Statistics
| Branch: | Revision:

root / hw / rtl8139.c @ f79f2bfc

History | View | Annotate | Download (99.8 kB)

1
/**
2
 * QEMU RTL8139 emulation
3
 *
4
 * Copyright (c) 2006 Igor Kovalenko
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23

24
 * Modifications:
25
 *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26
 *
27
 *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28
 *                                  HW revision ID changes for FreeBSD driver
29
 *
30
 *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31
 *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32
 *                                  Rearranged debugging print statements
33
 *                                  Implemented PCI timer interrupt (disabled by default)
34
 *                                  Implemented Tally Counters, increased VM load/save version
35
 *                                  Implemented IP/TCP/UDP checksum task offloading
36
 *
37
 *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38
 *                                  Fixed MTU=1500 for produced ethernet frames
39
 *
40
 *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41
 *                                  segmentation offloading
42
 *                                  Removed slirp.h dependency
43
 *                                  Added rx/tx buffer reset when enabling rx/tx operation
44
 *
45
 *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46
 *                                  when strictly needed (required for for
47
 *                                  Darwin)
48
 *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49
 */
50

    
51
/* For crc32 */
52
#include <zlib.h>
53

    
54
#include "hw.h"
55
#include "pci.h"
56
#include "dma.h"
57
#include "qemu-timer.h"
58
#include "net.h"
59
#include "loader.h"
60
#include "sysemu.h"
61
#include "iov.h"
62

    
63
/* debug RTL8139 card */
64
//#define DEBUG_RTL8139 1
65

    
66
#define PCI_FREQUENCY 33000000L
67

    
68
/* debug RTL8139 card C+ mode only */
69
//#define DEBUG_RTL8139CP 1
70

    
71
#define SET_MASKED(input, mask, curr) \
72
    ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
73

    
74
/* arg % size for size which is a power of 2 */
75
#define MOD2(input, size) \
76
    ( ( input ) & ( size - 1 )  )
77

    
78
#define ETHER_ADDR_LEN 6
79
#define ETHER_TYPE_LEN 2
80
#define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
81
#define ETH_P_IP    0x0800      /* Internet Protocol packet */
82
#define ETH_P_8021Q 0x8100      /* 802.1Q VLAN Extended Header  */
83
#define ETH_MTU     1500
84

    
85
#define VLAN_TCI_LEN 2
86
#define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
87

    
88
#if defined (DEBUG_RTL8139)
89
#  define DPRINTF(fmt, ...) \
90
    do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
91
#else
92
static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
93
{
94
    return 0;
95
}
96
#endif
97

    
98
/* Symbolic offsets to registers. */
99
enum RTL8139_registers {
100
    MAC0 = 0,        /* Ethernet hardware address. */
101
    MAR0 = 8,        /* Multicast filter. */
102
    TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
103
                     /* Dump Tally Conter control register(64bit). C+ mode only */
104
    TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
105
    RxBuf = 0x30,
106
    ChipCmd = 0x37,
107
    RxBufPtr = 0x38,
108
    RxBufAddr = 0x3A,
109
    IntrMask = 0x3C,
110
    IntrStatus = 0x3E,
111
    TxConfig = 0x40,
112
    RxConfig = 0x44,
113
    Timer = 0x48,        /* A general-purpose counter. */
114
    RxMissed = 0x4C,    /* 24 bits valid, write clears. */
115
    Cfg9346 = 0x50,
116
    Config0 = 0x51,
117
    Config1 = 0x52,
118
    FlashReg = 0x54,
119
    MediaStatus = 0x58,
120
    Config3 = 0x59,
121
    Config4 = 0x5A,        /* absent on RTL-8139A */
122
    HltClk = 0x5B,
123
    MultiIntr = 0x5C,
124
    PCIRevisionID = 0x5E,
125
    TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
126
    BasicModeCtrl = 0x62,
127
    BasicModeStatus = 0x64,
128
    NWayAdvert = 0x66,
129
    NWayLPAR = 0x68,
130
    NWayExpansion = 0x6A,
131
    /* Undocumented registers, but required for proper operation. */
132
    FIFOTMS = 0x70,        /* FIFO Control and test. */
133
    CSCR = 0x74,        /* Chip Status and Configuration Register. */
134
    PARA78 = 0x78,
135
    PARA7c = 0x7c,        /* Magic transceiver parameter register. */
136
    Config5 = 0xD8,        /* absent on RTL-8139A */
137
    /* C+ mode */
138
    TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
139
    RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
140
    CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
141
    IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
142
    RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
143
    RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
144
    TxThresh    = 0xEC, /* Early Tx threshold */
145
};
146

    
147
enum ClearBitMasks {
148
    MultiIntrClear = 0xF000,
149
    ChipCmdClear = 0xE2,
150
    Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
151
};
152

    
153
enum ChipCmdBits {
154
    CmdReset = 0x10,
155
    CmdRxEnb = 0x08,
156
    CmdTxEnb = 0x04,
157
    RxBufEmpty = 0x01,
158
};
159

    
160
/* C+ mode */
161
enum CplusCmdBits {
162
    CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
163
    CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
164
    CPlusRxEnb    = 0x0002,
165
    CPlusTxEnb    = 0x0001,
166
};
167

    
168
/* Interrupt register bits, using my own meaningful names. */
169
enum IntrStatusBits {
170
    PCIErr = 0x8000,
171
    PCSTimeout = 0x4000,
172
    RxFIFOOver = 0x40,
173
    RxUnderrun = 0x20,
174
    RxOverflow = 0x10,
175
    TxErr = 0x08,
176
    TxOK = 0x04,
177
    RxErr = 0x02,
178
    RxOK = 0x01,
179

    
180
    RxAckBits = RxFIFOOver | RxOverflow | RxOK,
181
};
182

    
183
enum TxStatusBits {
184
    TxHostOwns = 0x2000,
185
    TxUnderrun = 0x4000,
186
    TxStatOK = 0x8000,
187
    TxOutOfWindow = 0x20000000,
188
    TxAborted = 0x40000000,
189
    TxCarrierLost = 0x80000000,
190
};
191
enum RxStatusBits {
192
    RxMulticast = 0x8000,
193
    RxPhysical = 0x4000,
194
    RxBroadcast = 0x2000,
195
    RxBadSymbol = 0x0020,
196
    RxRunt = 0x0010,
197
    RxTooLong = 0x0008,
198
    RxCRCErr = 0x0004,
199
    RxBadAlign = 0x0002,
200
    RxStatusOK = 0x0001,
201
};
202

    
203
/* Bits in RxConfig. */
204
enum rx_mode_bits {
205
    AcceptErr = 0x20,
206
    AcceptRunt = 0x10,
207
    AcceptBroadcast = 0x08,
208
    AcceptMulticast = 0x04,
209
    AcceptMyPhys = 0x02,
210
    AcceptAllPhys = 0x01,
211
};
212

    
213
/* Bits in TxConfig. */
214
enum tx_config_bits {
215

    
216
        /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
217
        TxIFGShift = 24,
218
        TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
219
        TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
220
        TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
221
        TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
222

    
223
    TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
224
    TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
225
    TxClearAbt = (1 << 0),    /* Clear abort (WO) */
226
    TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
227
    TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
228

    
229
    TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
230
};
231

    
232

    
233
/* Transmit Status of All Descriptors (TSAD) Register */
234
enum TSAD_bits {
235
 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
236
 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
237
 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
238
 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
239
 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
240
 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
241
 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
242
 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
243
 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
244
 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
245
 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
246
 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
247
 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
248
 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
249
 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
250
 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
251
};
252

    
253

    
254
/* Bits in Config1 */
255
enum Config1Bits {
256
    Cfg1_PM_Enable = 0x01,
257
    Cfg1_VPD_Enable = 0x02,
258
    Cfg1_PIO = 0x04,
259
    Cfg1_MMIO = 0x08,
260
    LWAKE = 0x10,        /* not on 8139, 8139A */
261
    Cfg1_Driver_Load = 0x20,
262
    Cfg1_LED0 = 0x40,
263
    Cfg1_LED1 = 0x80,
264
    SLEEP = (1 << 1),    /* only on 8139, 8139A */
265
    PWRDN = (1 << 0),    /* only on 8139, 8139A */
266
};
267

    
268
/* Bits in Config3 */
269
enum Config3Bits {
270
    Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
271
    Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
272
    Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
273
    Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
274
    Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
275
    Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
276
    Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
277
    Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
278
};
279

    
280
/* Bits in Config4 */
281
enum Config4Bits {
282
    LWPTN = (1 << 2),    /* not on 8139, 8139A */
283
};
284

    
285
/* Bits in Config5 */
286
enum Config5Bits {
287
    Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
288
    Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
289
    Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
290
    Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
291
    Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
292
    Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
293
    Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
294
};
295

    
296
enum RxConfigBits {
297
    /* rx fifo threshold */
298
    RxCfgFIFOShift = 13,
299
    RxCfgFIFONone = (7 << RxCfgFIFOShift),
300

    
301
    /* Max DMA burst */
302
    RxCfgDMAShift = 8,
303
    RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
304

    
305
    /* rx ring buffer length */
306
    RxCfgRcv8K = 0,
307
    RxCfgRcv16K = (1 << 11),
308
    RxCfgRcv32K = (1 << 12),
309
    RxCfgRcv64K = (1 << 11) | (1 << 12),
310

    
311
    /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
312
    RxNoWrap = (1 << 7),
313
};
314

    
315
/* Twister tuning parameters from RealTek.
316
   Completely undocumented, but required to tune bad links on some boards. */
317
/*
318
enum CSCRBits {
319
    CSCR_LinkOKBit = 0x0400,
320
    CSCR_LinkChangeBit = 0x0800,
321
    CSCR_LinkStatusBits = 0x0f000,
322
    CSCR_LinkDownOffCmd = 0x003c0,
323
    CSCR_LinkDownCmd = 0x0f3c0,
324
*/
325
enum CSCRBits {
326
    CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
327
    CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
328
    CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
329
    CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
330
    CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
331
    CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
332
    CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
333
    CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
334
    CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
335
};
336

    
337
enum Cfg9346Bits {
338
    Cfg9346_Lock = 0x00,
339
    Cfg9346_Unlock = 0xC0,
340
};
341

    
342
typedef enum {
343
    CH_8139 = 0,
344
    CH_8139_K,
345
    CH_8139A,
346
    CH_8139A_G,
347
    CH_8139B,
348
    CH_8130,
349
    CH_8139C,
350
    CH_8100,
351
    CH_8100B_8139D,
352
    CH_8101,
353
} chip_t;
354

    
355
enum chip_flags {
356
    HasHltClk = (1 << 0),
357
    HasLWake = (1 << 1),
358
};
359

    
360
#define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
361
    (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
362
#define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
363

    
364
#define RTL8139_PCI_REVID_8139      0x10
365
#define RTL8139_PCI_REVID_8139CPLUS 0x20
366

    
367
#define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
368

    
369
/* Size is 64 * 16bit words */
370
#define EEPROM_9346_ADDR_BITS 6
371
#define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
372
#define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
373

    
374
enum Chip9346Operation
375
{
376
    Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
377
    Chip9346_op_read = 0x80,          /* 10 AAAAAA */
378
    Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
379
    Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
380
    Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
381
    Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
382
    Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
383
};
384

    
385
enum Chip9346Mode
386
{
387
    Chip9346_none = 0,
388
    Chip9346_enter_command_mode,
389
    Chip9346_read_command,
390
    Chip9346_data_read,      /* from output register */
391
    Chip9346_data_write,     /* to input register, then to contents at specified address */
392
    Chip9346_data_write_all, /* to input register, then filling contents */
393
};
394

    
395
typedef struct EEprom9346
396
{
397
    uint16_t contents[EEPROM_9346_SIZE];
398
    int      mode;
399
    uint32_t tick;
400
    uint8_t  address;
401
    uint16_t input;
402
    uint16_t output;
403

    
404
    uint8_t eecs;
405
    uint8_t eesk;
406
    uint8_t eedi;
407
    uint8_t eedo;
408
} EEprom9346;
409

    
410
typedef struct RTL8139TallyCounters
411
{
412
    /* Tally counters */
413
    uint64_t   TxOk;
414
    uint64_t   RxOk;
415
    uint64_t   TxERR;
416
    uint32_t   RxERR;
417
    uint16_t   MissPkt;
418
    uint16_t   FAE;
419
    uint32_t   Tx1Col;
420
    uint32_t   TxMCol;
421
    uint64_t   RxOkPhy;
422
    uint64_t   RxOkBrd;
423
    uint32_t   RxOkMul;
424
    uint16_t   TxAbt;
425
    uint16_t   TxUndrn;
426
} RTL8139TallyCounters;
427

    
428
/* Clears all tally counters */
429
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
430

    
431
typedef struct RTL8139State {
432
    PCIDevice dev;
433
    uint8_t phys[8]; /* mac address */
434
    uint8_t mult[8]; /* multicast mask array */
435

    
436
    uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
437
    uint32_t TxAddr[4];   /* TxAddr0 */
438
    uint32_t RxBuf;       /* Receive buffer */
439
    uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
440
    uint32_t RxBufPtr;
441
    uint32_t RxBufAddr;
442

    
443
    uint16_t IntrStatus;
444
    uint16_t IntrMask;
445

    
446
    uint32_t TxConfig;
447
    uint32_t RxConfig;
448
    uint32_t RxMissed;
449

    
450
    uint16_t CSCR;
451

    
452
    uint8_t  Cfg9346;
453
    uint8_t  Config0;
454
    uint8_t  Config1;
455
    uint8_t  Config3;
456
    uint8_t  Config4;
457
    uint8_t  Config5;
458

