Statistics
| Branch: | Revision:

root / target-arm / cpu.h @ f59df3f2

History | View | Annotate | Download (41.8 kB)

1
/*
2
 * ARM virtual CPU header
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ARM_H
20
#define CPU_ARM_H
21

    
22
#include "config.h"
23

    
24
#include "kvm-consts.h"
25

    
26
#if defined(TARGET_AARCH64)
27
  /* AArch64 definitions */
28
#  define TARGET_LONG_BITS 64
29
#  define ELF_MACHINE EM_AARCH64
30
#else
31
#  define TARGET_LONG_BITS 32
32
#  define ELF_MACHINE EM_ARM
33
#endif
34

    
35
#define CPUArchState struct CPUARMState
36

    
37
#include "qemu-common.h"
38
#include "exec/cpu-defs.h"
39

    
40
#include "fpu/softfloat.h"
41

    
42
#define TARGET_HAS_ICE 1
43

    
44
#define EXCP_UDEF            1   /* undefined instruction */
45
#define EXCP_SWI             2   /* software interrupt */
46
#define EXCP_PREFETCH_ABORT  3
47
#define EXCP_DATA_ABORT      4
48
#define EXCP_IRQ             5
49
#define EXCP_FIQ             6
50
#define EXCP_BKPT            7
51
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53
#define EXCP_STREX          10
54

    
55
#define ARMV7M_EXCP_RESET   1
56
#define ARMV7M_EXCP_NMI     2
57
#define ARMV7M_EXCP_HARD    3
58
#define ARMV7M_EXCP_MEM     4
59
#define ARMV7M_EXCP_BUS     5
60
#define ARMV7M_EXCP_USAGE   6
61
#define ARMV7M_EXCP_SVC     11
62
#define ARMV7M_EXCP_DEBUG   12
63
#define ARMV7M_EXCP_PENDSV  14
64
#define ARMV7M_EXCP_SYSTICK 15
65

    
66
/* ARM-specific interrupt pending bits.  */
67
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
68

    
69
/* The usual mapping for an AArch64 system register to its AArch32
70
 * counterpart is for the 32 bit world to have access to the lower
71
 * half only (with writes leaving the upper half untouched). It's
72
 * therefore useful to be able to pass TCG the offset of the least
73
 * significant half of a uint64_t struct member.
74
 */
75
#ifdef HOST_WORDS_BIGENDIAN
76
#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
77
#else
78
#define offsetoflow32(S, M) offsetof(S, M)
79
#endif
80

    
81
/* Meanings of the ARMCPU object's two inbound GPIO lines */
82
#define ARM_CPU_IRQ 0
83
#define ARM_CPU_FIQ 1
84

    
85
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
86
                            int srcreg, int operand, uint32_t value);
87
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
88
                               int dstreg, int operand);
89

    
90
struct arm_boot_info;
91

    
92
#define NB_MMU_MODES 2
93

    
94
/* We currently assume float and double are IEEE single and double
95
   precision respectively.
96
   Doing runtime conversions is tricky because VFP registers may contain
97
   integer values (eg. as the result of a FTOSI instruction).
98
   s<2n> maps to the least significant half of d<n>
99
   s<2n+1> maps to the most significant half of d<n>
100
 */
101

    
102
/* CPU state for each instance of a generic timer (in cp15 c14) */
103
typedef struct ARMGenericTimer {
104
    uint64_t cval; /* Timer CompareValue register */
105
    uint32_t ctl; /* Timer Control register */
106
} ARMGenericTimer;
107

    
108
#define GTIMER_PHYS 0
109
#define GTIMER_VIRT 1
110
#define NUM_GTIMERS 2
111

    
112
/* Scale factor for generic timers, ie number of ns per tick.
113
 * This gives a 62.5MHz timer.
114
 */
115
#define GTIMER_SCALE 16
116

    
117
typedef struct CPUARMState {
118
    /* Regs for current mode.  */
119
    uint32_t regs[16];
120

    
121
    /* 32/64 switch only happens when taking and returning from
122
     * exceptions so the overlap semantics are taken care of then
123
     * instead of having a complicated union.
124
     */
125
    /* Regs for A64 mode.  */
126
    uint64_t xregs[32];
127
    uint64_t pc;
128
    /* PSTATE isn't an architectural register for ARMv8. However, it is
129
     * convenient for us to assemble the underlying state into a 32 bit format
130
     * identical to the architectural format used for the SPSR. (This is also
131
     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
132
     * 'pstate' register are.) Of the PSTATE bits:
133
     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
134
     *    semantics as for AArch32, as described in the comments on each field)
135
     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
136
     *  all other bits are stored in their correct places in env->pstate
137
     */
138
    uint32_t pstate;
139
    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
140

    
141
    /* Frequently accessed CPSR bits are stored separately for efficiency.
142
       This contains all the other bits.  Use cpsr_{read,write} to access
143
       the whole CPSR.  */
144
    uint32_t uncached_cpsr;
145
    uint32_t spsr;
146

    
147
    /* Banked registers.  */
148
    uint32_t banked_spsr[6];
149
    uint32_t banked_r13[6];
150
    uint32_t banked_r14[6];
151

    
152
    /* These hold r8-r12.  */
153
    uint32_t usr_regs[5];
154
    uint32_t fiq_regs[5];
155

