;  /* <-- d14 */
2094
    v = ldub(seg--);
2095
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d13 */
2096
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
2097
    v = ldub(seg--);
2098
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d11 */
2099
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
2100
    v = ldub(seg--);
2101
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d9 */
2102
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
2103
    fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
2104

    
2105
    v = ldub(seg--);
2106
    m32i = (v >> 4);  /* <-- d7 */
2107
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
2108
    v = ldub(seg--);
2109
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d5 */
2110
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
2111
    v = ldub(seg--);
2112
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d3 */
2113
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
2114
    v = ldub(seg);
2115
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d1 */
2116
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
2117
    fpsrcop += ((CPU86_LDouble)m32i);
2118
    if ( ldub(seg+9) & 0x80 )
2119
        fpsrcop = -fpsrcop;
2120
    ST0 = fpsrcop;
2121
}
2122

    
2123
void OPPROTO op_fbld_ST0_A0(void)
2124
{
2125
    helper_fbld_ST0_A0();
2126
}
2127

    
2128
void helper_fbst_ST0_A0(void)
2129
{
2130
    CPU86_LDouble fptemp;
2131
    CPU86_LDouble fpsrcop;
2132
    int v;
2133
    uint8_t *mem_ref, *mem_end;
2134

    
2135
    fpsrcop = rint(ST0);
2136
    mem_ref = (uint8_t *)A0;
2137
    mem_end = mem_ref + 8;
2138
    if ( fpsrcop < 0.0 ) {
2139
        stw(mem_end, 0x8000);
2140
        fpsrcop = -fpsrcop;
2141
    } else {
2142
        stw(mem_end, 0x0000);
2143
    }
2144
    while (mem_ref < mem_end) {
2145
        if (fpsrcop == 0.0)
2146
            break;
2147
        fptemp = floor(fpsrcop/10.0);
2148
        v = ((int)(fpsrcop - fptemp*10.0));
2149
        if  (fptemp == 0.0)  { 
2150
            stb(mem_ref++, v); 
2151
            break; 
2152
        }
2153
        fpsrcop = fptemp;
2154
        fptemp = floor(fpsrcop/10.0);
2155
        v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
2156
        stb(mem_ref++, v);
2157
        fpsrcop = fptemp;
2158
    }
2159
    while (mem_ref < mem_end) {
2160
        stb(mem_ref++, 0);
2161
    }
2162
}
2163

    
2164
void OPPROTO op_fbst_ST0_A0(void)
2165
{
2166
    helper_fbst_ST0_A0();
2167
}
2168

    
2169
/* FPU move */
2170

    
2171
static inline void fpush(void)
2172
{
2173
    env->fpstt = (env->fpstt - 1) & 7;
2174
    env->fptags[env->fpstt] = 0; /* validate stack entry */
2175
}
2176

    
2177
static inline void fpop(void)
2178
{
2179
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
2180
    env->fpstt = (env->fpstt + 1) & 7;
2181
}
2182

    
2183
void OPPROTO op_fpush(void)
2184
{
2185
    fpush();
2186
}
2187

    
2188
void OPPROTO op_fpop(void)
2189
{
2190
    fpop();
2191
}
2192

    
2193
void OPPROTO op_fdecstp(void)
2194
{
2195
    env->fpstt = (env->fpstt - 1) & 7;
2196
    env->fpus &= (~0x4700);
2197
}
2198

    
2199
void OPPROTO op_fincstp(void)
2200
{
2201
    env->fpstt = (env->fpstt + 1) & 7;
2202
    env->fpus &= (~0x4700);
2203
}
2204

    
2205
void OPPROTO op_fmov_ST0_FT0(void)
2206
{
2207
    ST0 = FT0;
2208
}
2209

    
2210
void OPPROTO op_fmov_FT0_STN(void)
2211
{
2212
    FT0 = ST(PARAM1);
2213
}
2214

    
2215
void OPPROTO op_fmov_ST0_STN(void)
2216
{
2217
    ST0 = ST(PARAM1);
2218
}
2219

    
2220
void OPPROTO op_fmov_STN_ST0(void)
2221
{
2222
    ST(PARAM1) = ST0;
2223
}
2224