    
459
    uint8_t  clock_enabled;
460
    uint8_t  bChipCmdState;
461

    
462
    uint16_t MultiIntr;
463

    
464
    uint16_t BasicModeCtrl;
465
    uint16_t BasicModeStatus;
466
    uint16_t NWayAdvert;
467
    uint16_t NWayLPAR;
468
    uint16_t NWayExpansion;
469

    
470
    uint16_t CpCmd;
471
    uint8_t  TxThresh;
472

    
473
    NICState *nic;
474
    NICConf conf;
475

    
476
    /* C ring mode */
477
    uint32_t   currTxDesc;
478

    
479
    /* C+ mode */
480
    uint32_t   cplus_enabled;
481

    
482
    uint32_t   currCPlusRxDesc;
483
    uint32_t   currCPlusTxDesc;
484

    
485
    uint32_t   RxRingAddrLO;
486
    uint32_t   RxRingAddrHI;
487

    
488
    EEprom9346 eeprom;
489

    
490
    uint32_t   TCTR;
491
    uint32_t   TimerInt;
492
    int64_t    TCTR_base;
493

    
494
    /* Tally counters */
495
    RTL8139TallyCounters tally_counters;
496

    
497
    /* Non-persistent data */
498
    uint8_t   *cplus_txbuffer;
499
    int        cplus_txbuffer_len;
500
    int        cplus_txbuffer_offset;
501

    
502
    /* PCI interrupt timer */
503
    QEMUTimer *timer;
504
    int64_t TimerExpire;
505

    
506
    MemoryRegion bar_io;
507
    MemoryRegion bar_mem;
508

    
509
    /* Support migration to/from old versions */
510
    int rtl8139_mmio_io_addr_dummy;
511
} RTL8139State;
512

    
513
/* Writes tally counters to memory via DMA */
514
static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
515

    
516
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
517

    
518
static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
519
{
520
    DPRINTF("eeprom command 0x%02x\n", command);
521

    
522
    switch (command & Chip9346_op_mask)
523
    {
524
        case Chip9346_op_read:
525
        {
526
            eeprom->address = command & EEPROM_9346_ADDR_MASK;
527
            eeprom->output = eeprom->contents[eeprom->address];
528
            eeprom->eedo = 0;
529
            eeprom->tick = 0;
530
            eeprom->mode = Chip9346_data_read;
531
            DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
532
                eeprom->address, eeprom->output);
533
        }
534
        break;
535

    
536
        case Chip9346_op_write:
537
        {
538
            eeprom->address = command & EEPROM_9346_ADDR_MASK;
539
            eeprom->input = 0;
540
            eeprom->tick = 0;
541
            eeprom->mode = Chip9346_none; /* Chip9346_data_write */
542
            DPRINTF("eeprom begin write to address 0x%02x\n",
543
                eeprom->address);
544
        }
545
        break;
546
        default:
547
            eeprom->mode = Chip9346_none;
548
            switch (command & Chip9346_op_ext_mask)
549
            {
550
                case Chip9346_op_write_enable:
551
                    DPRINTF("eeprom write enabled\n");
552
                    break;
553
                case Chip9346_op_write_all:
554
                    DPRINTF("eeprom begin write all\n");
555
                    break;
556
                case Chip9346_op_write_disable:
557
                    DPRINTF("eeprom write disabled\n");
558
                    break;
559
            }
560
            break;
561
    }
562
}
563

    
564
static void prom9346_shift_clock(EEprom9346 *eeprom)
565
{
566
    int bit = eeprom->eedi?1:0;
567

    
568
    ++ eeprom->tick;
569

    
570
    DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
571
        eeprom->eedo);
572

    
573
    switch (eeprom->mode)
574
    {
575
        case Chip9346_enter_command_mode:
576
            if (bit)
577
            {
578
                eeprom->mode = Chip9346_read_command;
579
                eeprom->tick = 0;
580
                eeprom->input = 0;
581
                DPRINTF("eeprom: +++ synchronized, begin command read\n");
582
            }
583
            break;
584

    
585
        case Chip9346_read_command:
586
            eeprom->input = (eeprom->input << 1) | (bit & 1);
587
            if (eeprom->tick == 8)
588
            {
589
                prom9346_decode_command(eeprom, eeprom->input & 0xff);
590
            }
591
            break;
592

    
593
        case Chip9346_data_read:
594
            eeprom->eedo = (eeprom->output & 0x8000)?1:0;
595
            eeprom->output <<= 1;
596
            if (eeprom->tick == 16)
597
            {
598
#if 1
599
        // the FreeBSD drivers (rl and re) don't explicitly toggle
600
        // CS between reads (or does setting Cfg9346 to 0 count too?),
601
        // so we need to enter wait-for-command state here
602
                eeprom->mode = Chip9346_enter_command_mode;
603
                eeprom->input = 0;
604
                eeprom->tick = 0;
605

    
606
                DPRINTF("eeprom: +++ end of read, awaiting next command\n");
607
#else
608
        // original behaviour
609
                ++eeprom->address;
610
                eeprom->address &= EEPROM_9346_ADDR_MASK;
611
                eeprom->output = eeprom->contents[eeprom->address];
612
                eeprom->tick = 0;
613

    
614
                DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
615
                    eeprom->address, eeprom->output);
616
#endif
617
            }
618
            break;
619

    
620
        case Chip9346_data_write:
621
            eeprom->input = (eeprom->input << 1) | (bit & 1);
622
            if (eeprom->tick == 16)
623
            {
624
                DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
625
                    eeprom->address, eeprom->input);
626

    
627
                eeprom->contents[eeprom->address] = eeprom->input;
628
                eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
629
                eeprom->tick = 0;
630
                eeprom->input = 0;
631
            }
632
            break;
633

    
634
        case Chip9346_data_write_all:
635
            eeprom->input = (eeprom->input << 1) | (bit & 1);
636
            if (eeprom->tick == 16)
637
            {
638
                int i;
639
                for (i = 0; i < EEPROM_9346_SIZE; i++)
640
                {
641
                    eeprom->contents[i] = eeprom->input;
642
                }
643
                DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
644

    
645
                eeprom->mode = Chip9346_enter_command_mode;
646
                eeprom->tick = 0;
647
                eeprom->input = 0;
648
            }
649
            break;
650

    
651
        default:
652
            break;
653
    }
654
}
655

    
656
static int prom9346_get_wire(RTL8139State *s)
657
{
658
    EEprom9346 *eeprom = &s->eeprom;
659
    if (!eeprom->eecs)
660
        return 0;
661

    
662
    return eeprom->eedo;
663
}
664

    
665
/* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
666
static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
667
{
668
    EEprom9346 *eeprom = &s->eeprom;
669
    uint8_t old_eecs = eeprom->eecs;
670
    uint8_t old_eesk = eeprom->eesk;
671

    
672
    eeprom->eecs = eecs;
673
    eeprom->eesk = eesk;
674
    eeprom->eedi = eedi;
675

    
676
    DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
677
        eeprom->eesk, eeprom->eedi, eeprom->eedo);
678

    
679
    if (!old_eecs && eecs)
680
    {
681
        /* Synchronize start */
682
        eeprom->tick = 0;
683
        eeprom->input = 0;
684
        eeprom->output = 0;
685
        eeprom->mode = Chip9346_enter_command_mode;
686

    
687
        DPRINTF("=== eeprom: begin access, enter command mode\n");
688
    }
689

    
690
    if (!eecs)
691
    {
692
        DPRINTF("=== eeprom: end access\n");
693
        return;
694
    }
695

    
696
    if (!old_eesk && eesk)
697
    {
698
        /* SK front rules */
699
        prom9346_shift_clock(eeprom);
700
    }
701
}
702

    
703
static void rtl8139_update_irq(RTL8139State *s)
704
{
705
    int isr;
706
    isr = (s->IntrStatus & s->IntrMask) & 0xffff;
707

    
708
    DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
709
        s->IntrMask);
710

    
711
    qemu_set_irq(s->dev.irq[0], (isr != 0));
712
}
713

    
714
#define POLYNOMIAL 0x04c11db6
715

    
716
/* From FreeBSD */
717
/* XXX: optimize */
718
static int compute_mcast_idx(const uint8_t *ep)
719
{
720
    uint32_t crc;
721
    int carry, i, j;
722
    uint8_t b;
723

    
724
    crc = 0xffffffff;
725
    for (i = 0; i < 6; i++) {
726
        b = *ep++;
727
        for (j = 0; j < 8; j++) {
728
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
729
            crc <<= 1;
730
            b >>= 1;
731
            if (carry)
732
                crc = ((crc ^ POLYNOMIAL) | carry);
733
        }
734
    }
735
    return (crc >> 26);
736
}
737

    
738
static int rtl8139_RxWrap(RTL8139State *s)
739
{
740
    /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
741
    return (s->RxConfig & (1 << 7));
742
}
743

    
744
static int rtl8139_receiver_enabled(RTL8139State *s)
745
{
746
    return s->bChipCmdState & CmdRxEnb;
747
}
748

    
749
static int rtl8139_transmitter_enabled(RTL8139State *s)
750
{
751
    return s->bChipCmdState & CmdTxEnb;
752
}
753

    
754
static int rtl8139_cp_receiver_enabled(RTL8139State *s)
755
{
756
    return s->CpCmd & CPlusRxEnb;
757
}
758

    
759
static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
760
{
761
    return s->CpCmd & CPlusTxEnb;
762
}
763

    
764
static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
765
{
766
    if (s->RxBufAddr + size > s->RxBufferSize)
767
    {
768
        int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
769

    
770
        /* write packet data */
771
        if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
772
        {
773
            DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
774

    
775
            if (size > wrapped)
776
            {
777
                pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
778
                              buf, size-wrapped);
779
            }
780

    
781
            /* reset buffer pointer */
782
            s->RxBufAddr = 0;
783

    
784
            pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
785
                          buf + (size-wrapped), wrapped);
786

    
787
            s->RxBufAddr = wrapped;
788

    
789
            return;
790
        }
791
    }
792

    
793
    /* non-wrapping path or overwrapping enabled */
794
    pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr, buf, size);
795

    
796
    s->RxBufAddr += size;
797
}
798

    
799
#define MIN_BUF_SIZE 60
800
static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
801
{
802
#if TARGET_PHYS_ADDR_BITS > 32
803
    return low | ((target_phys_addr_t)high << 32);
804
#else
805
    return low;
806
#endif
807
}
808

    
809
static int rtl8139_can_receive(VLANClientState *nc)
810
{
811
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
812
    int avail;
813

    
814
    /* Receive (drop) packets if card is disabled.  */
815
    if (!s->clock_enabled)
816
      return 1;
817
    if (!rtl8139_receiver_enabled(s))
818
      return 1;
819

    
820
    if (rtl8139_cp_receiver_enabled(s)) {
821
        /* ??? Flow control not implemented in c+ mode.
822
           This is a hack to work around slirp deficiencies anyway.  */
823
        return 1;
824
    } else {
825
        avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
826
                     s->RxBufferSize);
827
        return (avail == 0 || avail >= 1514);
828
    }
829
}
830

    
831
static ssize_t rtl8139_do_receive(VLANClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
832
{
833
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
834
    /* size is the length of the buffer passed to the driver */
835
    int size = size_;
836
    const uint8_t *dot1q_buf = NULL;
837

    
838
    uint32_t packet_header = 0;
839

    
840
    uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
841
    static const uint8_t broadcast_macaddr[6] =
842
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
843

    
844
    DPRINTF(">>> received len=%d\n", size);
845

    
846
    /* test if board clock is stopped */
847
    if (!s->clock_enabled)
848
    {
849
        DPRINTF("stopped ==========================\n");
850
        return -1;
851
    }
852

    
853
    /* first check if receiver is enabled */
854

    
855
    if (!rtl8139_receiver_enabled(s))
856
    {
857
        DPRINTF("receiver disabled ================\n");
858
        return -1;
859
    }
860

    
861
    /* XXX: check this */
862
    if (s->RxConfig & AcceptAllPhys) {
863
        /* promiscuous: receive all */
864
        DPRINTF(">>> packet received in promiscuous mode\n");
865

    
866
    } else {
867
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
868
            /* broadcast address */
869
            if (!(s->RxConfig & AcceptBroadcast))
870
            {
871
                DPRINTF(">>> broadcast packet rejected\n");
872

    
873
                /* update tally counter */
874
                ++s->tally_counters.RxERR;
875

    
876
                return size;
877
            }
878

    
879
            packet_header |= RxBroadcast;
880

    
881
            DPRINTF(">>> broadcast packet received\n");
882

    
883
            /* update tally counter */
884
            ++s->tally_counters.RxOkBrd;
885

    
886
        } else if (buf[0] & 0x01) {
887
            /* multicast */
888
            if (!(s->RxConfig & AcceptMulticast))
889
            {
890
                DPRINTF(">>> multicast packet rejected\n");
891

    
892
                /* update tally counter */
893
                ++s->tally_counters.RxERR;
894

    
895
                return size;
896
            }
897

    
898
            int mcast_idx = compute_mcast_idx(buf);
899

    
900
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
901
            {
902
                DPRINTF(">>> multicast address mismatch\n");
903

    
904
                /* update tally counter */
905
                ++s->tally_counters.RxERR;
906

    
907
                return size;
908
            }
909

    
910
            packet_header |= RxMulticast;
911

    
912
            DPRINTF(">>> multicast packet received\n");
913

    
914
            /* update tally counter */
915
            ++s->tally_counters.RxOkMul;
916

    
917
        } else if (s->phys[0] == buf[0] &&
918
                   s->phys[1] == buf[1] &&
919
                   s->phys[2] == buf[2] &&
920
                   s->phys[3] == buf[3] &&
921
                   s->phys[4] == buf[4] &&
922
                   s->phys[5] == buf[5]) {
923
            /* match */
924
            if (!(s->RxConfig & AcceptMyPhys))
925
            {
926
                DPRINTF(">>> rejecting physical address matching packet\n");
927