    
156
    /* cpsr flag cache for faster execution */
157
    uint32_t CF; /* 0 or 1 */
158
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
159
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
160
    uint32_t ZF; /* Z set if zero.  */
161
    uint32_t QF; /* 0 or 1 */
162
    uint32_t GE; /* cpsr[19:16] */
163
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
164
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
165

    
166
    /* System control coprocessor (cp15) */
167
    struct {
168
        uint32_t c0_cpuid;
169
        uint32_t c0_cssel; /* Cache size selection.  */
170
        uint32_t c1_sys; /* System control register.  */
171
        uint32_t c1_coproc; /* Coprocessor access register.  */
172
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
173
        uint32_t c1_scr; /* secure config register.  */
174
        uint32_t c2_base0; /* MMU translation table base 0.  */
175
        uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
176
        uint32_t c2_base1; /* MMU translation table base 0.  */
177
        uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
178
        uint32_t c2_control; /* MMU translation table base control.  */
179
        uint32_t c2_mask; /* MMU translation table base selection mask.  */
180
        uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
181
        uint32_t c2_data; /* MPU data cachable bits.  */
182
        uint32_t c2_insn; /* MPU instruction cachable bits.  */
183
        uint32_t c3; /* MMU domain access control register
184
                        MPU write buffer control.  */
185
        uint32_t c5_insn; /* Fault status registers.  */
186
        uint32_t c5_data;
187
        uint32_t c6_region[8]; /* MPU base/size registers.  */
188
        uint32_t c6_insn; /* Fault address registers.  */
189
        uint32_t c6_data;
190
        uint32_t c7_par;  /* Translation result. */
191
        uint32_t c7_par_hi;  /* Translation result, high 32 bits */
192
        uint32_t c9_insn; /* Cache lockdown registers.  */
193
        uint32_t c9_data;
194
        uint32_t c9_pmcr; /* performance monitor control register */
195
        uint32_t c9_pmcnten; /* perf monitor counter enables */
196
        uint32_t c9_pmovsr; /* perf monitor overflow status */
197
        uint32_t c9_pmxevtyper; /* perf monitor event type */
198
        uint32_t c9_pmuserenr; /* perf monitor user enable */
199
        uint32_t c9_pminten; /* perf monitor interrupt enables */
200
        uint32_t c12_vbar; /* vector base address register */
201
        uint32_t c13_fcse; /* FCSE PID.  */
202
        uint32_t c13_context; /* Context ID.  */
203
        uint64_t tpidr_el0; /* User RW Thread register.  */
204
        uint64_t tpidrro_el0; /* User RO Thread register.  */
205
        uint64_t tpidr_el1; /* Privileged Thread register.  */
206
        uint32_t c14_cntfrq; /* Counter Frequency register */
207
        uint32_t c14_cntkctl; /* Timer Control register */
208
        ARMGenericTimer c14_timer[NUM_GTIMERS];
209
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
210
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
211
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
212
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
213
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
214
        uint32_t c15_config_base_address; /* SCU base address.  */
215
        uint32_t c15_diagnostic; /* diagnostic register */
216
        uint32_t c15_power_diagnostic;
217
        uint32_t c15_power_control; /* power control */
218
    } cp15;
219

    
220
    struct {
221
        uint32_t other_sp;
222
        uint32_t vecbase;
223
        uint32_t basepri;
224
        uint32_t control;
225
        int current_sp;
226
        int exception;
227
        int pending_exception;
228
    } v7m;
229

    
230
    /* Thumb-2 EE state.  */
231
    uint32_t teecr;
232
    uint32_t teehbr;
233

    
234
    /* VFP coprocessor state.  */
235
    struct {
236
        /* VFP/Neon register state. Note that the mapping between S, D and Q
237
         * views of the register bank differs between AArch64 and AArch32:
238
         * In AArch32:
239
         *  Qn = regs[2n+1]:regs[2n]
240
         *  Dn = regs[n]
241
         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
242
         * (and regs[32] to regs[63] are inaccessible)
243
         * In AArch64:
244
         *  Qn = regs[2n+1]:regs[2n]
245
         *  Dn = regs[2n]
246
         *  Sn = regs[2n] bits 31..0
247
         * This corresponds to the architecturally defined mapping between
248
         * the two execution states, and means we do not need to explicitly
249
         * map these registers when changing states.
250
         */
251
        float64 regs[64];
252

    
253
        uint32_t xregs[16];
254
        /* We store these fpcsr fields separately for convenience.  */
255
        int vec_len;
256
        int vec_stride;
257

    
258
        /* scratch space when Tn are not sufficient.  */
259
        uint32_t scratch[8];
260

    
261
        /* fp_status is the "normal" fp status. standard_fp_status retains
262
         * values corresponding to the ARM "Standard FPSCR Value", ie
263
         * default-NaN, flush-to-zero, round-to-nearest and is used by
264
         * any operations (generally Neon) which the architecture defines
265
         * as controlled by the standard FPSCR value rather than the FPSCR.
266
         *
267
         * To avoid having to transfer exception bits around, we simply
268
         * say that the FPSCR cumulative exception flags are the logical
269
         * OR of the flags in the two fp statuses. This relies on the
270
         * only thing which needs to read the exception flags being
271
         * an explicit FPSCR read.
272
         */
273
        float_status fp_status;
274
        float_status standard_fp_status;
275
    } vfp;
276
    uint64_t exclusive_addr;
277
    uint64_t exclusive_val;
278
    uint64_t exclusive_high;
279
#if defined(CONFIG_USER_ONLY)
280
    uint64_t exclusive_test;
281
    uint32_t exclusive_info;
282
#endif
283

