Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ f7b4f61f

History | View | Annotate | Download (20.9 kB)

1 80cabfad bellard
/*
2 80cabfad bellard
 * QEMU MC146818 RTC emulation
3 5fafdf24 ths
 *
4 80cabfad bellard
 * Copyright (c) 2003-2004 Fabrice Bellard
5 5fafdf24 ths
 *
6 80cabfad bellard
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 80cabfad bellard
 * of this software and associated documentation files (the "Software"), to deal
8 80cabfad bellard
 * in the Software without restriction, including without limitation the rights
9 80cabfad bellard
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 80cabfad bellard
 * copies of the Software, and to permit persons to whom the Software is
11 80cabfad bellard
 * furnished to do so, subject to the following conditions:
12 80cabfad bellard
 *
13 80cabfad bellard
 * The above copyright notice and this permission notice shall be included in
14 80cabfad bellard
 * all copies or substantial portions of the Software.
15 80cabfad bellard
 *
16 80cabfad bellard
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 80cabfad bellard
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 80cabfad bellard
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 80cabfad bellard
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 80cabfad bellard
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 80cabfad bellard
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 80cabfad bellard
 * THE SOFTWARE.
23 80cabfad bellard
 */
24 87ecb68b pbrook
#include "hw.h"
25 87ecb68b pbrook
#include "qemu-timer.h"
26 87ecb68b pbrook
#include "sysemu.h"
27 87ecb68b pbrook
#include "pc.h"
28 87ecb68b pbrook
#include "isa.h"
29 16b29ae1 aliguori
#include "hpet_emul.h"
30 80cabfad bellard
31 80cabfad bellard
//#define DEBUG_CMOS
32 80cabfad bellard
33 80cabfad bellard
#define RTC_SECONDS             0
34 80cabfad bellard
#define RTC_SECONDS_ALARM       1
35 80cabfad bellard
#define RTC_MINUTES             2
36 80cabfad bellard
#define RTC_MINUTES_ALARM       3
37 80cabfad bellard
#define RTC_HOURS               4
38 80cabfad bellard
#define RTC_HOURS_ALARM         5
39 80cabfad bellard
#define RTC_ALARM_DONT_CARE    0xC0
40 80cabfad bellard
41 80cabfad bellard
#define RTC_DAY_OF_WEEK         6
42 80cabfad bellard
#define RTC_DAY_OF_MONTH        7
43 80cabfad bellard
#define RTC_MONTH               8
44 80cabfad bellard
#define RTC_YEAR                9
45 80cabfad bellard
46 80cabfad bellard
#define RTC_REG_A               10
47 80cabfad bellard
#define RTC_REG_B               11
48 80cabfad bellard
#define RTC_REG_C               12
49 80cabfad bellard
#define RTC_REG_D               13
50 80cabfad bellard
51 dff38e7b bellard
#define REG_A_UIP 0x80
52 80cabfad bellard
53 100d9891 aurel32
#define REG_B_SET  0x80
54 100d9891 aurel32
#define REG_B_PIE  0x40
55 100d9891 aurel32
#define REG_B_AIE  0x20
56 100d9891 aurel32
#define REG_B_UIE  0x10
57 100d9891 aurel32
#define REG_B_SQWE 0x08
58 100d9891 aurel32
#define REG_B_DM   0x04
59 dff38e7b bellard
60 72716184 Anthony Liguori
#define REG_C_UF   0x10
61 72716184 Anthony Liguori
#define REG_C_IRQF 0x80
62 72716184 Anthony Liguori
#define REG_C_PF   0x40
63 72716184 Anthony Liguori
#define REG_C_AF   0x20
64 72716184 Anthony Liguori
65 dff38e7b bellard
struct RTCState {
66 dff38e7b bellard
    uint8_t cmos_data[128];
67 dff38e7b bellard
    uint8_t cmos_index;
68 43f493af bellard
    struct tm current_tm;
69 42fc73a1 aurel32
    int base_year;
70 d537cf6c pbrook
    qemu_irq irq;