    
928
                /* update tally counter */
929
                ++s->tally_counters.RxERR;
930

    
931
                return size;
932
            }
933

    
934
            packet_header |= RxPhysical;
935

    
936
            DPRINTF(">>> physical address matching packet received\n");
937

    
938
            /* update tally counter */
939
            ++s->tally_counters.RxOkPhy;
940

    
941
        } else {
942

    
943
            DPRINTF(">>> unknown packet\n");
944

    
945
            /* update tally counter */
946
            ++s->tally_counters.RxERR;
947

    
948
            return size;
949
        }
950
    }
951

    
952
    /* if too small buffer, then expand it
953
     * Include some tailroom in case a vlan tag is later removed. */
954
    if (size < MIN_BUF_SIZE + VLAN_HLEN) {
955
        memcpy(buf1, buf, size);
956
        memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
957
        buf = buf1;
958
        if (size < MIN_BUF_SIZE) {
959
            size = MIN_BUF_SIZE;
960
        }
961
    }
962

    
963
    if (rtl8139_cp_receiver_enabled(s))
964
    {
965
        DPRINTF("in C+ Rx mode ================\n");
966

    
967
        /* begin C+ receiver mode */
968

    
969
/* w0 ownership flag */
970
#define CP_RX_OWN (1<<31)
971
/* w0 end of ring flag */
972
#define CP_RX_EOR (1<<30)
973
/* w0 bits 0...12 : buffer size */
974
#define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
975
/* w1 tag available flag */
976
#define CP_RX_TAVA (1<<16)
977
/* w1 bits 0...15 : VLAN tag */
978
#define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
979
/* w2 low  32bit of Rx buffer ptr */
980
/* w3 high 32bit of Rx buffer ptr */
981

    
982
        int descriptor = s->currCPlusRxDesc;
983
        dma_addr_t cplus_rx_ring_desc;
984

    
985
        cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
986
        cplus_rx_ring_desc += 16 * descriptor;
987

    
988
        DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
989
            "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
990
            s->RxRingAddrLO, cplus_rx_ring_desc);
991

    
992
        uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
993

    
994
        pci_dma_read(&s->dev, cplus_rx_ring_desc, &val, 4);
995
        rxdw0 = le32_to_cpu(val);
996
        pci_dma_read(&s->dev, cplus_rx_ring_desc+4, &val, 4);
997
        rxdw1 = le32_to_cpu(val);
998
        pci_dma_read(&s->dev, cplus_rx_ring_desc+8, &val, 4);
999
        rxbufLO = le32_to_cpu(val);
1000
        pci_dma_read(&s->dev, cplus_rx_ring_desc+12, &val, 4);
1001
        rxbufHI = le32_to_cpu(val);
1002

    
1003
        DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
1004
            descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
1005

    
1006
        if (!(rxdw0 & CP_RX_OWN))
1007
        {
1008
            DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1009
                descriptor);
1010

    
1011
            s->IntrStatus |= RxOverflow;
1012
            ++s->RxMissed;
1013

    
1014
            /* update tally counter */
1015
            ++s->tally_counters.RxERR;
1016
            ++s->tally_counters.MissPkt;
1017

    
1018
            rtl8139_update_irq(s);
1019
            return size_;
1020
        }
1021

    
1022
        uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1023

    
1024
        /* write VLAN info to descriptor variables. */
1025
        if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1026
                &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1027
            dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1028
            size -= VLAN_HLEN;
1029
            /* if too small buffer, use the tailroom added duing expansion */
1030
            if (size < MIN_BUF_SIZE) {
1031
                size = MIN_BUF_SIZE;
1032
            }
1033

    
1034
            rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1035
            /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1036
            rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1037
                &dot1q_buf[ETHER_TYPE_LEN]);
1038

    
1039
            DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1040
                be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1041
        } else {
1042
            /* reset VLAN tag flag */
1043
            rxdw1 &= ~CP_RX_TAVA;
1044
        }
1045

    
1046
        /* TODO: scatter the packet over available receive ring descriptors space */
1047

    
1048
        if (size+4 > rx_space)
1049
        {
1050
            DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1051
                descriptor, rx_space, size);
1052

    
1053
            s->IntrStatus |= RxOverflow;
1054
            ++s->RxMissed;
1055

    
1056
            /* update tally counter */
1057
            ++s->tally_counters.RxERR;
1058
            ++s->tally_counters.MissPkt;
1059

    
1060
            rtl8139_update_irq(s);
1061
            return size_;
1062
        }
1063

    
1064
        dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1065

    
1066
        /* receive/copy to target memory */
1067
        if (dot1q_buf) {
1068
            pci_dma_write(&s->dev, rx_addr, buf, 2 * ETHER_ADDR_LEN);
1069
            pci_dma_write(&s->dev, rx_addr + 2 * ETHER_ADDR_LEN,
1070
                          buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1071
                          size - 2 * ETHER_ADDR_LEN);
1072
        } else {
1073
            pci_dma_write(&s->dev, rx_addr, buf, size);
1074
        }
1075

    
1076
        if (s->CpCmd & CPlusRxChkSum)
1077
        {
1078
            /* do some packet checksumming */
1079
        }
1080

    
1081
        /* write checksum */
1082
        val = cpu_to_le32(crc32(0, buf, size_));
1083
        pci_dma_write(&s->dev, rx_addr+size, (uint8_t *)&val, 4);
1084

    
1085
/* first segment of received packet flag */
1086
#define CP_RX_STATUS_FS (1<<29)
1087
/* last segment of received packet flag */
1088
#define CP_RX_STATUS_LS (1<<28)
1089
/* multicast packet flag */
1090
#define CP_RX_STATUS_MAR (1<<26)
1091
/* physical-matching packet flag */
1092
#define CP_RX_STATUS_PAM (1<<25)
1093
/* broadcast packet flag */
1094
#define CP_RX_STATUS_BAR (1<<24)
1095
/* runt packet flag */
1096
#define CP_RX_STATUS_RUNT (1<<19)
1097
/* crc error flag */
1098
#define CP_RX_STATUS_CRC (1<<18)
1099
/* IP checksum error flag */
1100
#define CP_RX_STATUS_IPF (1<<15)
1101
/* UDP checksum error flag */
1102
#define CP_RX_STATUS_UDPF (1<<14)
1103
/* TCP checksum error flag */
1104
#define CP_RX_STATUS_TCPF (1<<13)
1105

    
1106
        /* transfer ownership to target */
1107
        rxdw0 &= ~CP_RX_OWN;
1108

    
1109
        /* set first segment bit */
1110
        rxdw0 |= CP_RX_STATUS_FS;
1111

    
1112
        /* set last segment bit */
1113
        rxdw0 |= CP_RX_STATUS_LS;
1114

    
1115
        /* set received packet type flags */
1116
        if (packet_header & RxBroadcast)
1117
            rxdw0 |= CP_RX_STATUS_BAR;
1118
        if (packet_header & RxMulticast)
1119
            rxdw0 |= CP_RX_STATUS_MAR;
1120
        if (packet_header & RxPhysical)
1121
            rxdw0 |= CP_RX_STATUS_PAM;
1122

    
1123
        /* set received size */
1124
        rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1125
        rxdw0 |= (size+4);
1126

    
1127
        /* update ring data */
1128
        val = cpu_to_le32(rxdw0);
1129
        pci_dma_write(&s->dev, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1130
        val = cpu_to_le32(rxdw1);
1131
        pci_dma_write(&s->dev, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1132

    
1133
        /* update tally counter */
1134
        ++s->tally_counters.RxOk;
1135

    
1136
        /* seek to next Rx descriptor */
1137
        if (rxdw0 & CP_RX_EOR)
1138
        {
1139
            s->currCPlusRxDesc = 0;
1140
        }
1141
        else
1142
        {
1143
            ++s->currCPlusRxDesc;
1144
        }
1145

    
1146
        DPRINTF("done C+ Rx mode ----------------\n");
1147

    
1148
    }
1149
    else
1150
    {
1151
        DPRINTF("in ring Rx mode ================\n");
1152

    
1153
        /* begin ring receiver mode */
1154
        int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1155

    
1156
        /* if receiver buffer is empty then avail == 0 */
1157

    
1158
        if (avail != 0 && size + 8 >= avail)
1159
        {
1160
            DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1161
                "read 0x%04x === available 0x%04x need 0x%04x\n",
1162
                s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1163

    
1164
            s->IntrStatus |= RxOverflow;
1165
            ++s->RxMissed;
1166
            rtl8139_update_irq(s);
1167
            return size_;
1168
        }
1169

    
1170
        packet_header |= RxStatusOK;
1171

    
1172
        packet_header |= (((size+4) << 16) & 0xffff0000);
1173

    
1174
        /* write header */
1175
        uint32_t val = cpu_to_le32(packet_header);
1176

    
1177
        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1178

    
1179
        rtl8139_write_buffer(s, buf, size);
1180

    
1181
        /* write checksum */
1182
        val = cpu_to_le32(crc32(0, buf, size));
1183
        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1184

    
1185
        /* correct buffer write pointer */
1186
        s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1187

    
1188
        /* now we can signal we have received something */
1189

    
1190
        DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1191
            s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1192
    }
1193

    
1194
    s->IntrStatus |= RxOK;
1195

    
1196
    if (do_interrupt)
1197
    {
1198
        rtl8139_update_irq(s);
1199
    }
1200

    
1201
    return size_;
1202
}
1203

    
1204
static ssize_t rtl8139_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
1205
{
1206
    return rtl8139_do_receive(nc, buf, size, 1);
1207
}
1208

    
1209
static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1210
{
1211
    s->RxBufferSize = bufferSize;
1212
    s->RxBufPtr  = 0;
1213
    s->RxBufAddr = 0;
1214
}
1215

    
1216
static void rtl8139_reset(DeviceState *d)
1217
{
1218
    RTL8139State *s = container_of(d, RTL8139State, dev.qdev);
1219
    int i;
1220

    
1221
    /* restore MAC address */
1222
    memcpy(s->phys, s->conf.macaddr.a, 6);
1223

    
1224
    /* reset interrupt mask */
1225
    s->IntrStatus = 0;
1226
    s->IntrMask = 0;
1227

    
1228
    rtl8139_update_irq(s);
1229

    
1230
    /* mark all status registers as owned by host */
1231
    for (i = 0; i < 4; ++i)
1232
    {
1233
        s->TxStatus[i] = TxHostOwns;
1234
    }
1235

    
1236
    s->currTxDesc = 0;
1237
    s->currCPlusRxDesc = 0;
1238
    s->currCPlusTxDesc = 0;
1239

    
1240
    s->RxRingAddrLO = 0;
1241
    s->RxRingAddrHI = 0;
1242

    
1243
    s->RxBuf = 0;
1244

    
1245
    rtl8139_reset_rxring(s, 8192);
1246

    
1247
    /* ACK the reset */
1248
    s->TxConfig = 0;
1249

    
1250
#if 0
1251
//    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1252
    s->clock_enabled = 0;
1253
#else
1254
    s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1255
    s->clock_enabled = 1;
1256
#endif
1257

    
1258
    s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1259

    
1260
    /* set initial state data */
1261
    s->Config0 = 0x0; /* No boot ROM */
1262
    s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1263
    s->Config3 = 0x1; /* fast back-to-back compatible */
1264
    s->Config5 = 0x0;
1265

    
1266
    s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1267

    
1268
    s->CpCmd   = 0x0; /* reset C+ mode */
1269
    s->cplus_enabled = 0;
1270

    
1271

    
1272
//    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1273
//    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1274
    s->BasicModeCtrl = 0x1000; // autonegotiation
1275

    
1276
    s->BasicModeStatus  = 0x7809;
1277
    //s->BasicModeStatus |= 0x0040; /* UTP medium */
1278
    s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1279
    s->BasicModeStatus |= 0x0004; /* link is up */
1280

    
1281
    s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1282
    s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1283
    s->NWayExpansion = 0x0001; /* autonegotiation supported */
1284

    
1285
    /* also reset timer and disable timer interrupt */
1286
    s->TCTR = 0;
1287
    s->TimerInt = 0;
1288
    s->TCTR_base = 0;
1289

    
1290
    /* reset tally counters */
1291
    RTL8139TallyCounters_clear(&s->tally_counters);
1292
}
1293

    
1294
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1295
{
1296
    counters->TxOk = 0;
1297
    counters->RxOk = 0;
1298
    counters->TxERR = 0;
1299
    counters->RxERR = 0;
1300
    counters->MissPkt = 0;
1301
    counters->FAE = 0;
1302
    counters->Tx1Col = 0;
1303
    counters->TxMCol = 0;
1304
    counters->RxOkPhy = 0;
1305
    counters->RxOkBrd = 0;
1306
    counters->RxOkMul = 0;
1307
    counters->TxAbt = 0;
1308
    counters->TxUndrn = 0;
1309
}
1310

    
1311
static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1312
{
1313
    RTL8139TallyCounters *tally_counters = &s->tally_counters;
1314
    uint16_t val16;
1315
    uint32_t val32;
1316
    uint64_t val64;
1317

    
1318
    val64 = cpu_to_le64(tally_counters->TxOk);
1319
    pci_dma_write(&s->dev, tc_addr + 0,     (uint8_t *)&val64, 8);
1320

    
1321
    val64 = cpu_to_le64(tally_counters->RxOk);
1322
    pci_dma_write(&s->dev, tc_addr + 8,     (uint8_t *)&val64, 8);
1323