    
284
    /* iwMMXt coprocessor state.  */
285
    struct {
286
        uint64_t regs[16];
287
        uint64_t val;
288

    
289
        uint32_t cregs[16];
290
    } iwmmxt;
291

    
292
    /* For mixed endian mode.  */
293
    bool bswap_code;
294

    
295
#if defined(CONFIG_USER_ONLY)
296
    /* For usermode syscall translation.  */
297
    int eabi;
298
#endif
299

    
300
    CPU_COMMON
301

    
302
    /* These fields after the common ones so they are preserved on reset.  */
303

    
304
    /* Internal CPU feature flags.  */
305
    uint64_t features;
306

    
307
    void *nvic;
308
    const struct arm_boot_info *boot_info;
309
} CPUARMState;
310

    
311
#include "cpu-qom.h"
312

    
313
ARMCPU *cpu_arm_init(const char *cpu_model);
314
void arm_translate_init(void);
315
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
316
int cpu_arm_exec(CPUARMState *s);
317
int bank_number(int mode);
318
void switch_mode(CPUARMState *, int);
319
uint32_t do_arm_semihosting(CPUARMState *env);
320

    
321
static inline bool is_a64(CPUARMState *env)
322
{
323
    return env->aarch64;
324
}
325

    
326
/* you can call this signal handler from your SIGBUS and SIGSEGV
327
   signal handlers to inform the virtual CPU of exceptions. non zero
328
   is returned if the signal was handled by the virtual CPU.  */
329
int cpu_arm_signal_handler(int host_signum, void *pinfo,
330
                           void *puc);
331
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
332
                              int mmu_idx);
333
#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
334

    
335
/* SCTLR bit meanings. Several bits have been reused in newer
336
 * versions of the architecture; in that case we define constants
337
 * for both old and new bit meanings. Code which tests against those
338
 * bits should probably check or otherwise arrange that the CPU
339
 * is the architectural version it expects.
340
 */
341
#define SCTLR_M       (1U << 0)
342
#define SCTLR_A       (1U << 1)
343
#define SCTLR_C       (1U << 2)
344
#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
345
#define SCTLR_SA      (1U << 3)
346
#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
347
#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
348
#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
349
#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
350
#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
351
#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
352
#define SCTLR_ITD     (1U << 7) /* v8 onward */
353
#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
354
#define SCTLR_SED     (1U << 8) /* v8 onward */
355
#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
356
#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
357
#define SCTLR_F       (1U << 10) /* up to v6 */
358
#define SCTLR_SW      (1U << 10) /* v7 onward */
359
#define SCTLR_Z       (1U << 11)
360
#define SCTLR_I       (1U << 12)
361
#define SCTLR_V       (1U << 13)
362
#define SCTLR_RR      (1U << 14) /* up to v7 */
363
#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
364
#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
365
#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
366
#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
367
#define SCTLR_nTWI    (1U << 16) /* v8 onward */
368
#define SCTLR_HA      (1U << 17)
369
#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
370
#define SCTLR_nTWE    (1U << 18) /* v8 onward */
371
#define SCTLR_WXN     (1U << 19)
372
#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
373
#define SCTLR_UWXN    (1U << 20) /* v7 onward */
374
#define SCTLR_FI      (1U << 21)
375
#define SCTLR_U       (1U << 22)
376
#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
377
#define SCTLR_VE      (1U << 24) /* up to v7 */
378
#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
379
#define SCTLR_EE      (1U << 25)
380
#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
381
#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
382
#define SCTLR_NMFI    (1U << 27)
383
#define SCTLR_TRE     (1U << 28)
384
#define SCTLR_AFE     (1U << 29)
385
#define SCTLR_TE      (1U << 30)
386

    
387
#define CPSR_M (0x1fU)
388
#define CPSR_T (1U << 5)
389
#define CPSR_F (1U << 6)
390
#define CPSR_I (1U << 7)
391
#define CPSR_A (1U << 8)
392
#define CPSR_E (1U << 9)
393
#define CPSR_IT_2_7 (0xfc00U)
394
#define CPSR_GE (0xfU << 16)
395
#define CPSR_RESERVED (0xfU << 20)
396
#define CPSR_J (1U << 24)
397
#define CPSR_IT_0_1 (3U << 25)
398
#define CPSR_Q (1U << 27)
399
#define CPSR_V (1U << 28)
400
#define CPSR_C (1U << 29)
401
#define CPSR_Z (1U << 30)
402
#define CPSR_N (1U << 31)
403
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
404

    
405
#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
406
#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
407
/* Bits writable in user mode.  */
408
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
409
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
410
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
411