71 100d9891 aurel32
    qemu_irq sqw_irq;
72 18c6e2ff ths
    int it_shift;
73 dff38e7b bellard
    /* periodic timer */
74 dff38e7b bellard
    QEMUTimer *periodic_timer;
75 dff38e7b bellard
    int64_t next_periodic_time;
76 dff38e7b bellard
    /* second update */
77 dff38e7b bellard
    int64_t next_second_time;
78 73822ec8 aliguori
#ifdef TARGET_I386
79 73822ec8 aliguori
    uint32_t irq_coalesced;
80 73822ec8 aliguori
    uint32_t period;
81 93b66569 aliguori
    QEMUTimer *coalesced_timer;
82 73822ec8 aliguori
#endif
83 dff38e7b bellard
    QEMUTimer *second_timer;
84 dff38e7b bellard
    QEMUTimer *second_timer2;
85 dff38e7b bellard
};
86 dff38e7b bellard
87 16b29ae1 aliguori
static void rtc_irq_raise(qemu_irq irq) {
88 c50c2d68 aurel32
    /* When HPET is operating in legacy mode, RTC interrupts are disabled
89 16b29ae1 aliguori
     * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
90 c50c2d68 aurel32
     * mode is established while interrupt is raised. We want it to
91 16b29ae1 aliguori
     * be lowered in any case
92 c50c2d68 aurel32
     */
93 16b29ae1 aliguori
#if defined TARGET_I386 || defined TARGET_X86_64
94 c50c2d68 aurel32
    if (!hpet_in_legacy_mode())
95 16b29ae1 aliguori
#endif
96 16b29ae1 aliguori
        qemu_irq_raise(irq);
97 16b29ae1 aliguori
}
98 16b29ae1 aliguori
99 dff38e7b bellard
static void rtc_set_time(RTCState *s);
100 dff38e7b bellard
static void rtc_copy_date(RTCState *s);
101 dff38e7b bellard
102 93b66569 aliguori
#ifdef TARGET_I386
103 93b66569 aliguori
static void rtc_coalesced_timer_update(RTCState *s)
104 93b66569 aliguori
{
105 93b66569 aliguori
    if (s->irq_coalesced == 0) {
106 93b66569 aliguori
        qemu_del_timer(s->coalesced_timer);
107 93b66569 aliguori
    } else {
108 93b66569 aliguori
        /* divide each RTC interval to 2 - 8 smaller intervals */
109 93b66569 aliguori
        int c = MIN(s->irq_coalesced, 7) + 1; 
110 93b66569 aliguori
        int64_t next_clock = qemu_get_clock(vm_clock) +
111 93b66569 aliguori
                muldiv64(s->period / c, ticks_per_sec, 32768);
112 93b66569 aliguori
        qemu_mod_timer(s->coalesced_timer, next_clock);
113 93b66569 aliguori
    }
114 93b66569 aliguori
}
115 93b66569 aliguori
116 93b66569 aliguori
static void rtc_coalesced_timer(void *opaque)
117 93b66569 aliguori
{
118 93b66569 aliguori
    RTCState *s = opaque;
119 93b66569 aliguori
120 93b66569 aliguori
    if (s->irq_coalesced != 0) {
121 93b66569 aliguori
        apic_reset_irq_delivered();
122 93b66569 aliguori
        s->cmos_data[RTC_REG_C] |= 0xc0;
123 93b66569 aliguori
        rtc_irq_raise(s->irq);
124 93b66569 aliguori
        if (apic_get_irq_delivered()) {
125 93b66569 aliguori
            s->irq_coalesced--;
126 93b66569 aliguori
        }
127 93b66569 aliguori
    }
128 93b66569 aliguori
129 93b66569 aliguori
    rtc_coalesced_timer_update(s);
130 93b66569 aliguori
}
131 93b66569 aliguori
#endif
132 93b66569 aliguori
133 dff38e7b bellard
static void rtc_timer_update(RTCState *s, int64_t current_time)
134 dff38e7b bellard
{
135 dff38e7b bellard
    int period_code, period;
136 dff38e7b bellard
    int64_t cur_clock, next_irq_clock;
137 100d9891 aurel32
    int enable_pie;
138 dff38e7b bellard
139 dff38e7b bellard
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
140 16b29ae1 aliguori
#if defined TARGET_I386 || defined TARGET_X86_64
141 c50c2d68 aurel32
    /* disable periodic timer if hpet is in legacy mode, since interrupts are
142 16b29ae1 aliguori
     * disabled anyway.