    
1324
    val64 = cpu_to_le64(tally_counters->TxERR);
1325
    pci_dma_write(&s->dev, tc_addr + 16,    (uint8_t *)&val64, 8);
1326

    
1327
    val32 = cpu_to_le32(tally_counters->RxERR);
1328
    pci_dma_write(&s->dev, tc_addr + 24,    (uint8_t *)&val32, 4);
1329

    
1330
    val16 = cpu_to_le16(tally_counters->MissPkt);
1331
    pci_dma_write(&s->dev, tc_addr + 28,    (uint8_t *)&val16, 2);
1332

    
1333
    val16 = cpu_to_le16(tally_counters->FAE);
1334
    pci_dma_write(&s->dev, tc_addr + 30,    (uint8_t *)&val16, 2);
1335

    
1336
    val32 = cpu_to_le32(tally_counters->Tx1Col);
1337
    pci_dma_write(&s->dev, tc_addr + 32,    (uint8_t *)&val32, 4);
1338

    
1339
    val32 = cpu_to_le32(tally_counters->TxMCol);
1340
    pci_dma_write(&s->dev, tc_addr + 36,    (uint8_t *)&val32, 4);
1341

    
1342
    val64 = cpu_to_le64(tally_counters->RxOkPhy);
1343
    pci_dma_write(&s->dev, tc_addr + 40,    (uint8_t *)&val64, 8);
1344

    
1345
    val64 = cpu_to_le64(tally_counters->RxOkBrd);
1346
    pci_dma_write(&s->dev, tc_addr + 48,    (uint8_t *)&val64, 8);
1347

    
1348
    val32 = cpu_to_le32(tally_counters->RxOkMul);
1349
    pci_dma_write(&s->dev, tc_addr + 56,    (uint8_t *)&val32, 4);
1350

    
1351
    val16 = cpu_to_le16(tally_counters->TxAbt);
1352
    pci_dma_write(&s->dev, tc_addr + 60,    (uint8_t *)&val16, 2);
1353

    
1354
    val16 = cpu_to_le16(tally_counters->TxUndrn);
1355
    pci_dma_write(&s->dev, tc_addr + 62,    (uint8_t *)&val16, 2);
1356
}
1357

    
1358
/* Loads values of tally counters from VM state file */
1359

    
1360
static const VMStateDescription vmstate_tally_counters = {
1361
    .name = "tally_counters",
1362
    .version_id = 1,
1363
    .minimum_version_id = 1,
1364
    .minimum_version_id_old = 1,
1365
    .fields      = (VMStateField []) {
1366
        VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1367
        VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1368
        VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1369
        VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1370
        VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1371
        VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1372
        VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1373
        VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1374
        VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1375
        VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1376
        VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1377
        VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1378
        VMSTATE_END_OF_LIST()
1379
    }
1380
};
1381

    
1382
static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1383
{
1384
    val &= 0xff;
1385

    
1386
    DPRINTF("ChipCmd write val=0x%08x\n", val);
1387

    
1388
    if (val & CmdReset)
1389
    {
1390
        DPRINTF("ChipCmd reset\n");
1391
        rtl8139_reset(&s->dev.qdev);
1392
    }
1393
    if (val & CmdRxEnb)
1394
    {
1395
        DPRINTF("ChipCmd enable receiver\n");
1396

    
1397
        s->currCPlusRxDesc = 0;
1398
    }
1399
    if (val & CmdTxEnb)
1400
    {
1401
        DPRINTF("ChipCmd enable transmitter\n");
1402

    
1403
        s->currCPlusTxDesc = 0;
1404
    }
1405

    
1406
    /* mask unwritable bits */
1407
    val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1408

    
1409
    /* Deassert reset pin before next read */
1410
    val &= ~CmdReset;
1411

    
1412
    s->bChipCmdState = val;
1413
}
1414

    
1415
static int rtl8139_RxBufferEmpty(RTL8139State *s)
1416
{
1417
    int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1418

    
1419
    if (unread != 0)
1420
    {
1421
        DPRINTF("receiver buffer data available 0x%04x\n", unread);
1422
        return 0;
1423
    }
1424

    
1425
    DPRINTF("receiver buffer is empty\n");
1426

    
1427
    return 1;
1428
}
1429

    
1430
static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1431
{
1432
    uint32_t ret = s->bChipCmdState;
1433

    
1434
    if (rtl8139_RxBufferEmpty(s))
1435
        ret |= RxBufEmpty;
1436

    
1437
    DPRINTF("ChipCmd read val=0x%04x\n", ret);
1438

    
1439
    return ret;
1440
}
1441

    
1442
static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1443
{
1444
    val &= 0xffff;
1445

    
1446
    DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1447

    
1448
    s->cplus_enabled = 1;
1449

    
1450
    /* mask unwritable bits */
1451
    val = SET_MASKED(val, 0xff84, s->CpCmd);
1452

    
1453
    s->CpCmd = val;
1454
}
1455

    
1456
static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1457
{
1458
    uint32_t ret = s->CpCmd;
1459

    
1460
    DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1461

    
1462
    return ret;
1463
}
1464

    
1465
static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1466
{
1467
    DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1468
}
1469

    
1470
static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1471
{
1472
    uint32_t ret = 0;
1473

    
1474
    DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1475

    
1476
    return ret;
1477
}
1478

    
1479
static int rtl8139_config_writable(RTL8139State *s)
1480
{
1481
    if (s->Cfg9346 & Cfg9346_Unlock)
1482
    {
1483
        return 1;
1484
    }
1485

    
1486
    DPRINTF("Configuration registers are write-protected\n");
1487

    
1488
    return 0;
1489
}
1490

    
1491
static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1492
{
1493
    val &= 0xffff;
1494

    
1495
    DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1496

    
1497
    /* mask unwritable bits */
1498
    uint32_t mask = 0x4cff;
1499

    
1500
    if (1 || !rtl8139_config_writable(s))
1501
    {
1502
        /* Speed setting and autonegotiation enable bits are read-only */
1503
        mask |= 0x3000;
1504
        /* Duplex mode setting is read-only */
1505
        mask |= 0x0100;
1506
    }
1507

    
1508
    val = SET_MASKED(val, mask, s->BasicModeCtrl);
1509

    
1510
    s->BasicModeCtrl = val;
1511
}
1512

    
1513
static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1514
{
1515
    uint32_t ret = s->BasicModeCtrl;
1516

    
1517
    DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1518

    
1519
    return ret;
1520
}
1521

    
1522
static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1523
{
1524
    val &= 0xffff;
1525

    
1526
    DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1527

    
1528
    /* mask unwritable bits */
1529
    val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1530

    
1531
    s->BasicModeStatus = val;
1532
}
1533

    
1534
static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1535
{
1536
    uint32_t ret = s->BasicModeStatus;
1537

    
1538
    DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1539

    
1540
    return ret;
1541
}
1542

    
1543
static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1544
{
1545
    val &= 0xff;
1546

    
1547
    DPRINTF("Cfg9346 write val=0x%02x\n", val);
1548

    
1549
    /* mask unwritable bits */
1550
    val = SET_MASKED(val, 0x31, s->Cfg9346);
1551

    
1552
    uint32_t opmode = val & 0xc0;
1553
    uint32_t eeprom_val = val & 0xf;
1554

    
1555
    if (opmode == 0x80) {
1556
        /* eeprom access */
1557
        int eecs = (eeprom_val & 0x08)?1:0;
1558
        int eesk = (eeprom_val & 0x04)?1:0;
1559
        int eedi = (eeprom_val & 0x02)?1:0;
1560
        prom9346_set_wire(s, eecs, eesk, eedi);
1561
    } else if (opmode == 0x40) {
1562
        /* Reset.  */
1563
        val = 0;
1564
        rtl8139_reset(&s->dev.qdev);
1565
    }
1566

    
1567
    s->Cfg9346 = val;
1568
}
1569

    
1570
static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1571
{
1572
    uint32_t ret = s->Cfg9346;
1573

    
1574
    uint32_t opmode = ret & 0xc0;
1575

    
1576
    if (opmode == 0x80)
1577
    {
1578
        /* eeprom access */
1579
        int eedo = prom9346_get_wire(s);
1580
        if (eedo)
1581
        {
1582
            ret |=  0x01;
1583
        }
1584
        else
1585
        {
1586
            ret &= ~0x01;
1587
        }
1588
    }
1589

    
1590
    DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1591

    
1592
    return ret;
1593
}
1594

    
1595
static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1596
{
1597
    val &= 0xff;
1598

    
1599
    DPRINTF("Config0 write val=0x%02x\n", val);
1600

    
1601
    if (!rtl8139_config_writable(s)) {
1602
        return;
1603
    }
1604

    
1605
    /* mask unwritable bits */
1606
    val = SET_MASKED(val, 0xf8, s->Config0);
1607

    
1608
    s->Config0 = val;
1609
}
1610

    
1611
static uint32_t rtl8139_Config0_read(RTL8139State *s)
1612
{
1613
    uint32_t ret = s->Config0;
1614

    
1615
    DPRINTF("Config0 read val=0x%02x\n", ret);
1616

    
1617
    return ret;
1618
}
1619

    
1620
static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1621
{
1622
    val &= 0xff;
1623

    
1624
    DPRINTF("Config1 write val=0x%02x\n", val);
1625

    
1626
    if (!rtl8139_config_writable(s)) {
1627
        return;
1628
    }
1629

    
1630
    /* mask unwritable bits */
1631
    val = SET_MASKED(val, 0xC, s->Config1);
1632

    
1633
    s->Config1 = val;
1634
}
1635

    
1636
static uint32_t rtl8139_Config1_read(RTL8139State *s)
1637
{
1638
    uint32_t ret = s->Config1;
1639

    
1640
    DPRINTF("Config1 read val=0x%02x\n", ret);
1641

    
1642
    return ret;
1643
}
1644

    
1645
static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1646
{
1647
    val &= 0xff;
1648

    
1649
    DPRINTF("Config3 write val=0x%02x\n", val);
1650

    
1651
    if (!rtl8139_config_writable(s)) {
1652
        return;
1653
    }
1654

    
1655
    /* mask unwritable bits */
1656
    val = SET_MASKED(val, 0x8F, s->Config3);
1657

    
1658
    s->Config3 = val;
1659
}
1660

    
1661
static uint32_t rtl8139_Config3_read(RTL8139State *s)
1662
{
1663
    uint32_t ret = s->Config3;
1664

    
1665
    DPRINTF("Config3 read val=0x%02x\n", ret);
1666

    
1667
    return ret;
1668
}
1669

    
1670
static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1671
{
1672
    val &= 0xff;
1673

    
1674
    DPRINTF("Config4 write val=0x%02x\n", val);
1675

    
1676
    if (!rtl8139_config_writable(s)) {
1677
        return;
1678
    }
1679

    
1680
    /* mask unwritable bits */
1681
    val = SET_MASKED(val, 0x0a, s->Config4);
1682

    
1683
    s->Config4 = val;
1684
}
1685

    
1686
static uint32_t rtl8139_Config4_read(RTL8139State *s)
1687
{
1688
    uint32_t ret = s->Config4;
1689

    
1690
    DPRINTF("Config4 read val=0x%02x\n", ret);
1691

    
1692
    return ret;
1693
}
1694

    
1695
static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1696
{
1697
    val &= 0xff;
1698

    
1699
    DPRINTF("Config5 write val=0x%02x\n", val);
1700

    
1701
    /* mask unwritable bits */
1702
    val = SET_MASKED(val, 0x80, s->Config5);
1703

    
1704
    s->Config5 = val;
1705
}
1706

    
1707
static uint32_t rtl8139_Config5_read(RTL8139State *s)
1708
{
1709
    uint32_t ret = s->Config5;
1710

    
1711
    DPRINTF("Config5 read val=0x%02x\n", ret);
1712

    
1713
    return ret;
1714
}
1715

    
1716
static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1717
{
1718
    if (!rtl8139_transmitter_enabled(s))
1719
    {
1720
        DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1721
        return;
1722
    }
1723

    
1724
    DPRINTF("TxConfig write val=0x%08x\n", val);
1725

    
1726
    val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1727

    
1728
    s->TxConfig = val;
1729
}
1730

    
1731
static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1732
{
1733
    DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1734

    
1735
    uint32_t tc = s->TxConfig;
1736
    tc &= 0xFFFFFF00;
1737
    tc |= (val & 0x000000FF);
1738
    rtl8139_TxConfig_write(s, tc);
1739
}
1740

    
1741
static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1742
{
1743
    uint32_t ret = s->TxConfig;
1744

    
1745
    DPRINTF("TxConfig read val=0x%04x\n", ret);
1746

    
1747
    return ret;
1748
}
1749

    
1750
static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1751
{
1752
    DPRINTF("RxConfig write val=0x%08x\n", val);
1753

    
1754
    /* mask unwritable bits */
1755
    val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1756

    
1757
    s->RxConfig = val;
1758

    
1759
    /* reset buffer size and read/write pointers */
1760
    rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1761

    
1762
    DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1763
}
1764

    
1765
static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1766
{
1767
    uint32_t ret = s->RxConfig;
1768

    
1769
    DPRINTF("RxConfig read val=0x%08x\n", ret);
1770

    
1771
    return ret;
1772
}
1773

    
1774
static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1775
    int do_interrupt, const uint8_t *dot1q_buf)
1776
{
1777
    struct iovec *iov = NULL;
1778

    
1779
    if (!size)
1780
    {
1781
        DPRINTF("+++ empty ethernet frame\n");
1782
        return;
1783
    }
1784

    
1785
    if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1786
        iov = (struct iovec[3]) {
1787
            { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1788
            { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1789
            { .iov_base = buf + ETHER_ADDR_LEN * 2,
1790
                .iov_len = size - ETHER_ADDR_LEN * 2 },
1791
        };
1792
    }
1793

