Statistics
| Branch: | Revision:

root / hw / etraxfs_eth.c @ f6953f13

History | View | Annotate | Download (13.1 kB)

1
/*
2
 * QEMU ETRAX Ethernet Controller.
3
 *
4
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <stdio.h>
26
#include "hw.h"
27
#include "net.h"
28

    
29
#include "etraxfs_dma.h"
30

    
31
#define D(x)
32

    
33
/* 
34
 * The MDIO extensions in the TDK PHY model were reversed engineered from the 
35
 * linux driver (PHYID and Diagnostics reg).
36
 * TODO: Add friendly names for the register nums.
37
 */
38
struct qemu_phy
39
{
40
        uint32_t regs[32];
41

    
42
        unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
43
        void (*write)(struct qemu_phy *phy, unsigned int req, 
44
                      unsigned int data);
45
};
46

    
47
static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
48
{
49
        int regnum;
50
        unsigned r = 0;
51

    
52
        regnum = req & 0x1f;
53

    
54
        switch (regnum) {
55
                case 1:
56
                        /* MR1.         */
57
                        /* Speeds and modes.  */
58
                        r |= (1 << 13) | (1 << 14);
59
                        r |= (1 << 11) | (1 << 12);
60
                        r |= (1 << 5); /* Autoneg complete.  */
61
                        r |= (1 << 3); /* Autoneg able.         */
62
                        r |= (1 << 2); /* Link.         */
63
                        break;
64
                case 5:
65
                        /* Link partner ability.
66
                           We are kind; always agree with whatever best mode
67
                           the guest advertises.  */
68
                        r = 1 << 14; /* Success.  */
69
                        /* Copy advertised modes.  */
70
                        r |= phy->regs[4] & (15 << 5);
71
                        /* Autoneg support.  */
72
                        r |= 1;
73
                        break;
74
                case 18:
75
                {
76
                        /* Diagnostics reg.  */
77
                        int duplex = 0;
78
                        int speed_100 = 0;
79

    
80
                        /* Are we advertising 100 half or 100 duplex ? */
81
                        speed_100 = !!(phy->regs[4] & 0x180);
82
                        /* Are we advertising 10 duplex or 100 duplex ? */
83
                        duplex = !!(phy->regs[4] & 0x180);
84
                        r = (speed_100 << 10) | (duplex << 11);
85
                }
86
                break;
87

    
88
                default:
89
                        r = phy->regs[regnum];
90
                        break;
91
        }
92
        D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
93
        return r;
94
}
95

    
96
static void 
97
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
98
{
99
        int regnum;
100

    
101
        regnum = req & 0x1f;
102
        D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
103
        switch (regnum) {
104
                default:
105
                        phy->regs[regnum] = data;
106
                        break;
107
        }
108
}
109

    
110
static void 
111
tdk_init(struct qemu_phy *phy)
112
{
113
        phy->regs[0] = 0x3100;
114
        /* PHY Id.  */
115
        phy->regs[2] = 0x0300;
116
        phy->regs[3] = 0xe400;
117
        /* Autonegotiation advertisement reg.  */
118
        phy->regs[4] = 0x01E1;
119

    
120
        phy->read = tdk_read;
121
        phy->write = tdk_write;
122
}
123

    
124
struct qemu_mdio
125
{
126
        /* bus.         */
127
        int mdc;
128
        int mdio;
129

    
130
        /* decoder.  */
131
        enum {
132
                PREAMBLE,
133
                SOF,
134
                OPC,
135
                ADDR,
136
                REQ,
137
                TURNAROUND,
138
                DATA
139
        } state;
140
        unsigned int drive;
141

    
142
        unsigned int cnt;
143
        unsigned int addr;
144
        unsigned int opc;
145
        unsigned int req;
146
        unsigned int data;
147

    
148
        struct qemu_phy *devs[32];
149
};
150

    
151
static void 
152
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
153
{
154
        bus->devs[addr & 0x1f] = phy;
155
}
156

    
157
static void 
158
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
159
{
160
        bus->devs[addr & 0x1f] = NULL;        
161
}
162

    
163
static void mdio_read_req(struct qemu_mdio *bus)
164
{
165
        struct qemu_phy *phy;
166

    
167
        phy = bus->devs[bus->addr];
168
        if (phy && phy->read)
169
                bus->data = phy->read(phy, bus->req);
170
        else 
171
                bus->data = 0xffff;
172
}
173

    
174
static void mdio_write_req(struct qemu_mdio *bus)
175
{
176
        struct qemu_phy *phy;
177

    
178
        phy = bus->devs[bus->addr];
179
        if (phy && phy->write)
180
                phy->write(phy, bus->req, bus->data);
181
}
182