143 16b29ae1 aliguori
     */
144 a8b01dd8 pbrook
    enable_pie = !hpet_in_legacy_mode();
145 16b29ae1 aliguori
#else
146 100d9891 aurel32
    enable_pie = 1;
147 16b29ae1 aliguori
#endif
148 100d9891 aurel32
    if (period_code != 0
149 100d9891 aurel32
        && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
150 100d9891 aurel32
            || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
151 dff38e7b bellard
        if (period_code <= 2)
152 dff38e7b bellard
            period_code += 7;
153 dff38e7b bellard
        /* period in 32 Khz cycles */
154 dff38e7b bellard
        period = 1 << (period_code - 1);
155 73822ec8 aliguori
#ifdef TARGET_I386
156 73822ec8 aliguori
        if(period != s->period)
157 73822ec8 aliguori
            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
158 73822ec8 aliguori
        s->period = period;
159 73822ec8 aliguori
#endif
160 dff38e7b bellard
        /* compute 32 khz clock */
161 dff38e7b bellard
        cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
162 dff38e7b bellard
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
163 dff38e7b bellard
        s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
164 dff38e7b bellard
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
165 dff38e7b bellard
    } else {
166 73822ec8 aliguori
#ifdef TARGET_I386
167 73822ec8 aliguori
        s->irq_coalesced = 0;
168 73822ec8 aliguori
#endif
169 dff38e7b bellard
        qemu_del_timer(s->periodic_timer);
170 dff38e7b bellard
    }
171 dff38e7b bellard
}
172 dff38e7b bellard
173 dff38e7b bellard
static void rtc_periodic_timer(void *opaque)
174 dff38e7b bellard
{
175 dff38e7b bellard
    RTCState *s = opaque;
176 dff38e7b bellard
177 dff38e7b bellard
    rtc_timer_update(s, s->next_periodic_time);
178 100d9891 aurel32
    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
179 100d9891 aurel32
        s->cmos_data[RTC_REG_C] |= 0xc0;
180 93b66569 aliguori
#ifdef TARGET_I386
181 93b66569 aliguori
        if(rtc_td_hack) {
182 93b66569 aliguori
            apic_reset_irq_delivered();
183 93b66569 aliguori
            rtc_irq_raise(s->irq);
184 93b66569 aliguori
            if (!apic_get_irq_delivered()) {
185 93b66569 aliguori
                s->irq_coalesced++;
186 93b66569 aliguori
                rtc_coalesced_timer_update(s);
187 93b66569 aliguori
            }
188 93b66569 aliguori
        } else
189 93b66569 aliguori
#endif
190 100d9891 aurel32
        rtc_irq_raise(s->irq);
191 100d9891 aurel32
    }
192 100d9891 aurel32
    if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
193 100d9891 aurel32
        /* Not square wave at all but we don't want 2048Hz interrupts!
194 100d9891 aurel32
           Must be seen as a pulse.  */
195 100d9891 aurel32
        qemu_irq_raise(s->sqw_irq);
196 100d9891 aurel32
    }
197 dff38e7b bellard
}
198 80cabfad bellard
199 b41a2cd1 bellard
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
200 80cabfad bellard
{
201 b41a2cd1 bellard
    RTCState *s = opaque;
202 80cabfad bellard
203 80cabfad bellard
    if ((addr & 1) == 0) {
204 80cabfad bellard
        s->cmos_index = data & 0x7f;
205 80cabfad bellard
    } else {
206 80cabfad bellard
#ifdef DEBUG_CMOS
207 80cabfad bellard
        printf("cmos: write index=0x%02x val=0x%02x\n",
208 80cabfad bellard
               s->cmos_index, data);
209 3b46e624 ths
#endif
210 dff38e7b bellard
        switch(s->cmos_index) {
211 80cabfad bellard
        case RTC_SECONDS_ALARM:
212 80cabfad bellard
        case RTC_MINUTES_ALARM:
213 80cabfad bellard
        case RTC_HOURS_ALARM:
214 80cabfad bellard
            /* XXX: not supported */
215 80cabfad bellard
            s->cmos_data[s->cmos_index] = data;
216 80cabfad bellard
            break;
217 80cabfad bellard
        case RTC_SECONDS:
218 80cabfad bellard
        case RTC_MINUTES:
219 80cabfad bellard
        case RTC_HOURS:
220 80cabfad bellard
        case RTC_DAY_OF_WEEK:
221 80cabfad bellard
        case RTC_DAY_OF_MONTH:
222 80cabfad bellard
        case RTC_MONTH:
223 80cabfad bellard