    
1794
    if (TxLoopBack == (s->TxConfig & TxLoopBack))
1795
    {
1796
        size_t buf2_size;
1797
        uint8_t *buf2;
1798

    
1799
        if (iov) {
1800
            buf2_size = iov_size(iov, 3);
1801
            buf2 = g_malloc(buf2_size);
1802
            iov_to_buf(iov, 3, buf2, 0, buf2_size);
1803
            buf = buf2;
1804
        }
1805

    
1806
        DPRINTF("+++ transmit loopback mode\n");
1807
        rtl8139_do_receive(&s->nic->nc, buf, size, do_interrupt);
1808

    
1809
        if (iov) {
1810
            g_free(buf2);
1811
        }
1812
    }
1813
    else
1814
    {
1815
        if (iov) {
1816
            qemu_sendv_packet(&s->nic->nc, iov, 3);
1817
        } else {
1818
            qemu_send_packet(&s->nic->nc, buf, size);
1819
        }
1820
    }
1821
}
1822

    
1823
static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1824
{
1825
    if (!rtl8139_transmitter_enabled(s))
1826
    {
1827
        DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1828
            "disabled\n", descriptor);
1829
        return 0;
1830
    }
1831

    
1832
    if (s->TxStatus[descriptor] & TxHostOwns)
1833
    {
1834
        DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1835
            "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1836
        return 0;
1837
    }
1838

    
1839
    DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1840

    
1841
    int txsize = s->TxStatus[descriptor] & 0x1fff;
1842
    uint8_t txbuffer[0x2000];
1843

    
1844
    DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1845
        txsize, s->TxAddr[descriptor]);
1846

    
1847
    pci_dma_read(&s->dev, s->TxAddr[descriptor], txbuffer, txsize);
1848

    
1849
    /* Mark descriptor as transferred */
1850
    s->TxStatus[descriptor] |= TxHostOwns;
1851
    s->TxStatus[descriptor] |= TxStatOK;
1852

    
1853
    rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1854

    
1855
    DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1856
        descriptor);
1857

    
1858
    /* update interrupt */
1859
    s->IntrStatus |= TxOK;
1860
    rtl8139_update_irq(s);
1861

    
1862
    return 1;
1863
}
1864

    
1865
/* structures and macros for task offloading */
1866
typedef struct ip_header
1867
{
1868
    uint8_t  ip_ver_len;    /* version and header length */
1869
    uint8_t  ip_tos;        /* type of service */
1870
    uint16_t ip_len;        /* total length */
1871
    uint16_t ip_id;         /* identification */
1872
    uint16_t ip_off;        /* fragment offset field */
1873
    uint8_t  ip_ttl;        /* time to live */
1874
    uint8_t  ip_p;          /* protocol */
1875
    uint16_t ip_sum;        /* checksum */
1876
    uint32_t ip_src,ip_dst; /* source and dest address */
1877
} ip_header;
1878

    
1879
#define IP_HEADER_VERSION_4 4
1880
#define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1881
#define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1882

    
1883
typedef struct tcp_header
1884
{
1885
    uint16_t th_sport;                /* source port */
1886
    uint16_t th_dport;                /* destination port */
1887
    uint32_t th_seq;                        /* sequence number */
1888
    uint32_t th_ack;                        /* acknowledgement number */
1889
    uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1890
    uint16_t th_win;                        /* window */
1891
    uint16_t th_sum;                        /* checksum */
1892
    uint16_t th_urp;                        /* urgent pointer */
1893
} tcp_header;
1894

    
1895
typedef struct udp_header
1896
{
1897
    uint16_t uh_sport; /* source port */
1898
    uint16_t uh_dport; /* destination port */
1899
    uint16_t uh_ulen;  /* udp length */
1900
    uint16_t uh_sum;   /* udp checksum */
1901
} udp_header;
1902

    
1903
typedef struct ip_pseudo_header
1904
{
1905
    uint32_t ip_src;
1906
    uint32_t ip_dst;
1907
    uint8_t  zeros;
1908
    uint8_t  ip_proto;
1909
    uint16_t ip_payload;
1910
} ip_pseudo_header;
1911

    
1912
#define IP_PROTO_TCP 6
1913
#define IP_PROTO_UDP 17
1914

    
1915
#define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1916
#define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1917
#define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1918

    
1919
#define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1920

    
1921
#define TCP_FLAG_FIN  0x01
1922
#define TCP_FLAG_PUSH 0x08
1923

    
1924
/* produces ones' complement sum of data */
1925
static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1926
{
1927
    uint32_t result = 0;
1928

    
1929
    for (; len > 1; data+=2, len-=2)
1930
    {
1931
        result += *(uint16_t*)data;
1932
    }
1933

    
1934
    /* add the remainder byte */
1935
    if (len)
1936
    {
1937
        uint8_t odd[2] = {*data, 0};
1938
        result += *(uint16_t*)odd;
1939
    }
1940

    
1941
    while (result>>16)
1942
        result = (result & 0xffff) + (result >> 16);
1943

    
1944
    return result;
1945
}
1946

    
1947
static uint16_t ip_checksum(void *data, size_t len)
1948
{
1949
    return ~ones_complement_sum((uint8_t*)data, len);
1950
}
1951

    
1952
static int rtl8139_cplus_transmit_one(RTL8139State *s)
1953
{
1954
    if (!rtl8139_transmitter_enabled(s))
1955
    {
1956
        DPRINTF("+++ C+ mode: transmitter disabled\n");
1957
        return 0;
1958
    }
1959

    
1960
    if (!rtl8139_cp_transmitter_enabled(s))
1961
    {
1962
        DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1963
        return 0 ;
1964
    }
1965

    
1966
    int descriptor = s->currCPlusTxDesc;
1967

    
1968
    dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1969

    
1970
    /* Normal priority ring */
1971
    cplus_tx_ring_desc += 16 * descriptor;
1972

    
1973
    DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1974
        "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1975
        s->TxAddr[0], cplus_tx_ring_desc);
1976

    
1977
    uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1978

    
1979
    pci_dma_read(&s->dev, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1980
    txdw0 = le32_to_cpu(val);
1981
    pci_dma_read(&s->dev, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1982
    txdw1 = le32_to_cpu(val);
1983
    pci_dma_read(&s->dev, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1984
    txbufLO = le32_to_cpu(val);
1985
    pci_dma_read(&s->dev, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1986
    txbufHI = le32_to_cpu(val);
1987

    
1988
    DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1989
        txdw0, txdw1, txbufLO, txbufHI);
1990

    
1991
/* w0 ownership flag */
1992
#define CP_TX_OWN (1<<31)
1993
/* w0 end of ring flag */
1994
#define CP_TX_EOR (1<<30)
1995
/* first segment of received packet flag */
1996
#define CP_TX_FS (1<<29)
1997
/* last segment of received packet flag */
1998
#define CP_TX_LS (1<<28)
1999
/* large send packet flag */
2000
#define CP_TX_LGSEN (1<<27)
2001
/* large send MSS mask, bits 16...25 */
2002
#define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
2003

    
2004
/* IP checksum offload flag */
2005
#define CP_TX_IPCS (1<<18)
2006
/* UDP checksum offload flag */
2007
#define CP_TX_UDPCS (1<<17)
2008
/* TCP checksum offload flag */
2009
#define CP_TX_TCPCS (1<<16)
2010

    
2011
/* w0 bits 0...15 : buffer size */
2012
#define CP_TX_BUFFER_SIZE (1<<16)
2013
#define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
2014
/* w1 add tag flag */
2015
#define CP_TX_TAGC (1<<17)
2016
/* w1 bits 0...15 : VLAN tag (big endian) */
2017
#define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2018
/* w2 low  32bit of Rx buffer ptr */
2019
/* w3 high 32bit of Rx buffer ptr */
2020

    
2021
/* set after transmission */
2022
/* FIFO underrun flag */
2023
#define CP_TX_STATUS_UNF (1<<25)
2024
/* transmit error summary flag, valid if set any of three below */
2025
#define CP_TX_STATUS_TES (1<<23)
2026
/* out-of-window collision flag */
2027
#define CP_TX_STATUS_OWC (1<<22)
2028
/* link failure flag */
2029
#define CP_TX_STATUS_LNKF (1<<21)
2030
/* excessive collisions flag */
2031
#define CP_TX_STATUS_EXC (1<<20)
2032

    
2033
    if (!(txdw0 & CP_TX_OWN))
2034
    {
2035
        DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2036
        return 0 ;
2037
    }
2038

    
2039
    DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2040

    
2041
    if (txdw0 & CP_TX_FS)
2042
    {
2043
        DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2044
            "descriptor\n", descriptor);
2045

    
2046
        /* reset internal buffer offset */
2047
        s->cplus_txbuffer_offset = 0;
2048
    }
2049

    
2050
    int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2051
    dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2052

    
2053
    /* make sure we have enough space to assemble the packet */
2054
    if (!s->cplus_txbuffer)
2055
    {
2056
        s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2057
        s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2058
        s->cplus_txbuffer_offset = 0;
2059

    
2060
        DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2061
            s->cplus_txbuffer_len);
2062
    }
2063

    
2064
    while (s->cplus_txbuffer && s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2065
    {
2066
        s->cplus_txbuffer_len += CP_TX_BUFFER_SIZE;
2067
        s->cplus_txbuffer = g_realloc(s->cplus_txbuffer, s->cplus_txbuffer_len);
2068

    
2069
        DPRINTF("+++ C+ mode transmission buffer space changed to %d\n",
2070
            s->cplus_txbuffer_len);
2071
    }
2072

    
2073
    if (!s->cplus_txbuffer)
2074
    {
2075
        /* out of memory */
2076

    
2077
        DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2078
            s->cplus_txbuffer_len);
2079

    
2080
        /* update tally counter */
2081
        ++s->tally_counters.TxERR;
2082
        ++s->tally_counters.TxAbt;
2083

    
2084
        return 0;
2085
    }
2086

    
2087
    /* append more data to the packet */
2088

    
2089
    DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2090
            DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2091
            s->cplus_txbuffer_offset);
2092

    
2093
    pci_dma_read(&s->dev, tx_addr,
2094
                 s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2095
    s->cplus_txbuffer_offset += txsize;
2096

    
2097
    /* seek to next Rx descriptor */
2098
    if (txdw0 & CP_TX_EOR)
2099
    {
2100
        s->currCPlusTxDesc = 0;
2101
    }
2102
    else
2103
    {
2104
        ++s->currCPlusTxDesc;
2105
        if (s->currCPlusTxDesc >= 64)
2106
            s->currCPlusTxDesc = 0;
2107
    }
2108

    
2109
    /* transfer ownership to target */
2110
    txdw0 &= ~CP_RX_OWN;
2111

    
2112
    /* reset error indicator bits */
2113
    txdw0 &= ~CP_TX_STATUS_UNF;
2114
    txdw0 &= ~CP_TX_STATUS_TES;
2115
    txdw0 &= ~CP_TX_STATUS_OWC;
2116
    txdw0 &= ~CP_TX_STATUS_LNKF;
2117
    txdw0 &= ~CP_TX_STATUS_EXC;
2118

    
2119
    /* update ring data */
2120
    val = cpu_to_le32(txdw0);
2121
    pci_dma_write(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2122

    
2123
    /* Now decide if descriptor being processed is holding the last segment of packet */
2124
    if (txdw0 & CP_TX_LS)
2125
    {
2126
        uint8_t dot1q_buffer_space[VLAN_HLEN];
2127
        uint16_t *dot1q_buffer;
2128

    
2129
        DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2130
            descriptor);
2131

    
2132
        /* can transfer fully assembled packet */
2133

    
2134
        uint8_t *saved_buffer  = s->cplus_txbuffer;
2135
        int      saved_size    = s->cplus_txbuffer_offset;
2136
        int      saved_buffer_len = s->cplus_txbuffer_len;
2137

    
2138
        /* create vlan tag */
2139
        if (txdw1 & CP_TX_TAGC) {
2140
            /* the vlan tag is in BE byte order in the descriptor
2141
             * BE + le_to_cpu() + ~swap()~ = cpu */
2142
            DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2143
                bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2144

    
2145
            dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2146
            dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2147
            /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2148
            dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2149
        } else {
2150
            dot1q_buffer = NULL;
2151
        }
2152

    
2153
        /* reset the card space to protect from recursive call */
2154
        s->cplus_txbuffer = NULL;
2155
        s->cplus_txbuffer_offset = 0;
2156
        s->cplus_txbuffer_len = 0;
2157

    
2158
        if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2159
        {
2160
            DPRINTF("+++ C+ mode offloaded task checksum\n");
2161

    
2162
            /* ip packet header */
2163
            ip_header *ip = NULL;
2164
            int hlen = 0;
2165
            uint8_t  ip_protocol = 0;
2166
            uint16_t ip_data_len = 0;
2167

    
2168
            uint8_t *eth_payload_data = NULL;
2169
            size_t   eth_payload_len  = 0;
2170

    
2171
            int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2172
            if (proto == ETH_P_IP)
2173
            {
2174
                DPRINTF("+++ C+ mode has IP packet\n");
2175

    
2176
                /* not aligned */
2177
                eth_payload_data = saved_buffer + ETH_HLEN;
2178
                eth_payload_len  = saved_size   - ETH_HLEN;
2179

    
2180
                ip = (ip_header*)eth_payload_data;
2181

    
2182
                if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2183
                    DPRINTF("+++ C+ mode packet has bad IP version %d "
2184
                        "expected %d\n", IP_HEADER_VERSION(ip),
2185
                        IP_HEADER_VERSION_4);
2186
                    ip = NULL;
2187
                } else {
2188
                    hlen = IP_HEADER_LENGTH(ip);
2189
                    ip_protocol = ip->ip_p;
2190
                    ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2191
                }
2192
            }
2193