    
412
/* Bit definitions for ARMv8 SPSR (PSTATE) format.
413
 * Only these are valid when in AArch64 mode; in
414
 * AArch32 mode SPSRs are basically CPSR-format.
415
 */
416
#define PSTATE_M (0xFU)
417
#define PSTATE_nRW (1U << 4)
418
#define PSTATE_F (1U << 6)
419
#define PSTATE_I (1U << 7)
420
#define PSTATE_A (1U << 8)
421
#define PSTATE_D (1U << 9)
422
#define PSTATE_IL (1U << 20)
423
#define PSTATE_SS (1U << 21)
424
#define PSTATE_V (1U << 28)
425
#define PSTATE_C (1U << 29)
426
#define PSTATE_Z (1U << 30)
427
#define PSTATE_N (1U << 31)
428
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
429
#define CACHED_PSTATE_BITS (PSTATE_NZCV)
430
/* Mode values for AArch64 */
431
#define PSTATE_MODE_EL3h 13
432
#define PSTATE_MODE_EL3t 12
433
#define PSTATE_MODE_EL2h 9
434
#define PSTATE_MODE_EL2t 8
435
#define PSTATE_MODE_EL1h 5
436
#define PSTATE_MODE_EL1t 4
437
#define PSTATE_MODE_EL0t 0
438

    
439
/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
440
 * interprocessing, so we don't attempt to sync with the cpsr state used by
441
 * the 32 bit decoder.
442
 */
443
static inline uint32_t pstate_read(CPUARMState *env)
444
{
445
    int ZF;
446

    
447
    ZF = (env->ZF == 0);
448
    return (env->NF & 0x80000000) | (ZF << 30)
449
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
450
        | env->pstate;
451
}
452

    
453
static inline void pstate_write(CPUARMState *env, uint32_t val)
454
{
455
    env->ZF = (~val) & PSTATE_Z;
456
    env->NF = val;
457
    env->CF = (val >> 29) & 1;
458
    env->VF = (val << 3) & 0x80000000;
459
    env->pstate = val & ~CACHED_PSTATE_BITS;
460
}
461

    
462
/* Return the current CPSR value.  */
463
uint32_t cpsr_read(CPUARMState *env);
464
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
465
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
466

    
467
/* Return the current xPSR value.  */
468
static inline uint32_t xpsr_read(CPUARMState *env)
469
{
470
    int ZF;
471
    ZF = (env->ZF == 0);
472
    return (env->NF & 0x80000000) | (ZF << 30)
473
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
474
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
475
        | ((env->condexec_bits & 0xfc) << 8)
476
        | env->v7m.exception;
477
}
478

    
479
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
480
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
481
{
482
    if (mask & CPSR_NZCV) {
483
        env->ZF = (~val) & CPSR_Z;
484
        env->NF = val;
485
        env->CF = (val >> 29) & 1;
486
        env->VF = (val << 3) & 0x80000000;
487
    }
488
    if (mask & CPSR_Q)
489
        env->QF = ((val & CPSR_Q) != 0);
490
    if (mask & (1 << 24))
491
        env->thumb = ((val & (1 << 24)) != 0);
492
    if (mask & CPSR_IT_0_1) {
493
        env->condexec_bits &= ~3;
494
        env->condexec_bits |= (val >> 25) & 3;
495
    }
496
    if (mask & CPSR_IT_2_7) {
497
        env->condexec_bits &= 3;
498
        env->condexec_bits |= (val >> 8) & 0xfc;
499
    }
500
    if (mask & 0x1ff) {
501
        env->v7m.exception = val & 0x1ff;
502
    }
503
}
504

    
505
/* Return the current FPSCR value.  */
506
uint32_t vfp_get_fpscr(CPUARMState *env);
507
void vfp_set_fpscr(CPUARMState *env, uint32_t val);
508

    
509
/* For A64 the FPSCR is split into two logically distinct registers,
510
 * FPCR and FPSR. However since they still use non-overlapping bits
511
 * we store the underlying state in fpscr and just mask on read/write.
512
 */
513
#define FPSR_MASK 0xf800009f
514
#define FPCR_MASK 0x07f79f00
515
static inline uint32_t vfp_get_fpsr(CPUARMState *env)
516
{
517
    return vfp_get_fpscr(env) & FPSR_MASK;
518
}
519

    
520
static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
521
{
522
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
523
    vfp_set_fpscr(env, new_fpscr);
524
}
525

    
526
static inline uint32_t vfp_get_fpcr(CPUARMState *env)
527
{
528
    return vfp_get_fpscr(env) & FPCR_MASK;
529
}
530

    
531
static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
532
{
533
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
534
    vfp_set_fpscr(env, new_fpscr);
535
}
536

    
537
enum arm_fprounding {
538
    FPROUNDING_TIEEVEN,
539
    FPROUNDING_POSINF,
540
    FPROUNDING_NEGINF,
541
    FPROUNDING_ZERO,
542
    FPROUNDING_TIEAWAY,
543
    FPROUNDING_ODD
544
};
545

    
546
int arm_rmode_to_sf(int rmode);
547

    
548
enum arm_cpu_mode {
549
  ARM_CPU_MODE_USR = 0x10,
550
  ARM_CPU_MODE_FIQ = 0x11,
551
  ARM_CPU_MODE_IRQ = 0x12,
552
  ARM_CPU_MODE_SVC = 0x13,
553
  ARM_CPU_MODE_ABT = 0x17,
554
  ARM_CPU_MODE_UND = 0x1b,
555
  ARM_CPU_MODE_SYS = 0x1f
556
};
557