        case RTC_YEAR:
224 80cabfad bellard
            s->cmos_data[s->cmos_index] = data;
225 dff38e7b bellard
            /* if in set mode, do not update the time */
226 dff38e7b bellard
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
227 dff38e7b bellard
                rtc_set_time(s);
228 dff38e7b bellard
            }
229 80cabfad bellard
            break;
230 80cabfad bellard
        case RTC_REG_A:
231 dff38e7b bellard
            /* UIP bit is read only */
232 dff38e7b bellard
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
233 dff38e7b bellard
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
234 dff38e7b bellard
            rtc_timer_update(s, qemu_get_clock(vm_clock));
235 dff38e7b bellard
            break;
236 80cabfad bellard
        case RTC_REG_B:
237 dff38e7b bellard
            if (data & REG_B_SET) {
238 dff38e7b bellard
                /* set mode: reset UIP mode */
239 dff38e7b bellard
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
240 dff38e7b bellard
                data &= ~REG_B_UIE;
241 dff38e7b bellard
            } else {
242 dff38e7b bellard
                /* if disabling set mode, update the time */
243 dff38e7b bellard
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
244 dff38e7b bellard
                    rtc_set_time(s);
245 dff38e7b bellard
                }
246 dff38e7b bellard
            }
247 dff38e7b bellard
            s->cmos_data[RTC_REG_B] = data;
248 dff38e7b bellard
            rtc_timer_update(s, qemu_get_clock(vm_clock));
249 80cabfad bellard
            break;
250 80cabfad bellard
        case RTC_REG_C:
251 80cabfad bellard
        case RTC_REG_D:
252 80cabfad bellard
            /* cannot write to them */
253 80cabfad bellard
            break;
254 80cabfad bellard
        default:
255 80cabfad bellard
            s->cmos_data[s->cmos_index] = data;
256 80cabfad bellard
            break;
257 80cabfad bellard
        }
258 80cabfad bellard
    }
259 80cabfad bellard
}
260 80cabfad bellard
261 dff38e7b bellard
static inline int to_bcd(RTCState *s, int a)
262 80cabfad bellard
{
263 6f1bf24d aurel32
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
264 dff38e7b bellard
        return a;
265 dff38e7b bellard
    } else {
266 dff38e7b bellard
        return ((a / 10) << 4) | (a % 10);
267 dff38e7b bellard
    }
268 80cabfad bellard
}
269 80cabfad bellard
270 dff38e7b bellard
static inline int from_bcd(RTCState *s, int a)
271 80cabfad bellard
{
272 6f1bf24d aurel32
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
273 dff38e7b bellard
        return a;
274 dff38e7b bellard
    } else {
275 dff38e7b bellard
        return ((a >> 4) * 10) + (a & 0x0f);
276 dff38e7b bellard
    }
277 dff38e7b bellard
}
278 dff38e7b bellard
279 dff38e7b bellard
static void rtc_set_time(RTCState *s)
280 dff38e7b bellard
{
281 43f493af bellard
    struct tm *tm = &s->current_tm;
282 dff38e7b bellard
283 dff38e7b bellard
    tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
284 dff38e7b bellard
    tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
285 43f493af bellard
    tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
286 43f493af bellard
    if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
287 43f493af bellard
        (s->cmos_data[RTC_HOURS] & 0x80)) {
288 43f493af bellard
        tm->tm_hour += 12;
289 43f493af bellard
    }
290 6f1bf24d aurel32
    tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
291 dff38e7b bellard
    tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
292 dff38e7b bellard
    tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
293 42fc73a1 aurel32
    tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
294 43f493af bellard
}
295 43f493af bellard
296 43f493af bellard
static void rtc_copy_date(RTCState *s)
297 43f493af bellard
{
298 43f493af bellard
    const struct tm *tm = &s->current_tm;
299 42fc73a1 aurel32
    int year;
300 dff38e7b bellard
301 43f493af bellard
    s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
302 43f493af bellard