    
2225
void OPPROTO op_fxchg_ST0_STN(void)
2226
{
2227
    CPU86_LDouble tmp;
2228
    tmp = ST(PARAM1);
2229
    ST(PARAM1) = ST0;
2230
    ST0 = tmp;
2231
}
2232

    
2233
/* FPU operations */
2234

    
2235
/* XXX: handle nans */
2236
void OPPROTO op_fcom_ST0_FT0(void)
2237
{
2238
    env->fpus &= (~0x4500);        /* (C3,C2,C0) <-- 000 */
2239
    if (ST0 < FT0)
2240
        env->fpus |= 0x100;        /* (C3,C2,C0) <-- 001 */
2241
    else if (ST0 == FT0)
2242
        env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2243
    FORCE_RET();
2244
}
2245

    
2246
/* XXX: handle nans */
2247
void OPPROTO op_fucom_ST0_FT0(void)
2248
{
2249
    env->fpus &= (~0x4500);        /* (C3,C2,C0) <-- 000 */
2250
    if (ST0 < FT0)
2251
        env->fpus |= 0x100;        /* (C3,C2,C0) <-- 001 */
2252
    else if (ST0 == FT0)
2253
        env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2254
    FORCE_RET();
2255
}
2256

    
2257
void OPPROTO op_fadd_ST0_FT0(void)
2258
{
2259
    ST0 += FT0;
2260
}
2261

    
2262
void OPPROTO op_fmul_ST0_FT0(void)
2263
{
2264
    ST0 *= FT0;
2265
}
2266

    
2267
void OPPROTO op_fsub_ST0_FT0(void)
2268
{
2269
    ST0 -= FT0;
2270
}
2271

    
2272
void OPPROTO op_fsubr_ST0_FT0(void)
2273
{
2274
    ST0 = FT0 - ST0;
2275
}
2276

    
2277
void OPPROTO op_fdiv_ST0_FT0(void)
2278
{
2279
    ST0 /= FT0;
2280
}
2281

    
2282
void OPPROTO op_fdivr_ST0_FT0(void)
2283
{
2284
    ST0 = FT0 / ST0;
2285
}
2286

    
2287
/* fp operations between STN and ST0 */
2288

    
2289
void OPPROTO op_fadd_STN_ST0(void)
2290
{
2291
    ST(PARAM1) += ST0;
2292
}
2293

    
2294
void OPPROTO op_fmul_STN_ST0(void)
2295
{
2296
    ST(PARAM1) *= ST0;
2297
}
2298

    
2299
void OPPROTO op_fsub_STN_ST0(void)
2300
{
2301
    ST(PARAM1) -= ST0;
2302
}
2303

    
2304
void OPPROTO op_fsubr_STN_ST0(void)
2305
{
2306
    CPU86_LDouble *p;
2307
    p = &ST(PARAM1);
2308
    *p = ST0 - *p;
2309
}
2310

    
2311
void OPPROTO op_fdiv_STN_ST0(void)
2312
{
2313
    ST(PARAM1) /= ST0;
2314
}
2315

    
2316
void OPPROTO op_fdivr_STN_ST0(void)
2317
{
2318
    CPU86_LDouble *p;
2319
    p = &ST(PARAM1);
2320
    *p = ST0 / *p;
2321
}
2322

    
2323
/* misc FPU operations */
2324
void OPPROTO op_fchs_ST0(void)
2325
{
2326
    ST0 = -ST0;
2327
}
2328

    
2329
void OPPROTO op_fabs_ST0(void)
2330
{
2331
    ST0 = fabs(ST0);
2332
}
2333

    
2334
void helper_fxam_ST0(void)
2335
{
2336
    CPU86_LDoubleU temp;
2337
    int expdif;
2338

    
2339
    temp.d = ST0;
2340

    
2341
    env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
2342
    if (SIGND(temp))
2343
        env->fpus |= 0x200; /* C1 <-- 1 */
2344

    
2345
    expdif = EXPD(temp);
2346
    if (expdif == MAXEXPD) {
2347
        if (MANTD(temp) == 0)
2348
            env->fpus |=  0x500 /*Infinity*/;
2349
        else
2350
            env->fpus |=  0x100 /*NaN*/;
2351
    } else if (expdif == 0) {
2352
        if (MANTD(temp) == 0)
2353
            env->fpus |=  0x4000 /*Zero*/;
2354
        else
2355
            env->fpus |= 0x4400 /*Denormal*/;
2356
    } else {
2357
        env->fpus |= 0x400;
2358
    }
2359
}
2360