    
558
/* VFP system registers.  */
559
#define ARM_VFP_FPSID   0
560
#define ARM_VFP_FPSCR   1
561
#define ARM_VFP_MVFR1   6
562
#define ARM_VFP_MVFR0   7
563
#define ARM_VFP_FPEXC   8
564
#define ARM_VFP_FPINST  9
565
#define ARM_VFP_FPINST2 10
566

    
567
/* iwMMXt coprocessor control registers.  */
568
#define ARM_IWMMXT_wCID                0
569
#define ARM_IWMMXT_wCon                1
570
#define ARM_IWMMXT_wCSSF        2
571
#define ARM_IWMMXT_wCASF        3
572
#define ARM_IWMMXT_wCGR0        8
573
#define ARM_IWMMXT_wCGR1        9
574
#define ARM_IWMMXT_wCGR2        10
575
#define ARM_IWMMXT_wCGR3        11
576

    
577
/* If adding a feature bit which corresponds to a Linux ELF
578
 * HWCAP bit, remember to update the feature-bit-to-hwcap
579
 * mapping in linux-user/elfload.c:get_elf_hwcap().
580
 */
581
enum arm_features {
582
    ARM_FEATURE_VFP,
583
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
584
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
585
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
586
    ARM_FEATURE_V6,
587
    ARM_FEATURE_V6K,
588
    ARM_FEATURE_V7,
589
    ARM_FEATURE_THUMB2,
590
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
591
    ARM_FEATURE_VFP3,
592
    ARM_FEATURE_VFP_FP16,
593
    ARM_FEATURE_NEON,
594
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
595
    ARM_FEATURE_M, /* Microcontroller profile.  */
596
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
597
    ARM_FEATURE_THUMB2EE,
598
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
599
    ARM_FEATURE_V4T,
600
    ARM_FEATURE_V5,
601
    ARM_FEATURE_STRONGARM,
602
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
603
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
604
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
605
    ARM_FEATURE_GENERIC_TIMER,
606
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
607
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
608
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
609
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
610
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
611
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
612
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
613
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
614
    ARM_FEATURE_V8,
615
    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
616
    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
617
    ARM_FEATURE_CBAR, /* has cp15 CBAR */
618
};
619

    
620
static inline int arm_feature(CPUARMState *env, int feature)
621
{
622
    return (env->features & (1ULL << feature)) != 0;
623
}
624

    
625
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
626

    
627
/* Interface between CPU and Interrupt controller.  */
628
void armv7m_nvic_set_pending(void *opaque, int irq);
629
int armv7m_nvic_acknowledge_irq(void *opaque);
630
void armv7m_nvic_complete_irq(void *opaque, int irq);
631

    
632
/* Interface for defining coprocessor registers.
633
 * Registers are defined in tables of arm_cp_reginfo structs
634
 * which are passed to define_arm_cp_regs().
635
 */
636

    
637
/* When looking up a coprocessor register we look for it
638
 * via an integer which encodes all of:
639
 *  coprocessor number
640
 *  Crn, Crm, opc1, opc2 fields
641
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
642
 *    or via MRRC/MCRR?)
643
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
644
 * (In this case crn and opc2 should be zero.)
645
 * For AArch64, there is no 32/64 bit size distinction;
646
 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
647
 * and 4 bit CRn and CRm. The encoding patterns are chosen
648
 * to be easy to convert to and from the KVM encodings, and also
649
 * so that the hashtable can contain both AArch32 and AArch64
650
 * registers (to allow for interprocessing where we might run
651
 * 32 bit code on a 64 bit core).
652
 */
653
/* This bit is private to our hashtable cpreg; in KVM register
654
 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
655
 * in the upper bits of the 64 bit ID.
656
 */
657
#define CP_REG_AA64_SHIFT 28
658
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
659

    
660
#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
661
    (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
662
     ((crm) << 7) | ((opc1) << 3) | (opc2))
663

    
664
#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
665
    (CP_REG_AA64_MASK |                                 \
666
     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
667
     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
668
     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
669
     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
670
     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
671
     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
672

    
673
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
674
 * version used as a key for the coprocessor register hashtable
675
 */
676
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
677
{
678
    uint32_t cpregid = kvmid;
679
    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
680
        cpregid |= CP_REG_AA64_MASK;
681
    } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
682
        cpregid |= (1 << 15);
683
    }
684
    return cpregid;
685
}
686

    
687
/* Convert a truncated 32 bit hashtable key into the full
688
 * 64 bit KVM register ID.
689
 */
690
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
691
{
692
    uint64_t kvmid;
693

    
694
    if (cpregid & CP_REG_AA64_MASK) {
695
        kvmid = cpregid & ~CP_REG_AA64_MASK;
696
        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
697
    } else {
698
        kvmid = cpregid & ~(1 << 15);
699
        if (cpregid & (1 << 15)) {
700
            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
701
        } else {
702
            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
703
        }
704
    }
705
    return kvmid;
706
}
707