    s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
303 43f493af bellard
    if (s->cmos_data[RTC_REG_B] & 0x02) {
304 43f493af bellard
        /* 24 hour format */
305 43f493af bellard
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
306 43f493af bellard
    } else {
307 43f493af bellard
        /* 12 hour format */
308 43f493af bellard
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
309 43f493af bellard
        if (tm->tm_hour >= 12)
310 43f493af bellard
            s->cmos_data[RTC_HOURS] |= 0x80;
311 43f493af bellard
    }
312 6f1bf24d aurel32
    s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
313 43f493af bellard
    s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
314 43f493af bellard
    s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
315 42fc73a1 aurel32
    year = (tm->tm_year - s->base_year) % 100;
316 42fc73a1 aurel32
    if (year < 0)
317 42fc73a1 aurel32
        year += 100;
318 42fc73a1 aurel32
    s->cmos_data[RTC_YEAR] = to_bcd(s, year);
319 43f493af bellard
}
320 43f493af bellard
321 43f493af bellard
/* month is between 0 and 11. */
322 43f493af bellard
static int get_days_in_month(int month, int year)
323 43f493af bellard
{
324 5fafdf24 ths
    static const int days_tab[12] = {
325 5fafdf24 ths
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
326 43f493af bellard
    };
327 43f493af bellard
    int d;
328 43f493af bellard
    if ((unsigned )month >= 12)
329 43f493af bellard
        return 31;
330 43f493af bellard
    d = days_tab[month];
331 43f493af bellard
    if (month == 1) {
332 43f493af bellard
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
333 43f493af bellard
            d++;
334 43f493af bellard
    }
335 43f493af bellard
    return d;
336 43f493af bellard
}
337 43f493af bellard
338 43f493af bellard
/* update 'tm' to the next second */
339 43f493af bellard
static void rtc_next_second(struct tm *tm)
340 43f493af bellard
{
341 43f493af bellard
    int days_in_month;
342 43f493af bellard
343 43f493af bellard
    tm->tm_sec++;
344 43f493af bellard
    if ((unsigned)tm->tm_sec >= 60) {
345 43f493af bellard
        tm->tm_sec = 0;
346 43f493af bellard
        tm->tm_min++;
347 43f493af bellard
        if ((unsigned)tm->tm_min >= 60) {
348 43f493af bellard
            tm->tm_min = 0;
349 43f493af bellard
            tm->tm_hour++;
350 43f493af bellard
            if ((unsigned)tm->tm_hour >= 24) {
351 43f493af bellard
                tm->tm_hour = 0;
352 43f493af bellard
                /* next day */
353 43f493af bellard
                tm->tm_wday++;
354 43f493af bellard
                if ((unsigned)tm->tm_wday >= 7)
355 43f493af bellard
                    tm->tm_wday = 0;
356 5fafdf24 ths
                days_in_month = get_days_in_month(tm->tm_mon,
357 43f493af bellard
                                                  tm->tm_year + 1900);
358 43f493af bellard
                tm->tm_mday++;
359 43f493af bellard
                if (tm->tm_mday < 1) {
360 43f493af bellard
                    tm->tm_mday = 1;
361 43f493af bellard
                } else if (tm->tm_mday > days_in_month) {
362 43f493af bellard
                    tm->tm_mday = 1;
363 43f493af bellard
                    tm->tm_mon++;
364 43f493af bellard
                    if (tm->tm_mon >= 12) {
365 43f493af bellard
                        tm->tm_mon = 0;
366 43f493af bellard
                        tm->tm_year++;
367 43f493af bellard
                    }
368 43f493af bellard
                }
369 43f493af bellard
            }
370 43f493af bellard
        }
371 43f493af bellard
    }
372 dff38e7b bellard
}
373 dff38e7b bellard
374 43f493af bellard
375 dff38e7b bellard
static void rtc_update_second(void *opaque)
376 dff38e7b bellard
{
377 dff38e7b bellard
    RTCState *s = opaque;
378 4721c457 bellard
    int64_t delay;
379 dff38e7b bellard
380 dff38e7b bellard
    /* if the oscillator is not in normal operation, we do not update */
381 dff38e7b bellard
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
382 dff38e7b bellard