    
2361
void OPPROTO op_fxam_ST0(void)
2362
{
2363
    helper_fxam_ST0();
2364
}
2365

    
2366
void OPPROTO op_fld1_ST0(void)
2367
{
2368
    ST0 = *(CPU86_LDouble *)&f15rk[1];
2369
}
2370

    
2371
void OPPROTO op_fldl2t_ST0(void)
2372
{
2373
    ST0 = *(CPU86_LDouble *)&f15rk[6];
2374
}
2375

    
2376
void OPPROTO op_fldl2e_ST0(void)
2377
{
2378
    ST0 = *(CPU86_LDouble *)&f15rk[5];
2379
}
2380

    
2381
void OPPROTO op_fldpi_ST0(void)
2382
{
2383
    ST0 = *(CPU86_LDouble *)&f15rk[2];
2384
}
2385

    
2386
void OPPROTO op_fldlg2_ST0(void)
2387
{
2388
    ST0 = *(CPU86_LDouble *)&f15rk[3];
2389
}
2390

    
2391
void OPPROTO op_fldln2_ST0(void)
2392
{
2393
    ST0 = *(CPU86_LDouble *)&f15rk[4];
2394
}
2395

    
2396
void OPPROTO op_fldz_ST0(void)
2397
{
2398
    ST0 = *(CPU86_LDouble *)&f15rk[0];
2399
}
2400

    
2401
void OPPROTO op_fldz_FT0(void)
2402
{
2403
    ST0 = *(CPU86_LDouble *)&f15rk[0];
2404
}
2405

    
2406
void helper_f2xm1(void)
2407
{
2408
    ST0 = pow(2.0,ST0) - 1.0;
2409
}
2410

    
2411
void helper_fyl2x(void)
2412
{
2413
    CPU86_LDouble fptemp;
2414
    
2415
    fptemp = ST0;
2416
    if (fptemp>0.0){
2417
        fptemp = log(fptemp)/log(2.0);         /* log2(ST) */
2418
        ST1 *= fptemp;
2419
        fpop();
2420
    } else { 
2421
        env->fpus &= (~0x4700);
2422
        env->fpus |= 0x400;
2423
    }
2424
}
2425

    
2426
void helper_fptan(void)
2427
{
2428
    CPU86_LDouble fptemp;
2429

    
2430
    fptemp = ST0;
2431
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2432
        env->fpus |= 0x400;
2433
    } else {
2434
        ST0 = tan(fptemp);
2435
        fpush();
2436
        ST0 = 1.0;
2437
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2438
        /* the above code is for  |arg| < 2**52 only */
2439
    }
2440
}
2441

    
2442
void helper_fpatan(void)
2443
{
2444
    CPU86_LDouble fptemp, fpsrcop;
2445

    
2446
    fpsrcop = ST1;
2447
    fptemp = ST0;
2448
    ST1 = atan2(fpsrcop,fptemp);
2449
    fpop();
2450
}
2451

    
2452
void helper_fxtract(void)
2453
{
2454
    CPU86_LDoubleU temp;
2455
    unsigned int expdif;
2456

    
2457
    temp.d = ST0;
2458
    expdif = EXPD(temp) - EXPBIAS;
2459
    /*DP exponent bias*/
2460
    ST0 = expdif;
2461
    fpush();
2462
    BIASEXPONENT(temp);
2463
    ST0 = temp.d;
2464
}
2465

    
2466
void helper_fprem1(void)
2467
{
2468
    CPU86_LDouble dblq, fpsrcop, fptemp;
2469
    CPU86_LDoubleU fpsrcop1, fptemp1;
2470
    int expdif;
2471
    int q;
2472