    
708
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
709
 * special-behaviour cp reg and bits [15..8] indicate what behaviour
710
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
711
 * TCG can assume the value to be constant (ie load at translate time)
712
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
713
 * indicates that the TB should not be ended after a write to this register
714
 * (the default is that the TB ends after cp writes). OVERRIDE permits
715
 * a register definition to override a previous definition for the
716
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
717
 * old must have the OVERRIDE bit set.
718
 * NO_MIGRATE indicates that this register should be ignored for migration;
719
 * (eg because any state is accessed via some other coprocessor register).
720
 * IO indicates that this register does I/O and therefore its accesses
721
 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
722
 * registers which implement clocks or timers require this.
723
 */
724
#define ARM_CP_SPECIAL 1
725
#define ARM_CP_CONST 2
726
#define ARM_CP_64BIT 4
727
#define ARM_CP_SUPPRESS_TB_END 8
728
#define ARM_CP_OVERRIDE 16
729
#define ARM_CP_NO_MIGRATE 32
730
#define ARM_CP_IO 64
731
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
732
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
733
#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
734
#define ARM_LAST_SPECIAL ARM_CP_NZCV
735
/* Used only as a terminator for ARMCPRegInfo lists */
736
#define ARM_CP_SENTINEL 0xffff
737
/* Mask of only the flag bits in a type field */
738
#define ARM_CP_FLAG_MASK 0x7f
739

    
740
/* Valid values for ARMCPRegInfo state field, indicating which of
741
 * the AArch32 and AArch64 execution states this register is visible in.
742
 * If the reginfo doesn't explicitly specify then it is AArch32 only.
743
 * If the reginfo is declared to be visible in both states then a second
744
 * reginfo is synthesised for the AArch32 view of the AArch64 register,
745
 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
746
 * Note that we rely on the values of these enums as we iterate through
747
 * the various states in some places.
748
 */
749
enum {
750
    ARM_CP_STATE_AA32 = 0,
751
    ARM_CP_STATE_AA64 = 1,
752
    ARM_CP_STATE_BOTH = 2,
753
};
754

    
755
/* Return true if cptype is a valid type field. This is used to try to
756
 * catch errors where the sentinel has been accidentally left off the end
757
 * of a list of registers.
758
 */
759
static inline bool cptype_valid(int cptype)
760
{
761
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
762
        || ((cptype & ARM_CP_SPECIAL) &&
763
            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
764
}
765

    
766
/* Access rights:
767
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
768
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
769
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
770
 * (ie any of the privileged modes in Secure state, or Monitor mode).
771
 * If a register is accessible in one privilege level it's always accessible
772
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
773
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
774
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
775
 * terminology a little and call this PL3.
776
 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
777
 * with the ELx exception levels.
778
 *
779
 * If access permissions for a register are more complex than can be
780
 * described with these bits, then use a laxer set of restrictions, and
781
 * do the more restrictive/complex check inside a helper function.
782
 */
783
#define PL3_R 0x80
784
#define PL3_W 0x40
785
#define PL2_R (0x20 | PL3_R)
786
#define PL2_W (0x10 | PL3_W)
787
#define PL1_R (0x08 | PL2_R)
788
#define PL1_W (0x04 | PL2_W)
789
#define PL0_R (0x02 | PL1_R)
790
#define PL0_W (0x01 | PL1_W)
791

    
792
#define PL3_RW (PL3_R | PL3_W)
793
#define PL2_RW (PL2_R | PL2_W)
794
#define PL1_RW (PL1_R | PL1_W)
795
#define PL0_RW (PL0_R | PL0_W)
796

    
797
static inline int arm_current_pl(CPUARMState *env)
798
{
799
    if (env->aarch64) {
800
        return extract32(env->pstate, 2, 2);
801
    }
802

    
803
    if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
804
        return 0;
805
    }
806
    /* We don't currently implement the Virtualization or TrustZone
807
     * extensions, so PL2 and PL3 don't exist for us.
808
     */
809
    return 1;
810
}
811

    
812
typedef struct ARMCPRegInfo ARMCPRegInfo;
813

    
814
typedef enum CPAccessResult {
815
    /* Access is permitted */
816
    CP_ACCESS_OK = 0,
817
    /* Access fails due to a configurable trap or enable which would
818
     * result in a categorized exception syndrome giving information about
819
     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
820
     * 0xc or 0x18).
821
     */
822
    CP_ACCESS_TRAP = 1,
823
    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
824
     * Note that this is not a catch-all case -- the set of cases which may
825
     * result in this failure is specifically defined by the architecture.
826
     */
827
    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
828
} CPAccessResult;
829

    
830
/* Access functions for coprocessor registers. These should always succeed. */
831
typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
832
                     uint64_t *value);
833
typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
834
                      uint64_t value);
835
/* Access permission check functions for coprocessor registers. */
836
typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
837
/* Hook function for register reset */
838
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
839