        s->next_second_time += ticks_per_sec;
383 dff38e7b bellard
        qemu_mod_timer(s->second_timer, s->next_second_time);
384 dff38e7b bellard
    } else {
385 43f493af bellard
        rtc_next_second(&s->current_tm);
386 3b46e624 ths
387 dff38e7b bellard
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
388 dff38e7b bellard
            /* update in progress bit */
389 dff38e7b bellard
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
390 dff38e7b bellard
        }
391 4721c457 bellard
        /* should be 244 us = 8 / 32768 seconds, but currently the
392 4721c457 bellard
           timers do not have the necessary resolution. */
393 4721c457 bellard
        delay = (ticks_per_sec * 1) / 100;
394 4721c457 bellard
        if (delay < 1)
395 4721c457 bellard
            delay = 1;
396 5fafdf24 ths
        qemu_mod_timer(s->second_timer2,
397 4721c457 bellard
                       s->next_second_time + delay);
398 dff38e7b bellard
    }
399 dff38e7b bellard
}
400 dff38e7b bellard
401 dff38e7b bellard
static void rtc_update_second2(void *opaque)
402 dff38e7b bellard
{
403 dff38e7b bellard
    RTCState *s = opaque;
404 dff38e7b bellard
405 dff38e7b bellard
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
406 dff38e7b bellard
        rtc_copy_date(s);
407 dff38e7b bellard
    }
408 dff38e7b bellard
409 dff38e7b bellard
    /* check alarm */
410 dff38e7b bellard
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
411 dff38e7b bellard
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
412 43f493af bellard
             s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
413 dff38e7b bellard
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
414 43f493af bellard
             s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
415 dff38e7b bellard
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
416 43f493af bellard
             s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
417 dff38e7b bellard
418 5fafdf24 ths
            s->cmos_data[RTC_REG_C] |= 0xa0;
419 16b29ae1 aliguori
            rtc_irq_raise(s->irq);
420 dff38e7b bellard
        }
421 dff38e7b bellard
    }
422 dff38e7b bellard
423 dff38e7b bellard
    /* update ended interrupt */
424 98815437 Bernhard Kauer
    s->cmos_data[RTC_REG_C] |= REG_C_UF;
425 dff38e7b bellard
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
426 98815437 Bernhard Kauer
      s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
427 98815437 Bernhard Kauer
      rtc_irq_raise(s->irq);
428 dff38e7b bellard
    }
429 dff38e7b bellard
430 dff38e7b bellard
    /* clear update in progress bit */
431 dff38e7b bellard
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
432 dff38e7b bellard
433 dff38e7b bellard
    s->next_second_time += ticks_per_sec;
434 dff38e7b bellard
    qemu_mod_timer(s->second_timer, s->next_second_time);
435 80cabfad bellard
}
436 80cabfad bellard
437 b41a2cd1 bellard
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
438 80cabfad bellard
{
439 b41a2cd1 bellard
    RTCState *s = opaque;
440 80cabfad bellard
    int ret;
441 80cabfad bellard
    if ((addr & 1) == 0) {
442 80cabfad bellard
        return 0xff;
443 80cabfad bellard
    } else {
444 80cabfad bellard
        switch(s->cmos_index) {
445 80cabfad bellard
        case RTC_SECONDS:
446 80cabfad bellard
        case RTC_MINUTES:
447 80cabfad bellard
        case RTC_HOURS:
448 80cabfad bellard
        case RTC_DAY_OF_WEEK:
449 80cabfad bellard
        case RTC_DAY_OF_MONTH:
450 80cabfad bellard
        case RTC_MONTH:
451 80cabfad bellard
        case RTC_YEAR:
452 80cabfad bellard
            ret = s->cmos_data[s->cmos_index];
453 80cabfad bellard
            break;
454 80cabfad bellard
        case RTC_REG_A:
455 80cabfad bellard
            ret = s->cmos_data[s->cmos_index];
456 80cabfad bellard
            break;
457 80cabfad bellard
        case RTC_REG_C:
458 80cabfad bellard
            ret = s->cmos_data[s->cmos_index];
459 d537cf6c pbrook
            qemu_irq_lower(s->irq);
460 5fafdf24 ths
            s->cmos_data[RTC_REG_C] = 0x00;