    
2194
            if (ip)
2195
            {
2196
                if (txdw0 & CP_TX_IPCS)
2197
                {
2198
                    DPRINTF("+++ C+ mode need IP checksum\n");
2199

    
2200
                    if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2201
                        /* bad packet header len */
2202
                        /* or packet too short */
2203
                    }
2204
                    else
2205
                    {
2206
                        ip->ip_sum = 0;
2207
                        ip->ip_sum = ip_checksum(ip, hlen);
2208
                        DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2209
                            hlen, ip->ip_sum);
2210
                    }
2211
                }
2212

    
2213
                if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2214
                {
2215
                    int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2216

    
2217
                    DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2218
                        "frame data %d specified MSS=%d\n", ETH_MTU,
2219
                        ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2220

    
2221
                    int tcp_send_offset = 0;
2222
                    int send_count = 0;
2223

    
2224
                    /* maximum IP header length is 60 bytes */
2225
                    uint8_t saved_ip_header[60];
2226

    
2227
                    /* save IP header template; data area is used in tcp checksum calculation */
2228
                    memcpy(saved_ip_header, eth_payload_data, hlen);
2229

    
2230
                    /* a placeholder for checksum calculation routine in tcp case */
2231
                    uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2232
                    //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2233

    
2234
                    /* pointer to TCP header */
2235
                    tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2236

    
2237
                    int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2238

    
2239
                    /* ETH_MTU = ip header len + tcp header len + payload */
2240
                    int tcp_data_len = ip_data_len - tcp_hlen;
2241
                    int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2242

    
2243
                    DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2244
                        "data len %d TCP chunk size %d\n", ip_data_len,
2245
                        tcp_hlen, tcp_data_len, tcp_chunk_size);
2246

    
2247
                    /* note the cycle below overwrites IP header data,
2248
                       but restores it from saved_ip_header before sending packet */
2249

    
2250
                    int is_last_frame = 0;
2251

    
2252
                    for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2253
                    {
2254
                        uint16_t chunk_size = tcp_chunk_size;
2255

    
2256
                        /* check if this is the last frame */
2257
                        if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2258
                        {
2259
                            is_last_frame = 1;
2260
                            chunk_size = tcp_data_len - tcp_send_offset;
2261
                        }
2262

    
2263
                        DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2264
                            be32_to_cpu(p_tcp_hdr->th_seq));
2265

    
2266
                        /* add 4 TCP pseudoheader fields */
2267
                        /* copy IP source and destination fields */
2268
                        memcpy(data_to_checksum, saved_ip_header + 12, 8);
2269

    
2270
                        DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2271
                            "packet with %d bytes data\n", tcp_hlen +
2272
                            chunk_size);
2273

    
2274
                        if (tcp_send_offset)
2275
                        {
2276
                            memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2277
                        }
2278

    
2279
                        /* keep PUSH and FIN flags only for the last frame */
2280
                        if (!is_last_frame)
2281
                        {
2282
                            TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2283
                        }
2284

    
2285
                        /* recalculate TCP checksum */
2286
                        ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2287
                        p_tcpip_hdr->zeros      = 0;
2288
                        p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2289
                        p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2290

    
2291
                        p_tcp_hdr->th_sum = 0;
2292

    
2293
                        int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2294
                        DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2295
                            tcp_checksum);
2296

    
2297
                        p_tcp_hdr->th_sum = tcp_checksum;
2298

    
2299
                        /* restore IP header */
2300
                        memcpy(eth_payload_data, saved_ip_header, hlen);
2301

    
2302
                        /* set IP data length and recalculate IP checksum */
2303
                        ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2304

    
2305
                        /* increment IP id for subsequent frames */
2306
                        ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2307

    
2308
                        ip->ip_sum = 0;
2309
                        ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2310
                        DPRINTF("+++ C+ mode TSO IP header len=%d "
2311
                            "checksum=%04x\n", hlen, ip->ip_sum);
2312

    
2313
                        int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2314
                        DPRINTF("+++ C+ mode TSO transferring packet size "
2315
                            "%d\n", tso_send_size);
2316
                        rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2317
                            0, (uint8_t *) dot1q_buffer);
2318

    
2319
                        /* add transferred count to TCP sequence number */
2320
                        p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2321
                        ++send_count;
2322
                    }
2323

    
2324
                    /* Stop sending this frame */
2325
                    saved_size = 0;
2326
                }
2327
                else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2328
                {
2329
                    DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2330

    
2331
                    /* maximum IP header length is 60 bytes */
2332
                    uint8_t saved_ip_header[60];
2333
                    memcpy(saved_ip_header, eth_payload_data, hlen);
2334

    
2335
                    uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2336
                    //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2337

    
2338
                    /* add 4 TCP pseudoheader fields */
2339
                    /* copy IP source and destination fields */
2340
                    memcpy(data_to_checksum, saved_ip_header + 12, 8);
2341

    
2342
                    if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2343
                    {
2344
                        DPRINTF("+++ C+ mode calculating TCP checksum for "
2345
                            "packet with %d bytes data\n", ip_data_len);
2346

    
2347
                        ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2348
                        p_tcpip_hdr->zeros      = 0;
2349
                        p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2350
                        p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2351

    
2352
                        tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2353

    
2354
                        p_tcp_hdr->th_sum = 0;
2355

    
2356
                        int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2357
                        DPRINTF("+++ C+ mode TCP checksum %04x\n",
2358
                            tcp_checksum);
2359

    
2360
                        p_tcp_hdr->th_sum = tcp_checksum;
2361
                    }
2362
                    else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2363
                    {
2364
                        DPRINTF("+++ C+ mode calculating UDP checksum for "
2365
                            "packet with %d bytes data\n", ip_data_len);
2366

    
2367
                        ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2368
                        p_udpip_hdr->zeros      = 0;
2369
                        p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2370
                        p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2371

    
2372
                        udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2373

    
2374
                        p_udp_hdr->uh_sum = 0;
2375

    
2376
                        int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2377
                        DPRINTF("+++ C+ mode UDP checksum %04x\n",
2378
                            udp_checksum);
2379

    
2380
                        p_udp_hdr->uh_sum = udp_checksum;
2381
                    }
2382

    
2383
                    /* restore IP header */
2384
                    memcpy(eth_payload_data, saved_ip_header, hlen);
2385
                }
2386
            }
2387
        }
2388

    
2389
        /* update tally counter */
2390
        ++s->tally_counters.TxOk;
2391

    
2392
        DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2393

    
2394
        rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2395
            (uint8_t *) dot1q_buffer);
2396

    
2397
        /* restore card space if there was no recursion and reset offset */
2398
        if (!s->cplus_txbuffer)
2399
        {
2400
            s->cplus_txbuffer        = saved_buffer;
2401
            s->cplus_txbuffer_len    = saved_buffer_len;
2402
            s->cplus_txbuffer_offset = 0;
2403
        }
2404
        else
2405
        {
2406
            g_free(saved_buffer);
2407
        }
2408
    }
2409
    else
2410
    {
2411
        DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2412
    }
2413

    
2414
    return 1;
2415
}
2416

    
2417
static void rtl8139_cplus_transmit(RTL8139State *s)
2418
{
2419
    int txcount = 0;
2420

    
2421
    while (rtl8139_cplus_transmit_one(s))
2422
    {
2423
        ++txcount;
2424
    }
2425

    
2426
    /* Mark transfer completed */
2427
    if (!txcount)
2428
    {
2429
        DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2430
            s->currCPlusTxDesc);
2431
    }
2432
    else
2433
    {
2434
        /* update interrupt status */
2435
        s->IntrStatus |= TxOK;
2436
        rtl8139_update_irq(s);
2437
    }
2438
}
2439

    
2440
static void rtl8139_transmit(RTL8139State *s)
2441
{
2442
    int descriptor = s->currTxDesc, txcount = 0;
2443

    
2444
    /*while*/
2445
    if (rtl8139_transmit_one(s, descriptor))
2446
    {
2447
        ++s->currTxDesc;
2448
        s->currTxDesc %= 4;
2449
        ++txcount;
2450
    }
2451

    
2452
    /* Mark transfer completed */
2453
    if (!txcount)
2454
    {
2455
        DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2456
            s->currTxDesc);
2457
    }
2458
}
2459

    
2460
static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2461
{
2462

    
2463
    int descriptor = txRegOffset/4;
2464

    
2465
    /* handle C+ transmit mode register configuration */
2466

    
2467
    if (s->cplus_enabled)
2468
    {
2469
        DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2470
            "descriptor=%d\n", txRegOffset, val, descriptor);
2471

    
2472
        /* handle Dump Tally Counters command */
2473
        s->TxStatus[descriptor] = val;
2474

    
2475
        if (descriptor == 0 && (val & 0x8))
2476
        {
2477
            target_phys_addr_t tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2478

    
2479
            /* dump tally counters to specified memory location */
2480
            RTL8139TallyCounters_dma_write(s, tc_addr);
2481

    
2482
            /* mark dump completed */
2483
            s->TxStatus[0] &= ~0x8;
2484
        }
2485

    
2486
        return;
2487
    }
2488

    
2489
    DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2490
        txRegOffset, val, descriptor);
2491

    
2492
    /* mask only reserved bits */
2493
    val &= ~0xff00c000; /* these bits are reset on write */
2494
    val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2495

    
2496
    s->TxStatus[descriptor] = val;
2497

    
2498
    /* attempt to start transmission */
2499
    rtl8139_transmit(s);
2500
}
2501

    
2502
static uint32_t rtl8139_TxStatus_read(RTL8139State *s, uint32_t txRegOffset)
2503
{
2504
    uint32_t ret = s->TxStatus[txRegOffset/4];
2505

    
2506
    DPRINTF("TxStatus read offset=0x%x val=0x%08x\n", txRegOffset, ret);
2507

    
2508
    return ret;
2509
}
2510

    
2511
static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2512
{
2513
    uint16_t ret = 0;
2514

    
2515
    /* Simulate TSAD, it is read only anyway */
2516

    
2517
    ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2518
         |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2519
         |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2520
         |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2521

    
2522
         |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2523
         |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2524
         |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2525
         |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2526

    
2527
         |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2528
         |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2529
         |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2530
         |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2531

    
2532
         |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2533
         |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2534
         |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2535
         |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2536

    
2537

    
2538
    DPRINTF("TSAD read val=0x%04x\n", ret);
2539

    
2540
    return ret;
2541
}
2542

    
2543
static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2544
{
2545
    uint16_t ret = s->CSCR;
2546

    
2547
    DPRINTF("CSCR read val=0x%04x\n", ret);
2548

    
2549
    return ret;
2550
}
2551

    
2552
static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2553
{
2554
    DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2555

    
2556
    s->TxAddr[txAddrOffset/4] = val;
2557
}
2558

    
2559
static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2560
{
2561
    uint32_t ret = s->TxAddr[txAddrOffset/4];
2562

    
2563
    DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2564

    
2565
    return ret;
2566
}
2567

    
2568
static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2569
{
2570
    DPRINTF("RxBufPtr write val=0x%04x\n", val);
2571

    
2572
    /* this value is off by 16 */
2573
    s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2574

    
2575
    DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2576
        s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2577
}
2578

    
2579
static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2580
{
2581
    /* this value is off by 16 */
2582
    uint32_t ret = s->RxBufPtr - 0x10;
2583

    
2584
    DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2585

    
2586
    return ret;
2587
}
2588

    
2589
static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2590
{
2591
    /* this value is NOT off by 16 */
2592
    uint32_t ret = s->RxBufAddr;
2593

    
2594
    DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2595

    
2596
    return ret;
2597
}
2598

    
2599
static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2600
{
2601
    DPRINTF("RxBuf write val=0x%08x\n", val);
2602

    
2603
    s->RxBuf = val;
2604

    
2605
    /* may need to reset rxring here */
2606
}
2607

    
2608
static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2609
{
2610
    uint32_t ret = s->RxBuf;
2611

    
2612
    DPRINTF("RxBuf read val=0x%08x\n", ret);
2613

    
2614
    return ret;
2615
}
2616

    
2617
static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2618
{
2619
    DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2620

    
2621
    /* mask unwritable bits */
2622
    val = SET_MASKED(val, 0x1e00, s->IntrMask);
2623

    
2624
    s->IntrMask = val;
2625

    
2626
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2627
    rtl8139_update_irq(s);
2628

    
2629
}
2630

    
2631
static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2632
{
2633
    uint32_t ret = s->IntrMask;
2634

    
2635
    DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2636

    
2637
    return ret;
2638
}
2639

    
2640
static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2641
{
2642
    DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2643

    
2644
#if 0
2645

2646
    /* writing to ISR has no effect */
2647

2648
    return;
2649

2650
#else
2651
    uint16_t newStatus = s->IntrStatus & ~val;
2652

    
2653
    /* mask unwritable bits */
2654
    newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2655

    
2656
    /* writing 1 to interrupt status register bit clears it */
2657
    s->IntrStatus = 0;
2658
    rtl8139_update_irq(s);
2659

    
2660
    s->IntrStatus = newStatus;
2661
    /*
2662
     * Computing if we miss an interrupt here is not that correct but
2663
     * considered that we should have had already an interrupt
2664
     * and probably emulated is slower is better to assume this resetting was
2665
     * done before testing on previous rtl8139_update_irq lead to IRQ losing
2666
     */
2667
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2668
    rtl8139_update_irq(s);
2669

    
2670
#endif
2671
}
2672

    
2673
static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2674
{
2675
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2676