    
2473
    fpsrcop = ST0;
2474
    fptemp = ST1;
2475
    fpsrcop1.d = fpsrcop;
2476
    fptemp1.d = fptemp;
2477
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2478
    if (expdif < 53) {
2479
        dblq = fpsrcop / fptemp;
2480
        dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2481
        ST0 = fpsrcop - fptemp*dblq;
2482
        q = (int)dblq; /* cutting off top bits is assumed here */
2483
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2484
                                /* (C0,C1,C3) <-- (q2,q1,q0) */
2485
        env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2486
        env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2487
        env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2488
    } else {
2489
        env->fpus |= 0x400;  /* C2 <-- 1 */
2490
        fptemp = pow(2.0, expdif-50);
2491
        fpsrcop = (ST0 / ST1) / fptemp;
2492
        /* fpsrcop = integer obtained by rounding to the nearest */
2493
        fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
2494
            floor(fpsrcop): ceil(fpsrcop);
2495
        ST0 -= (ST1 * fpsrcop * fptemp);
2496
    }
2497
}
2498

    
2499
void helper_fprem(void)
2500
{
2501
    CPU86_LDouble dblq, fpsrcop, fptemp;
2502
    CPU86_LDoubleU fpsrcop1, fptemp1;
2503
    int expdif;
2504
    int q;
2505
    
2506
    fpsrcop = ST0;
2507
    fptemp = ST1;
2508
    fpsrcop1.d = fpsrcop;
2509
    fptemp1.d = fptemp;
2510
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2511
    if ( expdif < 53 ) {
2512
        dblq = fpsrcop / fptemp;
2513
        dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2514
        ST0 = fpsrcop - fptemp*dblq;
2515
        q = (int)dblq; /* cutting off top bits is assumed here */
2516
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2517
                                /* (C0,C1,C3) <-- (q2,q1,q0) */
2518
        env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2519
        env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2520
        env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2521
    } else {
2522
        env->fpus |= 0x400;  /* C2 <-- 1 */
2523
        fptemp = pow(2.0, expdif-50);
2524
        fpsrcop = (ST0 / ST1) / fptemp;
2525
        /* fpsrcop = integer obtained by chopping */
2526
        fpsrcop = (fpsrcop < 0.0)?
2527
            -(floor(fabs(fpsrcop))): floor(fpsrcop);
2528
        ST0 -= (ST1 * fpsrcop * fptemp);
2529
    }
2530
}
2531

    
2532
void helper_fyl2xp1(void)
2533
{
2534
    CPU86_LDouble fptemp;
2535

    
2536
    fptemp = ST0;
2537
    if ((fptemp+1.0)>0.0) {
2538
        fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
2539
        ST1 *= fptemp;
2540
        fpop();
2541
    } else { 
2542
        env->fpus &= (~0x4700);
2543
        env->fpus |= 0x400;
2544
    }
2545
}
2546

    
2547
void helper_fsqrt(void)
2548
{
2549
    CPU86_LDouble fptemp;
2550

    
2551
    fptemp = ST0;
2552
    if (fptemp<0.0) { 
2553
        env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
2554
        env->fpus |= 0x400;
2555
    }
2556
    ST0 = sqrt(fptemp);
2557
}
2558

    
2559
void helper_fsincos(void)
2560
{
2561
    CPU86_LDouble fptemp;
2562

    
2563
    fptemp = ST0;
2564
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2565
        env->fpus |= 0x400;
2566
    } else {
2567
        ST0 = sin(fptemp);
2568
        fpush();
2569
        ST0 = cos(fptemp);
2570
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2571
        /* the above code is for  |arg| < 2**63 only */
2572
    }
2573
}
2574

    
2575
void helper_frndint(void)
2576
{
2577
    ST0 = rint(ST0);
2578
}
2579

    
2580
void helper_fscale(void)
2581
{
2582
    CPU86_LDouble fpsrcop, fptemp;
2583

    
2584
    fpsrcop = 2.0;
2585
    fptemp = pow(fpsrcop,ST1);
2586
    ST0 *= fptemp;
2587
}
2588

    
2589
void helper_fsin(void)
2590
{
2591
    CPU86_LDouble fptemp;
2592

    
2593
    fptemp = ST0;
2594
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2595
        env->fpus |= 0x400;
2596
    } else {
2597
        ST0 = sin(fptemp);
2598
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2599
        /* the above code is for  |arg| < 2**53 only */
2600
    }
2601
}
2602

    
2603
void helper_fcos(void)
2604
{
2605
    CPU86_LDouble fptemp;
2606

    
2607
    fptemp = ST0;
2608
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2609
        env->fpus |= 0x400;
2610
    } else {
2611
        ST0 = cos(fptemp);
2612
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2613
        /* the above code is for  |arg5 < 2**63 only */
2614
    }
2615
}
2616