461 80cabfad bellard
            break;
462 80cabfad bellard
        default:
463 80cabfad bellard
            ret = s->cmos_data[s->cmos_index];
464 80cabfad bellard
            break;
465 80cabfad bellard
        }
466 80cabfad bellard
#ifdef DEBUG_CMOS
467 80cabfad bellard
        printf("cmos: read index=0x%02x val=0x%02x\n",
468 80cabfad bellard
               s->cmos_index, ret);
469 80cabfad bellard
#endif
470 80cabfad bellard
        return ret;
471 80cabfad bellard
    }
472 80cabfad bellard
}
473 80cabfad bellard
474 dff38e7b bellard
void rtc_set_memory(RTCState *s, int addr, int val)
475 dff38e7b bellard
{
476 dff38e7b bellard
    if (addr >= 0 && addr <= 127)
477 dff38e7b bellard
        s->cmos_data[addr] = val;
478 dff38e7b bellard
}
479 dff38e7b bellard
480 dff38e7b bellard
void rtc_set_date(RTCState *s, const struct tm *tm)
481 dff38e7b bellard
{
482 43f493af bellard
    s->current_tm = *tm;
483 dff38e7b bellard
    rtc_copy_date(s);
484 dff38e7b bellard
}
485 dff38e7b bellard
486 ea55ffb3 ths
/* PC cmos mappings */
487 ea55ffb3 ths
#define REG_IBM_CENTURY_BYTE        0x32
488 ea55ffb3 ths
#define REG_IBM_PS2_CENTURY_BYTE    0x37
489 ea55ffb3 ths
490 9596ebb7 pbrook
static void rtc_set_date_from_host(RTCState *s)
491 ea55ffb3 ths
{
492 f6503059 balrog
    struct tm tm;
493 ea55ffb3 ths
    int val;
494 ea55ffb3 ths
495 ea55ffb3 ths
    /* set the CMOS date */
496 f6503059 balrog
    qemu_get_timedate(&tm, 0);
497 f6503059 balrog
    rtc_set_date(s, &tm);
498 ea55ffb3 ths
499 f6503059 balrog
    val = to_bcd(s, (tm.tm_year / 100) + 19);
500 ea55ffb3 ths
    rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
501 ea55ffb3 ths
    rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
502 ea55ffb3 ths
}
503 ea55ffb3 ths
504 dff38e7b bellard
static void rtc_save(QEMUFile *f, void *opaque)
505 dff38e7b bellard
{
506 dff38e7b bellard
    RTCState *s = opaque;
507 dff38e7b bellard
508 dff38e7b bellard
    qemu_put_buffer(f, s->cmos_data, 128);
509 dff38e7b bellard
    qemu_put_8s(f, &s->cmos_index);
510 3b46e624 ths
511 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_sec);
512 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_min);
513 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_hour);
514 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_wday);
515 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_mday);
516 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_mon);
517 bee8d684 ths
    qemu_put_be32(f, s->current_tm.tm_year);
518 dff38e7b bellard
519 dff38e7b bellard
    qemu_put_timer(f, s->periodic_timer);
520 bee8d684 ths
    qemu_put_be64(f, s->next_periodic_time);
521 dff38e7b bellard
522 bee8d684 ths
    qemu_put_be64(f, s->next_second_time);
523 dff38e7b bellard
    qemu_put_timer(f, s->second_timer);
524 dff38e7b bellard
    qemu_put_timer(f, s->second_timer2);
525 80cabfad bellard
}
526 80cabfad bellard
527 dff38e7b bellard
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
528 80cabfad bellard
{
529 dff38e7b bellard
    RTCState *s = opaque;
530 dff38e7b bellard
531 dff38e7b bellard
    if (version_id != 1)
532 dff38e7b bellard
        return -EINVAL;
533 80cabfad bellard
534 dff38e7b bellard
    qemu_get_buffer(f, s->cmos_data, 128);
535 dff38e7b bellard
    qemu_get_8s(f, &s->cmos_index);
536 43f493af bellard
537 bee8d684 ths
    s->current_tm.tm_sec=qemu_get_be32(f);
538 bee8d684 ths
    s->current_tm.tm_min=qemu_get_be32(f);
539 bee8d684 ths
    s->current_tm.tm_hour=qemu_get_be32(f);
540 bee8d684 ths
    s->current_tm.tm_wday=qemu_get_be32(f);
541 bee8d684 ths
    s->current_tm.tm_mday=qemu_get_be32(f);
542 bee8d684 ths
    s->current_tm.tm_mon=qemu_get_be32(f);
543 bee8d684 ths
    s->current_tm.tm_year=qemu_get_be32(f);
544 dff38e7b bellard
545 dff38e7b bellard
    qemu_get_timer(f, s->periodic_timer);
546 bee8d684 ths
    s->next_periodic_time=qemu_get_be64(f);
547 dff38e7b bellard
548 bee8d684 ths
    s->next_second_time=qemu_get_be64(f);
549 dff38e7b bellard
    qemu_get_timer(f, s->second_timer);
550 dff38e7b bellard