    
183
static void mdio_cycle(struct qemu_mdio *bus)
184
{
185
        bus->cnt++;
186

    
187
        D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
188
                bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
189
#if 0
190
        if (bus->mdc)
191
                printf("%d", bus->mdio);
192
#endif
193
        switch (bus->state)
194
        {
195
                case PREAMBLE:
196
                        if (bus->mdc) {
197
                                if (bus->cnt >= (32 * 2) && !bus->mdio) {
198
                                        bus->cnt = 0;
199
                                        bus->state = SOF;
200
                                        bus->data = 0;
201
                                }
202
                        }
203
                        break;
204
                case SOF:
205
                        if (bus->mdc) {
206
                                if (bus->mdio != 1)
207
                                        printf("WARNING: no SOF\n");
208
                                if (bus->cnt == 1*2) {
209
                                        bus->cnt = 0;
210
                                        bus->opc = 0;
211
                                        bus->state = OPC;
212
                                }
213
                        }
214
                        break;
215
                case OPC:
216
                        if (bus->mdc) {
217
                                bus->opc <<= 1;
218
                                bus->opc |= bus->mdio & 1;
219
                                if (bus->cnt == 2*2) {
220
                                        bus->cnt = 0;
221
                                        bus->addr = 0;
222
                                        bus->state = ADDR;
223
                                }
224
                        }
225
                        break;
226
                case ADDR:
227
                        if (bus->mdc) {
228
                                bus->addr <<= 1;
229
                                bus->addr |= bus->mdio & 1;
230

    
231
                                if (bus->cnt == 5*2) {
232
                                        bus->cnt = 0;
233
                                        bus->req = 0;
234
                                        bus->state = REQ;
235
                                }
236
                        }
237
                        break;
238
                case REQ:
239
                        if (bus->mdc) {
240
                                bus->req <<= 1;
241
                                bus->req |= bus->mdio & 1;
242
                                if (bus->cnt == 5*2) {
243
                                        bus->cnt = 0;
244
                                        bus->state = TURNAROUND;
245
                                }
246
                        }
247
                        break;
248
                case TURNAROUND:
249
                        if (bus->mdc && bus->cnt == 2*2) {
250
                                bus->mdio = 0;
251
                                bus->cnt = 0;
252

    
253
                                if (bus->opc == 2) {
254
                                        bus->drive = 1;
255
                                        mdio_read_req(bus);
256
                                        bus->mdio = bus->data & 1;
257
                                }
258
                                bus->state = DATA;
259
                        }
260
                        break;
261
                case DATA:                        
262
                        if (!bus->mdc) {
263
                                if (bus->drive) {
264
                                        bus->mdio = !!(bus->data & (1 << 15));
265
                                        bus->data <<= 1;
266
                                }
267
                        } else {
268
                                if (!bus->drive) {
269
                                        bus->data <<= 1;
270
                                        bus->data |= bus->mdio;
271
                                }
272
                                if (bus->cnt == 16 * 2) {
273
                                        bus->cnt = 0;
274
                                        bus->state = PREAMBLE;
275
                                        if (!bus->drive)
276
                                                mdio_write_req(bus);
277
                                        bus->drive = 0;
278
                                }
279
                        }
280
                        break;
281
                default:
282
                        break;
283
        }
284
}
285

    
286
/* ETRAX-FS Ethernet MAC block starts here.  */
287

    
288
#define RW_MA0_LO          0x00
289
#define RW_MA0_HI          0x04
290
#define RW_MA1_LO          0x08
291
#define RW_MA1_HI          0x0c
292
#define RW_GA_LO          0x10
293
#define RW_GA_HI          0x14
294
#define RW_GEN_CTRL          0x18
295
#define RW_REC_CTRL          0x1c
296
#define RW_TR_CTRL          0x20
297
#define RW_CLR_ERR          0x24
298
#define RW_MGM_CTRL          0x28
299
#define R_STAT                  0x2c
300
#define FS_ETH_MAX_REGS          0x5c
301

    
302
struct fs_eth
303
{
304
        CPUState *env;
305
        qemu_irq *irq;
306
        target_phys_addr_t base;
307
        VLANClientState *vc;
308
        int ethregs;
309

    
310
        /* Two addrs in the filter.  */
311
        uint8_t macaddr[2][6];
312
        uint32_t regs[FS_ETH_MAX_REGS];
313

    
314
        unsigned char rx_fifo[1536];
315
        int rx_fifo_len;
316
        int rx_fifo_pos;
317

    
318
        struct etraxfs_dma_client *dma_out;
319
        struct etraxfs_dma_client *dma_in;
320

    
321
        /* MDIO bus.  */
322
        struct qemu_mdio mdio_bus;
323
        /* PHY.         */
324
        struct qemu_phy phy;
325
};
326