    
2617
/* associated heplers to reduce generated code length and to simplify
2618
   relocation (FP constants are usually stored in .rodata section) */
2619

    
2620
void OPPROTO op_f2xm1(void)
2621
{
2622
    helper_f2xm1();
2623
}
2624

    
2625
void OPPROTO op_fyl2x(void)
2626
{
2627
    helper_fyl2x();
2628
}
2629

    
2630
void OPPROTO op_fptan(void)
2631
{
2632
    helper_fptan();
2633
}
2634

    
2635
void OPPROTO op_fpatan(void)
2636
{
2637
    helper_fpatan();
2638
}
2639

    
2640
void OPPROTO op_fxtract(void)
2641
{
2642
    helper_fxtract();
2643
}
2644

    
2645
void OPPROTO op_fprem1(void)
2646
{
2647
    helper_fprem1();
2648
}
2649

    
2650

    
2651
void OPPROTO op_fprem(void)
2652
{
2653
    helper_fprem();
2654
}
2655

    
2656
void OPPROTO op_fyl2xp1(void)
2657
{
2658
    helper_fyl2xp1();
2659
}
2660

    
2661
void OPPROTO op_fsqrt(void)
2662
{
2663
    helper_fsqrt();
2664
}
2665

    
2666
void OPPROTO op_fsincos(void)
2667
{
2668
    helper_fsincos();
2669
}
2670

    
2671
void OPPROTO op_frndint(void)
2672
{
2673
    helper_frndint();
2674
}
2675

    
2676
void OPPROTO op_fscale(void)
2677
{
2678
    helper_fscale();
2679
}
2680

    
2681
void OPPROTO op_fsin(void)
2682
{
2683
    helper_fsin();
2684
}
2685

    
2686
void OPPROTO op_fcos(void)
2687
{
2688
    helper_fcos();
2689
}
2690

    
2691
void OPPROTO op_fnstsw_A0(void)
2692
{
2693
    int fpus;
2694
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2695
    stw((void *)A0, fpus);
2696
}
2697

    
2698
void OPPROTO op_fnstsw_EAX(void)
2699
{
2700
    int fpus;
2701
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2702
    EAX = (EAX & 0xffff0000) | fpus;
2703
}
2704

    
2705
void OPPROTO op_fnstcw_A0(void)
2706
{
2707
    stw((void *)A0, env->fpuc);
2708
}
2709

    
2710
void OPPROTO op_fldcw_A0(void)
2711
{
2712
    int rnd_type;
2713
    env->fpuc = lduw((void *)A0);
2714
    /* set rounding mode */
2715
    switch(env->fpuc & RC_MASK) {
2716
    default:
2717
    case RC_NEAR:
2718
        rnd_type = FE_TONEAREST;
2719
        break;
2720
    case RC_DOWN:
2721
        rnd_type = FE_DOWNWARD;
2722
        break;
2723
    case RC_UP:
2724
        rnd_type = FE_UPWARD;
2725
        break;
2726
    case RC_CHOP:
2727
        rnd_type = FE_TOWARDZERO;
2728
        break;
2729
    }
2730
    fesetround(rnd_type);
2731
}
2732

    
2733
void OPPROTO op_fclex(void)
2734
{
2735
    env->fpus &= 0x7f00;
2736
}
2737

    
2738
void OPPROTO op_fninit(void)
2739
{
2740
    env->fpus = 0;
2741
    env->fpstt = 0;
2742
    env->fpuc = 0x37f;
2743
    env->fptags[0] = 1;
2744
    env->fptags[1] = 1;
2745
    env->fptags[2] = 1;
2746
    env->fptags[3] = 1;
2747
    env->fptags[4] = 1;
2748
    env->fptags[5] = 1;
2749
    env->fptags[6] = 1;
2750
    env->fptags[7] = 1;
2751
}
2752

    
2753
/* threading support */
2754
void OPPROTO op_lock(void)
2755
{
2756
    cpu_lock();
2757
}
2758

    
2759
void OPPROTO op_unlock(void)
2760
{
2761
    cpu_unlock();
2762
}