    
2677
    uint32_t ret = s->IntrStatus;
2678

    
2679
    DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2680

    
2681
#if 0
2682

2683
    /* reading ISR clears all interrupts */
2684
    s->IntrStatus = 0;
2685

2686
    rtl8139_update_irq(s);
2687

2688
#endif
2689

    
2690
    return ret;
2691
}
2692

    
2693
static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2694
{
2695
    DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2696

    
2697
    /* mask unwritable bits */
2698
    val = SET_MASKED(val, 0xf000, s->MultiIntr);
2699

    
2700
    s->MultiIntr = val;
2701
}
2702

    
2703
static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2704
{
2705
    uint32_t ret = s->MultiIntr;
2706

    
2707
    DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2708

    
2709
    return ret;
2710
}
2711

    
2712
static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2713
{
2714
    RTL8139State *s = opaque;
2715

    
2716
    switch (addr)
2717
    {
2718
        case MAC0 ... MAC0+5:
2719
            s->phys[addr - MAC0] = val;
2720
            break;
2721
        case MAC0+6 ... MAC0+7:
2722
            /* reserved */
2723
            break;
2724
        case MAR0 ... MAR0+7:
2725
            s->mult[addr - MAR0] = val;
2726
            break;
2727
        case ChipCmd:
2728
            rtl8139_ChipCmd_write(s, val);
2729
            break;
2730
        case Cfg9346:
2731
            rtl8139_Cfg9346_write(s, val);
2732
            break;
2733
        case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2734
            rtl8139_TxConfig_writeb(s, val);
2735
            break;
2736
        case Config0:
2737
            rtl8139_Config0_write(s, val);
2738
            break;
2739
        case Config1:
2740
            rtl8139_Config1_write(s, val);
2741
            break;
2742
        case Config3:
2743
            rtl8139_Config3_write(s, val);
2744
            break;
2745
        case Config4:
2746
            rtl8139_Config4_write(s, val);
2747
            break;
2748
        case Config5:
2749
            rtl8139_Config5_write(s, val);
2750
            break;
2751
        case MediaStatus:
2752
            /* ignore */
2753
            DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2754
                val);
2755
            break;
2756

    
2757
        case HltClk:
2758
            DPRINTF("HltClk write val=0x%08x\n", val);
2759
            if (val == 'R')
2760
            {
2761
                s->clock_enabled = 1;
2762
            }
2763
            else if (val == 'H')
2764
            {
2765
                s->clock_enabled = 0;
2766
            }
2767
            break;
2768

    
2769
        case TxThresh:
2770
            DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2771
            s->TxThresh = val;
2772
            break;
2773

    
2774
        case TxPoll:
2775
            DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2776
            if (val & (1 << 7))
2777
            {
2778
                DPRINTF("C+ TxPoll high priority transmission (not "
2779
                    "implemented)\n");
2780
                //rtl8139_cplus_transmit(s);
2781
            }
2782
            if (val & (1 << 6))
2783
            {
2784
                DPRINTF("C+ TxPoll normal priority transmission\n");
2785
                rtl8139_cplus_transmit(s);
2786
            }
2787

    
2788
            break;
2789

    
2790
        default:
2791
            DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2792
                val);
2793
            break;
2794
    }
2795
}
2796

    
2797
static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2798
{
2799
    RTL8139State *s = opaque;
2800

    
2801
    switch (addr)
2802
    {
2803
        case IntrMask:
2804
            rtl8139_IntrMask_write(s, val);
2805
            break;
2806

    
2807
        case IntrStatus:
2808
            rtl8139_IntrStatus_write(s, val);
2809
            break;
2810

    
2811
        case MultiIntr:
2812
            rtl8139_MultiIntr_write(s, val);
2813
            break;
2814

    
2815
        case RxBufPtr:
2816
            rtl8139_RxBufPtr_write(s, val);
2817
            break;
2818

    
2819
        case BasicModeCtrl:
2820
            rtl8139_BasicModeCtrl_write(s, val);
2821
            break;
2822
        case BasicModeStatus:
2823
            rtl8139_BasicModeStatus_write(s, val);
2824
            break;
2825
        case NWayAdvert:
2826
            DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2827
            s->NWayAdvert = val;
2828
            break;
2829
        case NWayLPAR:
2830
            DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2831
            break;
2832
        case NWayExpansion:
2833
            DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2834
            s->NWayExpansion = val;
2835
            break;
2836

    
2837
        case CpCmd:
2838
            rtl8139_CpCmd_write(s, val);
2839
            break;
2840

    
2841
        case IntrMitigate:
2842
            rtl8139_IntrMitigate_write(s, val);
2843
            break;
2844

    
2845
        default:
2846
            DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2847
                addr, val);
2848

    
2849
            rtl8139_io_writeb(opaque, addr, val & 0xff);
2850
            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2851
            break;
2852
    }
2853
}
2854

    
2855
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2856
{
2857
    int64_t pci_time, next_time;
2858
    uint32_t low_pci;
2859

    
2860
    DPRINTF("entered rtl8139_set_next_tctr_time\n");
2861

    
2862
    if (s->TimerExpire && current_time >= s->TimerExpire) {
2863
        s->IntrStatus |= PCSTimeout;
2864
        rtl8139_update_irq(s);
2865
    }
2866

    
2867
    /* Set QEMU timer only if needed that is
2868
     * - TimerInt <> 0 (we have a timer)
2869
     * - mask = 1 (we want an interrupt timer)
2870
     * - irq = 0  (irq is not already active)
2871
     * If any of above change we need to compute timer again
2872
     * Also we must check if timer is passed without QEMU timer
2873
     */
2874
    s->TimerExpire = 0;
2875
    if (!s->TimerInt) {
2876
        return;
2877
    }
2878

    
2879
    pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2880
                                get_ticks_per_sec());
2881
    low_pci = pci_time & 0xffffffff;
2882
    pci_time = pci_time - low_pci + s->TimerInt;
2883
    if (low_pci >= s->TimerInt) {
2884
        pci_time += 0x100000000LL;
2885
    }
2886
    next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2887
                                                PCI_FREQUENCY);
2888
    s->TimerExpire = next_time;
2889

    
2890
    if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2891
        qemu_mod_timer(s->timer, next_time);
2892
    }
2893
}
2894

    
2895
static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2896
{
2897
    RTL8139State *s = opaque;
2898

    
2899
    switch (addr)
2900
    {
2901
        case RxMissed:
2902
            DPRINTF("RxMissed clearing on write\n");
2903
            s->RxMissed = 0;
2904
            break;
2905

    
2906
        case TxConfig:
2907
            rtl8139_TxConfig_write(s, val);
2908
            break;
2909

    
2910
        case RxConfig:
2911
            rtl8139_RxConfig_write(s, val);
2912
            break;
2913

    
2914
        case TxStatus0 ... TxStatus0+4*4-1:
2915
            rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2916
            break;
2917

    
2918
        case TxAddr0 ... TxAddr0+4*4-1:
2919
            rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2920
            break;
2921

    
2922
        case RxBuf:
2923
            rtl8139_RxBuf_write(s, val);
2924
            break;
2925

    
2926
        case RxRingAddrLO:
2927
            DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2928
            s->RxRingAddrLO = val;
2929
            break;
2930

    
2931
        case RxRingAddrHI:
2932
            DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2933
            s->RxRingAddrHI = val;
2934
            break;
2935

    
2936
        case Timer:
2937
            DPRINTF("TCTR Timer reset on write\n");
2938
            s->TCTR_base = qemu_get_clock_ns(vm_clock);
2939
            rtl8139_set_next_tctr_time(s, s->TCTR_base);
2940
            break;
2941

    
2942
        case FlashReg:
2943
            DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2944
            if (s->TimerInt != val) {
2945
                s->TimerInt = val;
2946
                rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2947
            }
2948
            break;
2949

    
2950
        default:
2951
            DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2952
                addr, val);
2953
            rtl8139_io_writeb(opaque, addr, val & 0xff);
2954
            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2955
            rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2956
            rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2957
            break;
2958
    }
2959
}
2960

    
2961
static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2962
{
2963
    RTL8139State *s = opaque;
2964
    int ret;
2965

    
2966
    switch (addr)
2967
    {
2968
        case MAC0 ... MAC0+5:
2969
            ret = s->phys[addr - MAC0];
2970
            break;
2971
        case MAC0+6 ... MAC0+7:
2972
            ret = 0;
2973
            break;
2974
        case MAR0 ... MAR0+7:
2975
            ret = s->mult[addr - MAR0];
2976
            break;
2977
        case ChipCmd:
2978
            ret = rtl8139_ChipCmd_read(s);
2979
            break;
2980
        case Cfg9346:
2981
            ret = rtl8139_Cfg9346_read(s);
2982
            break;
2983
        case Config0:
2984
            ret = rtl8139_Config0_read(s);
2985
            break;
2986
        case Config1:
2987
            ret = rtl8139_Config1_read(s);
2988
            break;
2989
        case Config3:
2990
            ret = rtl8139_Config3_read(s);
2991
            break;
2992
        case Config4:
2993
            ret = rtl8139_Config4_read(s);
2994
            break;
2995
        case Config5:
2996
            ret = rtl8139_Config5_read(s);
2997
            break;
2998

    
2999
        case MediaStatus:
3000
            ret = 0xd0;
3001
            DPRINTF("MediaStatus read 0x%x\n", ret);
3002
            break;
3003

    
3004
        case HltClk:
3005
            ret = s->clock_enabled;
3006
            DPRINTF("HltClk read 0x%x\n", ret);
3007
            break;
3008

    
3009
        case PCIRevisionID:
3010
            ret = RTL8139_PCI_REVID;
3011
            DPRINTF("PCI Revision ID read 0x%x\n", ret);
3012
            break;
3013

    
3014
        case TxThresh:
3015
            ret = s->TxThresh;
3016
            DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3017
            break;
3018

    
3019
        case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3020
            ret = s->TxConfig >> 24;
3021
            DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3022
            break;
3023

    
3024
        default:
3025
            DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3026
            ret = 0;
3027
            break;
3028
    }
3029

    
3030
    return ret;
3031
}
3032

    
3033
static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3034
{
3035
    RTL8139State *s = opaque;
3036
    uint32_t ret;
3037

    
3038
    switch (addr)
3039
    {
3040
        case IntrMask:
3041
            ret = rtl8139_IntrMask_read(s);
3042
            break;
3043

    
3044
        case IntrStatus:
3045
            ret = rtl8139_IntrStatus_read(s);
3046
            break;
3047

    
3048
        case MultiIntr:
3049
            ret = rtl8139_MultiIntr_read(s);
3050
            break;
3051

    
3052
        case RxBufPtr:
3053
            ret = rtl8139_RxBufPtr_read(s);
3054
            break;
3055

    
3056
        case RxBufAddr:
3057
            ret = rtl8139_RxBufAddr_read(s);
3058
            break;
3059

    
3060
        case BasicModeCtrl:
3061
            ret = rtl8139_BasicModeCtrl_read(s);
3062
            break;
3063
        case BasicModeStatus:
3064
            ret = rtl8139_BasicModeStatus_read(s);
3065
            break;
3066
        case NWayAdvert:
3067
            ret = s->NWayAdvert;
3068
            DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3069
            break;
3070
        case NWayLPAR:
3071
            ret = s->NWayLPAR;
3072
            DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3073
            break;
3074
        case NWayExpansion:
3075
            ret = s->NWayExpansion;
3076
            DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3077
            break;
3078

    
3079
        case CpCmd:
3080
            ret = rtl8139_CpCmd_read(s);
3081
            break;
3082

    
3083
        case IntrMitigate:
3084
            ret = rtl8139_IntrMitigate_read(s);
3085
            break;
3086

    
3087
        case TxSummary:
3088
            ret = rtl8139_TSAD_read(s);
3089
            break;
3090

    
3091
        case CSCR:
3092
            ret = rtl8139_CSCR_read(s);
3093
            break;
3094

    
3095
        default:
3096
            DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3097

    
3098
            ret  = rtl8139_io_readb(opaque, addr);
3099
            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3100

    
3101
            DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3102
            break;
3103
    }
3104

    
3105
    return ret;
3106
}
3107

    
3108
static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3109
{
3110
    RTL8139State *s = opaque;
3111
    uint32_t ret;
3112

    
3113
    switch (addr)
3114
    {
3115
        case RxMissed:
3116
            ret = s->RxMissed;
3117

    
3118
            DPRINTF("RxMissed read val=0x%08x\n", ret);
3119
            break;
3120

    
3121
        case TxConfig:
3122
            ret = rtl8139_TxConfig_read(s);
3123
            break;
3124

    
3125
        case RxConfig:
3126
            ret = rtl8139_RxConfig_read(s);
3127
            break;
3128

    
3129
        case TxStatus0 ... TxStatus0+4*4-1:
3130
            ret = rtl8139_TxStatus_read(s, addr-TxStatus0);
3131
            break;
3132

    
3133
        case TxAddr0 ... TxAddr0+4*4-1:
3134
            ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3135
            break;
3136

    
3137
        case RxBuf:
3138
            ret = rtl8139_RxBuf_read(s);
3139
            break;
3140

    
3141
        case RxRingAddrLO:
3142
            ret = s->RxRingAddrLO;
3143
            DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3144
            break;
3145

    
3146
        case RxRingAddrHI:
3147
            ret = s->RxRingAddrHI;
3148
            DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3149
            break;
3150

    
3151
        case Timer:
3152
            ret = muldiv64(qemu_get_clock_ns(vm_clock) - s->TCTR_base,
3153
                           PCI_FREQUENCY, get_ticks_per_sec());
3154
            DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3155
            break;
3156