    
840
#define CP_ANY 0xff
841

    
842
/* Definition of an ARM coprocessor register */
843
struct ARMCPRegInfo {
844
    /* Name of register (useful mainly for debugging, need not be unique) */
845
    const char *name;
846
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
847
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
848
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
849
     * will be decoded to this register. The register read and write
850
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
851
     * used by the program, so it is possible to register a wildcard and
852
     * then behave differently on read/write if necessary.
853
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
854
     * must both be zero.
855
     * For AArch64-visible registers, opc0 is also used.
856
     * Since there are no "coprocessors" in AArch64, cp is purely used as a
857
     * way to distinguish (for KVM's benefit) guest-visible system registers
858
     * from demuxed ones provided to preserve the "no side effects on
859
     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
860
     * visible (to match KVM's encoding); cp==0 will be converted to
861
     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
862
     */
863
    uint8_t cp;
864
    uint8_t crn;
865
    uint8_t crm;
866
    uint8_t opc0;
867
    uint8_t opc1;
868
    uint8_t opc2;
869
    /* Execution state in which this register is visible: ARM_CP_STATE_* */
870
    int state;
871
    /* Register type: ARM_CP_* bits/values */
872
    int type;
873
    /* Access rights: PL*_[RW] */
874
    int access;
875
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
876
     * this register was defined: can be used to hand data through to the
877
     * register read/write functions, since they are passed the ARMCPRegInfo*.
878
     */
879
    void *opaque;
880
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
881
     * fieldoffset is non-zero, the reset value of the register.
882
     */
883
    uint64_t resetvalue;
884
    /* Offset of the field in CPUARMState for this register. This is not
885
     * needed if either:
886
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
887
     *  2. both readfn and writefn are specified
888
     */
889
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
890
    /* Function for making any access checks for this register in addition to
891
     * those specified by the 'access' permissions bits. If NULL, no extra
892
     * checks required. The access check is performed at runtime, not at
893
     * translate time.
894
     */
895
    CPAccessFn *accessfn;
896
    /* Function for handling reads of this register. If NULL, then reads
897
     * will be done by loading from the offset into CPUARMState specified
898
     * by fieldoffset.
899
     */
900
    CPReadFn *readfn;
901
    /* Function for handling writes of this register. If NULL, then writes
902
     * will be done by writing to the offset into CPUARMState specified
903
     * by fieldoffset.
904
     */
905
    CPWriteFn *writefn;
906
    /* Function for doing a "raw" read; used when we need to copy
907
     * coprocessor state to the kernel for KVM or out for
908
     * migration. This only needs to be provided if there is also a
909
     * readfn and it makes an access permission check.
910
     */
911
    CPReadFn *raw_readfn;
912
    /* Function for doing a "raw" write; used when we need to copy KVM
913
     * kernel coprocessor state into userspace, or for inbound
914
     * migration. This only needs to be provided if there is also a
915
     * writefn and it makes an access permission check or masks out
916
     * "unwritable" bits or has write-one-to-clear or similar behaviour.
917
     */
918
    CPWriteFn *raw_writefn;
919
    /* Function for resetting the register. If NULL, then reset will be done
920
     * by writing resetvalue to the field specified in fieldoffset. If
921
     * fieldoffset is 0 then no reset will be done.
922
     */
923
    CPResetFn *resetfn;
924
};
925

    
926
/* Macros which are lvalues for the field in CPUARMState for the
927
 * ARMCPRegInfo *ri.
928
 */
929
#define CPREG_FIELD32(env, ri) \
930
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
931
#define CPREG_FIELD64(env, ri) \
932
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
933

    
934
#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
935

    
936
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
937
                                    const ARMCPRegInfo *regs, void *opaque);
938
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
939
                                       const ARMCPRegInfo *regs, void *opaque);
940
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
941
{
942
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
943
}
944
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
945
{
946
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
947
}
948
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
949

    
950
/* CPWriteFn that can be used to implement writes-ignored behaviour */
951
int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
952
                        uint64_t value);
953
/* CPReadFn that can be used for read-as-zero behaviour */
954
int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
955

    
956
/* CPResetFn that does nothing, for use if no reset is required even
957
 * if fieldoffset is non zero.
958
 */
959
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
960

    
961
static inline bool cp_access_ok(int current_pl,
962
                                const ARMCPRegInfo *ri, int isread)
963
{
964
    return (ri->access >> ((current_pl * 2) + isread)) & 1;
965
}
966

    
967
/**
968
 * write_list_to_cpustate
969
 * @cpu: ARMCPU
970
 *
971
 * For each register listed in the ARMCPU cpreg_indexes list, write
972
 * its value from the cpreg_values list into the ARMCPUState structure.
973
 * This updates TCG's working data structures from KVM data or
974
 * from incoming migration state.
975
 *
976
 * Returns: true if all register values were updated correctly,
977
 * false if some register was unknown or could not be written.
978
 * Note that we do not stop early on failure -- we will attempt
979
 * writing all registers in the list.
980
 */
981
bool write_list_to_cpustate(ARMCPU *cpu);
982

    
983
/**
984
 * write_cpustate_to_list:
985
 * @cpu: ARMCPU
986
 *
987
 * For each register listed in the ARMCPU cpreg_indexes list, write
988
 * its value from the ARMCPUState structure into the cpreg_values list.
989
 * This is used to copy info from TCG's working data structures into
990
 * KVM or for outbound migration.
991
 *
992
 * Returns: true if all register values were read correctly,
993
 * false if some register was unknown or could not be read.
994
 * Note that we do not stop early on failure -- we will attempt
995
 * reading all registers in the list.
996
 */
997
bool write_cpustate_to_list(ARMCPU *cpu);
998