    
327
static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
328
{
329
        struct fs_eth *eth = opaque;
330
        CPUState *env = eth->env;
331
        cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
332
                  addr, env->pc);
333
        return 0;
334
}
335

    
336
static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
337
{
338
        struct fs_eth *eth = opaque;
339
        D(CPUState *env = eth->env);
340
        uint32_t r = 0;
341

    
342
        /* Make addr relative to this instances base.  */
343
        addr -= eth->base;
344
        switch (addr) {
345
                case R_STAT:
346
                        /* Attach an MDIO/PHY abstraction.  */
347
                        r = eth->mdio_bus.mdio & 1;
348
                        break;
349
        default:
350
                r = eth->regs[addr];
351
                D(printf ("%s %x p=%x\n", __func__, addr, env->pc));
352
                break;
353
        }
354
        return r;
355
}
356

    
357
static void
358
eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
359
{
360
        struct fs_eth *eth = opaque;
361
        CPUState *env = eth->env;
362
        cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
363
                  addr, env->pc);
364
}
365

    
366
static void eth_update_ma(struct fs_eth *eth, int ma)
367
{
368
        int reg;
369
        int i = 0;
370

    
371
        ma &= 1;
372

    
373
        reg = RW_MA0_LO;
374
        if (ma)
375
                reg = RW_MA1_LO;
376

    
377
        eth->macaddr[ma][i++] = eth->regs[reg];
378
        eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
379
        eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
380
        eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
381
        eth->macaddr[ma][i++] = eth->regs[reg + 4];
382
        eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
383

    
384
        D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
385
                 eth->macaddr[ma][0], eth->macaddr[ma][1],
386
                 eth->macaddr[ma][2], eth->macaddr[ma][3],
387
                 eth->macaddr[ma][4], eth->macaddr[ma][5]));
388
}
389

    
390
static void
391
eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
392
{
393
        struct fs_eth *eth = opaque;
394
        CPUState *env = eth->env;
395

    
396
        /* Make addr relative to this instances base.  */
397
        addr -= eth->base;
398
        switch (addr)
399
        {
400
                case RW_MA0_LO:
401
                        eth->regs[addr] = value;
402
                        eth_update_ma(eth, 0);
403
                        break;
404
                case RW_MA0_HI:
405
                        eth->regs[addr] = value;
406
                        eth_update_ma(eth, 0);
407
                        break;
408
                case RW_MA1_LO:
409
                        eth->regs[addr] = value;
410
                        eth_update_ma(eth, 1);
411
                        break;
412
                case RW_MA1_HI:
413
                        eth->regs[addr] = value;
414
                        eth_update_ma(eth, 1);
415
                        break;
416

    
417
                case RW_MGM_CTRL:
418
                        /* Attach an MDIO/PHY abstraction.  */
419
                        if (value & 2)
420
                                eth->mdio_bus.mdio = value & 1;
421
                        if (eth->mdio_bus.mdc != (value & 4))
422
                                mdio_cycle(&eth->mdio_bus);
423
                        eth->mdio_bus.mdc = !!(value & 4);
424
                        break;
425

    
426
                default:
427
                        eth->regs[addr] = value;
428
                        printf ("%s %x %x pc=%x\n",
429
                                __func__, addr, value, env->pc);
430
                        break;
431
        }
432
}
433

    
434
/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
435
   filter dropping group addresses we have not joined.        The filter has 64
436
   bits (m). The has function is a simple nible xor of the group addr.        */
437
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
438
{
439
        unsigned int hsh;
440
        int m_individual = eth->regs[RW_REC_CTRL] & 4;
441
        int match;
442

    
443
        /* First bit on the wire of a MAC address signals multicast or
444
           physical address.  */
445
        if (!m_individual && !sa[0] & 1)
446
                return 0;
447

    
448
        /* Calculate the hash index for the GA registers. */
449
        hsh = 0;
450
        hsh ^= (*sa) & 0x3f;
451
        hsh ^= ((*sa) >> 6) & 0x03;
452
        ++sa;
453
        hsh ^= ((*sa) << 2) & 0x03c;
454
        hsh ^= ((*sa) >> 4) & 0xf;
455
        ++sa;
456
        hsh ^= ((*sa) << 4) & 0x30;
457
        hsh ^= ((*sa) >> 2) & 0x3f;
458
        ++sa;
459
        hsh ^= (*sa) & 0x3f;
460
        hsh ^= ((*sa) >> 6) & 0x03;
461
        ++sa;
462
        hsh ^= ((*sa) << 2) & 0x03c;
463
        hsh ^= ((*sa) >> 4) & 0xf;
464
        ++sa;
465
        hsh ^= ((*sa) << 4) & 0x30;
466
        hsh ^= ((*sa) >> 2) & 0x3f;
467