    
3157
        case FlashReg:
3158
            ret = s->TimerInt;
3159
            DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3160
            break;
3161

    
3162
        default:
3163
            DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3164

    
3165
            ret  = rtl8139_io_readb(opaque, addr);
3166
            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3167
            ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3168
            ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3169

    
3170
            DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3171
            break;
3172
    }
3173

    
3174
    return ret;
3175
}
3176

    
3177
/* */
3178

    
3179
static void rtl8139_ioport_writeb(void *opaque, uint32_t addr, uint32_t val)
3180
{
3181
    rtl8139_io_writeb(opaque, addr & 0xFF, val);
3182
}
3183

    
3184
static void rtl8139_ioport_writew(void *opaque, uint32_t addr, uint32_t val)
3185
{
3186
    rtl8139_io_writew(opaque, addr & 0xFF, val);
3187
}
3188

    
3189
static void rtl8139_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
3190
{
3191
    rtl8139_io_writel(opaque, addr & 0xFF, val);
3192
}
3193

    
3194
static uint32_t rtl8139_ioport_readb(void *opaque, uint32_t addr)
3195
{
3196
    return rtl8139_io_readb(opaque, addr & 0xFF);
3197
}
3198

    
3199
static uint32_t rtl8139_ioport_readw(void *opaque, uint32_t addr)
3200
{
3201
    return rtl8139_io_readw(opaque, addr & 0xFF);
3202
}
3203

    
3204
static uint32_t rtl8139_ioport_readl(void *opaque, uint32_t addr)
3205
{
3206
    return rtl8139_io_readl(opaque, addr & 0xFF);
3207
}
3208

    
3209
/* */
3210

    
3211
static void rtl8139_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3212
{
3213
    rtl8139_io_writeb(opaque, addr & 0xFF, val);
3214
}
3215

    
3216
static void rtl8139_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3217
{
3218
    rtl8139_io_writew(opaque, addr & 0xFF, val);
3219
}
3220

    
3221
static void rtl8139_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3222
{
3223
    rtl8139_io_writel(opaque, addr & 0xFF, val);
3224
}
3225

    
3226
static uint32_t rtl8139_mmio_readb(void *opaque, target_phys_addr_t addr)
3227
{
3228
    return rtl8139_io_readb(opaque, addr & 0xFF);
3229
}
3230

    
3231
static uint32_t rtl8139_mmio_readw(void *opaque, target_phys_addr_t addr)
3232
{
3233
    uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3234
    return val;
3235
}
3236

    
3237
static uint32_t rtl8139_mmio_readl(void *opaque, target_phys_addr_t addr)
3238
{
3239
    uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3240
    return val;
3241
}
3242

    
3243
static int rtl8139_post_load(void *opaque, int version_id)
3244
{
3245
    RTL8139State* s = opaque;
3246
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3247
    if (version_id < 4) {
3248
        s->cplus_enabled = s->CpCmd != 0;
3249
    }
3250

    
3251
    return 0;
3252
}
3253

    
3254
static bool rtl8139_hotplug_ready_needed(void *opaque)
3255
{
3256
    return qdev_machine_modified();
3257
}
3258

    
3259
static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3260
    .name = "rtl8139/hotplug_ready",
3261
    .version_id = 1,
3262
    .minimum_version_id = 1,
3263
    .minimum_version_id_old = 1,
3264
    .fields      = (VMStateField []) {
3265
        VMSTATE_END_OF_LIST()
3266
    }
3267
};
3268

    
3269
static void rtl8139_pre_save(void *opaque)
3270
{
3271
    RTL8139State* s = opaque;
3272
    int64_t current_time = qemu_get_clock_ns(vm_clock);
3273

    
3274
    /* set IntrStatus correctly */
3275
    rtl8139_set_next_tctr_time(s, current_time);
3276
    s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3277
                       get_ticks_per_sec());
3278
    s->rtl8139_mmio_io_addr_dummy = 0;
3279
}
3280

    
3281
static const VMStateDescription vmstate_rtl8139 = {
3282
    .name = "rtl8139",
3283
    .version_id = 4,
3284
    .minimum_version_id = 3,
3285
    .minimum_version_id_old = 3,
3286
    .post_load = rtl8139_post_load,
3287
    .pre_save  = rtl8139_pre_save,
3288
    .fields      = (VMStateField []) {
3289
        VMSTATE_PCI_DEVICE(dev, RTL8139State),
3290
        VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3291
        VMSTATE_BUFFER(mult, RTL8139State),
3292
        VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3293
        VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3294

    
3295
        VMSTATE_UINT32(RxBuf, RTL8139State),
3296
        VMSTATE_UINT32(RxBufferSize, RTL8139State),
3297
        VMSTATE_UINT32(RxBufPtr, RTL8139State),
3298
        VMSTATE_UINT32(RxBufAddr, RTL8139State),
3299

    
3300
        VMSTATE_UINT16(IntrStatus, RTL8139State),
3301
        VMSTATE_UINT16(IntrMask, RTL8139State),
3302

    
3303
        VMSTATE_UINT32(TxConfig, RTL8139State),
3304
        VMSTATE_UINT32(RxConfig, RTL8139State),
3305
        VMSTATE_UINT32(RxMissed, RTL8139State),
3306
        VMSTATE_UINT16(CSCR, RTL8139State),
3307

    
3308
        VMSTATE_UINT8(Cfg9346, RTL8139State),
3309
        VMSTATE_UINT8(Config0, RTL8139State),
3310
        VMSTATE_UINT8(Config1, RTL8139State),
3311
        VMSTATE_UINT8(Config3, RTL8139State),
3312
        VMSTATE_UINT8(Config4, RTL8139State),
3313
        VMSTATE_UINT8(Config5, RTL8139State),
3314

    
3315
        VMSTATE_UINT8(clock_enabled, RTL8139State),
3316
        VMSTATE_UINT8(bChipCmdState, RTL8139State),
3317

    
3318
        VMSTATE_UINT16(MultiIntr, RTL8139State),
3319

    
3320
        VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3321
        VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3322
        VMSTATE_UINT16(NWayAdvert, RTL8139State),
3323
        VMSTATE_UINT16(NWayLPAR, RTL8139State),
3324
        VMSTATE_UINT16(NWayExpansion, RTL8139State),
3325

    
3326
        VMSTATE_UINT16(CpCmd, RTL8139State),
3327
        VMSTATE_UINT8(TxThresh, RTL8139State),
3328

    
3329
        VMSTATE_UNUSED(4),
3330
        VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3331
        VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3332

    
3333
        VMSTATE_UINT32(currTxDesc, RTL8139State),
3334
        VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3335
        VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3336
        VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3337
        VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3338

    
3339
        VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3340
        VMSTATE_INT32(eeprom.mode, RTL8139State),
3341
        VMSTATE_UINT32(eeprom.tick, RTL8139State),
3342
        VMSTATE_UINT8(eeprom.address, RTL8139State),
3343
        VMSTATE_UINT16(eeprom.input, RTL8139State),
3344
        VMSTATE_UINT16(eeprom.output, RTL8139State),
3345

    
3346
        VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3347
        VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3348
        VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3349
        VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3350

    
3351
        VMSTATE_UINT32(TCTR, RTL8139State),
3352
        VMSTATE_UINT32(TimerInt, RTL8139State),
3353
        VMSTATE_INT64(TCTR_base, RTL8139State),
3354

    
3355
        VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3356
                       vmstate_tally_counters, RTL8139TallyCounters),
3357

    
3358
        VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3359
        VMSTATE_END_OF_LIST()
3360
    },
3361
    .subsections = (VMStateSubsection []) {
3362
        {
3363
            .vmsd = &vmstate_rtl8139_hotplug_ready,
3364
            .needed = rtl8139_hotplug_ready_needed,
3365
        }, {
3366
            /* empty */
3367
        }
3368
    }
3369
};
3370

    
3371
/***********************************************************/
3372
/* PCI RTL8139 definitions */
3373

    
3374
static const MemoryRegionPortio rtl8139_portio[] = {
3375
    { 0, 0x100, 1, .read = rtl8139_ioport_readb, },
3376
    { 0, 0x100, 1, .write = rtl8139_ioport_writeb, },
3377
    { 0, 0x100, 2, .read = rtl8139_ioport_readw, },
3378
    { 0, 0x100, 2, .write = rtl8139_ioport_writew, },
3379
    { 0, 0x100, 4, .read = rtl8139_ioport_readl, },
3380
    { 0, 0x100, 4, .write = rtl8139_ioport_writel, },
3381
    PORTIO_END_OF_LIST()
3382
};
3383

    
3384
static const MemoryRegionOps rtl8139_io_ops = {
3385
    .old_portio = rtl8139_portio,
3386
    .endianness = DEVICE_LITTLE_ENDIAN,
3387
};
3388

    
3389
static const MemoryRegionOps rtl8139_mmio_ops = {
3390
    .old_mmio = {
3391
        .read = {
3392
            rtl8139_mmio_readb,
3393
            rtl8139_mmio_readw,
3394
            rtl8139_mmio_readl,
3395
        },
3396
        .write = {
3397
            rtl8139_mmio_writeb,
3398
            rtl8139_mmio_writew,
3399
            rtl8139_mmio_writel,
3400
        },
3401
    },
3402
    .endianness = DEVICE_LITTLE_ENDIAN,
3403
};
3404

    
3405
static void rtl8139_timer(void *opaque)
3406
{
3407
    RTL8139State *s = opaque;
3408

    
3409
    if (!s->clock_enabled)
3410
    {
3411
        DPRINTF(">>> timer: clock is not running\n");
3412
        return;
3413
    }
3414

    
3415
    s->IntrStatus |= PCSTimeout;
3416
    rtl8139_update_irq(s);
3417
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3418
}
3419

    
3420
static void rtl8139_cleanup(VLANClientState *nc)
3421
{
3422
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
3423

    
3424
    s->nic = NULL;
3425
}
3426

    
3427
static int pci_rtl8139_uninit(PCIDevice *dev)
3428
{
3429
    RTL8139State *s = DO_UPCAST(RTL8139State, dev, dev);
3430

    
3431
    memory_region_destroy(&s->bar_io);
3432
    memory_region_destroy(&s->bar_mem);
3433
    if (s->cplus_txbuffer) {
3434
        g_free(s->cplus_txbuffer);
3435
        s->cplus_txbuffer = NULL;
3436
    }
3437
    qemu_del_timer(s->timer);
3438
    qemu_free_timer(s->timer);
3439
    qemu_del_vlan_client(&s->nic->nc);
3440
    return 0;
3441
}
3442

    
3443
static NetClientInfo net_rtl8139_info = {
3444
    .type = NET_CLIENT_TYPE_NIC,
3445
    .size = sizeof(NICState),
3446
    .can_receive = rtl8139_can_receive,
3447
    .receive = rtl8139_receive,
3448
    .cleanup = rtl8139_cleanup,
3449
};
3450

    
3451
static int pci_rtl8139_init(PCIDevice *dev)
3452
{
3453
    RTL8139State * s = DO_UPCAST(RTL8139State, dev, dev);
3454
    uint8_t *pci_conf;
3455

    
3456
    pci_conf = s->dev.config;
3457
    pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3458
    /* TODO: start of capability list, but no capability
3459
     * list bit in status register, and offset 0xdc seems unused. */
3460
    pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3461

    
3462
    memory_region_init_io(&s->bar_io, &rtl8139_io_ops, s, "rtl8139", 0x100);
3463
    memory_region_init_io(&s->bar_mem, &rtl8139_mmio_ops, s, "rtl8139", 0x100);
3464
    pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3465
    pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3466

    
3467
    qemu_macaddr_default_if_unset(&s->conf.macaddr);
3468

    
3469
    /* prepare eeprom */
3470
    s->eeprom.contents[0] = 0x8129;
3471
#if 1
3472
    /* PCI vendor and device ID should be mirrored here */
3473
    s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3474
    s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3475
#endif
3476
    s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3477
    s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3478
    s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3479

    
3480
    s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3481
                          object_get_typename(OBJECT(dev)), dev->qdev.id, s);
3482
    qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
3483

    
3484
    s->cplus_txbuffer = NULL;
3485
    s->cplus_txbuffer_len = 0;
3486
    s->cplus_txbuffer_offset = 0;
3487

    
3488
    s->TimerExpire = 0;
3489
    s->timer = qemu_new_timer_ns(vm_clock, rtl8139_timer, s);
3490
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3491

    
3492
    add_boot_device_path(s->conf.bootindex, &dev->qdev, "/ethernet-phy@0");
3493

    
3494
    return 0;
3495
}
3496

    
3497
static PCIDeviceInfo rtl8139_info = {
3498
    .qdev.name  = "rtl8139",
3499
    .qdev.size  = sizeof(RTL8139State),
3500
    .qdev.reset = rtl8139_reset,
3501
    .qdev.vmsd  = &vmstate_rtl8139,
3502
    .init       = pci_rtl8139_init,
3503
    .exit       = pci_rtl8139_uninit,
3504
    .romfile    = "pxe-rtl8139.rom",
3505
    .vendor_id  = PCI_VENDOR_ID_REALTEK,
3506
    .device_id  = PCI_DEVICE_ID_REALTEK_8139,
3507
    .revision   = RTL8139_PCI_REVID, /* >=0x20 is for 8139C+ */
3508
    .class_id   = PCI_CLASS_NETWORK_ETHERNET,
3509
    .qdev.props = (Property[]) {
3510
        DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3511
        DEFINE_PROP_END_OF_LIST(),
3512
    }
3513
};
3514

    
3515
static void rtl8139_register_devices(void)
3516
{
3517
    pci_qdev_register(&rtl8139_info);
3518
}
3519

    
3520
device_init(rtl8139_register_devices)