    
999
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1000
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1001
   conventional cores (ie. Application or Realtime profile).  */
1002

    
1003
#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1004

    
1005
#define ARM_CPUID_TI915T      0x54029152
1006
#define ARM_CPUID_TI925T      0x54029252
1007

    
1008
#if defined(CONFIG_USER_ONLY)
1009
#define TARGET_PAGE_BITS 12
1010
#else
1011
/* The ARM MMU allows 1k pages.  */
1012
/* ??? Linux doesn't actually use these, and they're deprecated in recent
1013
   architecture revisions.  Maybe a configure option to disable them.  */
1014
#define TARGET_PAGE_BITS 10
1015
#endif
1016

    
1017
#if defined(TARGET_AARCH64)
1018
#  define TARGET_PHYS_ADDR_SPACE_BITS 48
1019
#  define TARGET_VIRT_ADDR_SPACE_BITS 64
1020
#else
1021
#  define TARGET_PHYS_ADDR_SPACE_BITS 40
1022
#  define TARGET_VIRT_ADDR_SPACE_BITS 32
1023
#endif
1024

    
1025
static inline CPUARMState *cpu_init(const char *cpu_model)
1026
{
1027
    ARMCPU *cpu = cpu_arm_init(cpu_model);
1028
    if (cpu) {
1029
        return &cpu->env;
1030
    }
1031
    return NULL;
1032
}
1033

    
1034
#define cpu_exec cpu_arm_exec
1035
#define cpu_gen_code cpu_arm_gen_code
1036
#define cpu_signal_handler cpu_arm_signal_handler
1037
#define cpu_list arm_cpu_list
1038

    
1039
/* MMU modes definitions */
1040
#define MMU_MODE0_SUFFIX _kernel
1041
#define MMU_MODE1_SUFFIX _user
1042
#define MMU_USER_IDX 1
1043
static inline int cpu_mmu_index (CPUARMState *env)
1044
{
1045
    return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
1046
}
1047

    
1048
#include "exec/cpu-all.h"
1049

    
1050
/* Bit usage in the TB flags field: bit 31 indicates whether we are
1051
 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1052
 */
1053
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1054
#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1055

    
1056
/* Bit usage when in AArch32 state: */
1057
#define ARM_TBFLAG_THUMB_SHIFT      0
1058
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
1059
#define ARM_TBFLAG_VECLEN_SHIFT     1
1060
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1061
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
1062
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1063
#define ARM_TBFLAG_PRIV_SHIFT       6
1064
#define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
1065
#define ARM_TBFLAG_VFPEN_SHIFT      7
1066
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
1067
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
1068
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1069
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1070
#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1071

    
1072
/* Bit usage when in AArch64 state: currently no bits defined */
1073

    
1074
/* some convenience accessor macros */
1075
#define ARM_TBFLAG_AARCH64_STATE(F) \
1076
    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1077
#define ARM_TBFLAG_THUMB(F) \
1078
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1079
#define ARM_TBFLAG_VECLEN(F) \
1080
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1081
#define ARM_TBFLAG_VECSTRIDE(F) \
1082
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1083
#define ARM_TBFLAG_PRIV(F) \
1084
    (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1085
#define ARM_TBFLAG_VFPEN(F) \
1086
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1087
#define ARM_TBFLAG_CONDEXEC(F) \
1088
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1089
#define ARM_TBFLAG_BSWAP_CODE(F) \
1090
    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1091

    
1092
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1093
                                        target_ulong *cs_base, int *flags)
1094
{
1095
    if (is_a64(env)) {
1096
        *pc = env->pc;
1097
        *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
1098
    } else {
1099
        int privmode;
1100
        *pc = env->regs[15];
1101
        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1102
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1103
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1104
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1105
            | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1106
        if (arm_feature(env, ARM_FEATURE_M)) {
1107
            privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1108
        } else {
1109
            privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1110
        }
1111
        if (privmode) {
1112
            *flags |= ARM_TBFLAG_PRIV_MASK;
1113
        }
1114
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
1115
            *flags |= ARM_TBFLAG_VFPEN_MASK;
1116
        }
1117
    }
1118

    
1119
    *cs_base = 0;
1120
}
1121

    
1122
static inline bool cpu_has_work(CPUState *cpu)
1123
{
1124
    return cpu->interrupt_request &
1125
        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
1126
}
1127

    
1128
#include "exec/exec-all.h"
1129

    
1130
static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1131
{
1132
    if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1133
        env->pc = tb->pc;
1134
    } else {
1135
        env->regs[15] = tb->pc;
1136
    }
1137
}
1138

    
1139
/* Load an instruction and return it in the standard little-endian order */
1140
static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
1141
                                    bool do_swap)
1142
{
1143
    uint32_t insn = cpu_ldl_code(env, addr);
1144
    if (do_swap) {
1145
        return bswap32(insn);
1146
    }
1147
    return insn;
1148
}
1149

    
1150
/* Ditto, for a halfword (Thumb) instruction */
1151
static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
1152
                                     bool do_swap)
1153
{
1154
    uint16_t insn = cpu_lduw_code(env, addr);
1155
    if (do_swap) {
1156
        return bswap16(insn);
1157
    }
1158
    return insn;
1159
}
1160

    
1161
#endif