    
468
        hsh &= 63;
469
        if (hsh > 31)
470
                match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
471
        else
472
                match = eth->regs[RW_GA_LO] & (1 << hsh);
473
        D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
474
                 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
475
        return match;
476
}
477

    
478
static int eth_can_receive(void *opaque)
479
{
480
        struct fs_eth *eth = opaque;
481
        int r;
482

    
483
        r = eth->rx_fifo_len == 0;
484
        if (!r) {
485
                /* TODO: signal fifo overrun.  */
486
                printf("PACKET LOSS!\n");
487
        }
488
        return r;
489
}
490

    
491
static void eth_receive(void *opaque, const uint8_t *buf, int size)
492
{
493
        unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
494
        struct fs_eth *eth = opaque;
495
        int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
496
        int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
497
        int r_bcast = eth->regs[RW_REC_CTRL] & 8;
498

    
499
        if (size < 12)
500
                return;
501

    
502
        D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
503
                 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
504
                 use_ma0, use_ma1, r_bcast));
505
               
506
        /* Does the frame get through the address filters?  */
507
        if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
508
            && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
509
            && (!r_bcast || memcmp(buf, sa_bcast, 6))
510
            && !eth_match_groupaddr(eth, buf))
511
                return;
512

    
513
        if (size > sizeof(eth->rx_fifo)) {
514
                /* TODO: signal error.        */
515
        } else if (eth->rx_fifo_len) {
516
                /* FIFO overrun.  */
517
        } else {
518
                memcpy(eth->rx_fifo, buf, size);
519
                /* +4, HW passes the CRC to sw.         */
520
                eth->rx_fifo_len = size + 4;
521
                eth->rx_fifo_pos = 0;
522
        }
523
}
524

    
525
static void eth_rx_pull(void *opaque)
526
{
527
        struct fs_eth *eth = opaque;
528
        int len;
529
        if (eth->rx_fifo_len) {                
530
                D(printf("%s %d\n", __func__, eth->rx_fifo_len));
531
#if 0
532
                {
533
                        int i;
534
                        for (i = 0; i < 32; i++)
535
                                printf("%2.2x", eth->rx_fifo[i]);
536
                        printf("\n");
537
                }
538
#endif
539
                len = etraxfs_dmac_input(eth->dma_in,
540
                                         eth->rx_fifo + eth->rx_fifo_pos, 
541
                                         eth->rx_fifo_len, 1);
542
                eth->rx_fifo_len -= len;
543
                eth->rx_fifo_pos += len;
544
        }
545
}
546

    
547
static int eth_tx_push(void *opaque, unsigned char *buf, int len)
548
{
549
        struct fs_eth *eth = opaque;
550

    
551
        D(printf("%s buf=%p len=%d\n", __func__, buf, len));
552
        qemu_send_packet(eth->vc, buf, len);
553
        return len;
554
}
555

    
556
static CPUReadMemoryFunc *eth_read[] = {
557
        &eth_rinvalid,
558
        &eth_rinvalid,
559
        &eth_readl,
560
};
561

    
562
static CPUWriteMemoryFunc *eth_write[] = {
563
        &eth_winvalid,
564
        &eth_winvalid,
565
        &eth_writel,
566
};
567

    
568
void *etraxfs_eth_init(NICInfo *nd, CPUState *env, 
569
                       qemu_irq *irq, target_phys_addr_t base)
570
{
571
        struct etraxfs_dma_client *dma = NULL;        
572
        struct fs_eth *eth = NULL;
573

    
574
        dma = qemu_mallocz(sizeof *dma * 2);
575
        if (!dma)
576
                return NULL;
577

    
578
        eth = qemu_mallocz(sizeof *eth);
579
        if (!eth)
580
                goto err;
581

    
582
        dma[0].client.push = eth_tx_push;
583
        dma[0].client.opaque = eth;
584
        dma[1].client.opaque = eth;
585
        dma[1].client.pull = eth_rx_pull;
586

    
587
        eth->env = env;
588
        eth->base = base;
589
        eth->irq = irq;
590
        eth->dma_out = dma;
591
        eth->dma_in = dma + 1;
592

    
593
        /* Connect the phy.  */
594
        tdk_init(&eth->phy);
595
        mdio_attach(&eth->mdio_bus, &eth->phy, 0x1);
596

    
597
        eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
598
        cpu_register_physical_memory (base, 0x5c, eth->ethregs);
599

    
600
        eth->vc = qemu_new_vlan_client(nd->vlan, 
601
                                       eth_receive, eth_can_receive, eth);
602

    
603
        return dma;
604
  err:
605
        qemu_free(eth);
606
        qemu_free(dma);
607
        return NULL;
608
}