    qemu_get_timer(f, s->second_timer2);
551 dff38e7b bellard
    return 0;
552 dff38e7b bellard
}
553 dff38e7b bellard
554 73822ec8 aliguori
#ifdef TARGET_I386
555 73822ec8 aliguori
static void rtc_save_td(QEMUFile *f, void *opaque)
556 73822ec8 aliguori
{
557 73822ec8 aliguori
    RTCState *s = opaque;
558 73822ec8 aliguori
559 73822ec8 aliguori
    qemu_put_be32(f, s->irq_coalesced);
560 73822ec8 aliguori
    qemu_put_be32(f, s->period);
561 73822ec8 aliguori
}
562 73822ec8 aliguori
563 73822ec8 aliguori
static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
564 73822ec8 aliguori
{
565 73822ec8 aliguori
    RTCState *s = opaque;
566 73822ec8 aliguori
567 73822ec8 aliguori
    if (version_id != 1)
568 73822ec8 aliguori
        return -EINVAL;
569 73822ec8 aliguori
570 73822ec8 aliguori
    s->irq_coalesced = qemu_get_be32(f);
571 73822ec8 aliguori
    s->period = qemu_get_be32(f);
572 93b66569 aliguori
    rtc_coalesced_timer_update(s);
573 73822ec8 aliguori
    return 0;
574 73822ec8 aliguori
}
575 73822ec8 aliguori
#endif
576 73822ec8 aliguori
577 eeb7c03c Gleb Natapov
static void rtc_reset(void *opaque)
578 eeb7c03c Gleb Natapov
{
579 eeb7c03c Gleb Natapov
    RTCState *s = opaque;
580 eeb7c03c Gleb Natapov
581 72716184 Anthony Liguori
    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
582 72716184 Anthony Liguori
    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
583 eeb7c03c Gleb Natapov
584 72716184 Anthony Liguori
    qemu_irq_lower(s->irq);
585 eeb7c03c Gleb Natapov
586 eeb7c03c Gleb Natapov
#ifdef TARGET_I386
587 eeb7c03c Gleb Natapov
    if (rtc_td_hack)
588 eeb7c03c Gleb Natapov
            s->irq_coalesced = 0;
589 eeb7c03c Gleb Natapov
#endif
590 eeb7c03c Gleb Natapov
}
591 eeb7c03c Gleb Natapov
592 100d9891 aurel32
RTCState *rtc_init_sqw(int base, qemu_irq irq, qemu_irq sqw_irq, int base_year)
593 dff38e7b bellard
{
594 dff38e7b bellard
    RTCState *s;
595 dff38e7b bellard
596 dff38e7b bellard
    s = qemu_mallocz(sizeof(RTCState));
597 80cabfad bellard
598 80cabfad bellard
    s->irq = irq;
599 100d9891 aurel32
    s->sqw_irq = sqw_irq;
600 80cabfad bellard
    s->cmos_data[RTC_REG_A] = 0x26;
601 80cabfad bellard
    s->cmos_data[RTC_REG_B] = 0x02;
602 80cabfad bellard
    s->cmos_data[RTC_REG_C] = 0x00;
603 80cabfad bellard
    s->cmos_data[RTC_REG_D] = 0x80;
604 80cabfad bellard
605 42fc73a1 aurel32
    s->base_year = base_year;
606 ea55ffb3 ths
    rtc_set_date_from_host(s);
607 ea55ffb3 ths
608 5fafdf24 ths
    s->periodic_timer = qemu_new_timer(vm_clock,
609 dff38e7b bellard
                                       rtc_periodic_timer, s);
610 93b66569 aliguori
#ifdef TARGET_I386
611 93b66569 aliguori
    if (rtc_td_hack)
612 93b66569 aliguori
        s->coalesced_timer = qemu_new_timer(vm_clock, rtc_coalesced_timer, s);
613 93b66569 aliguori
#endif
614 5fafdf24 ths
    s->second_timer = qemu_new_timer(vm_clock,
615 dff38e7b bellard
                                     rtc_update_second, s);
616 5fafdf24 ths
    s->second_timer2 = qemu_new_timer(vm_clock,
617 dff38e7b bellard
                                      rtc_update_second2, s);
618 dff38e7b bellard
619 dff38e7b bellard
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
620 dff38e7b bellard
    qemu_mod_timer(s->second_timer2, s->next_second_time);
621 dff38e7b bellard
622 b41a2cd1 bellard
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
623 b41a2cd1 bellard
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
624 dff38e7b bellard
625 dff38e7b bellard
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
626 73822ec8 aliguori
#ifdef TARGET_I386
627 73822ec8 aliguori
    if (rtc_td_hack)
628 73822ec8 aliguori
        register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
629 73822ec8 aliguori
#endif
630 a08d4367 Jan Kiszka
    qemu_register_reset(rtc_reset, s);
631 eeb7c03c Gleb Natapov
632 dff38e7b bellard
    return s;
633 80cabfad bellard
}
634 80cabfad bellard
635 100d9891 aurel32
RTCState *rtc_init(int base, qemu_irq irq, int base_year)
636 100d9891 aurel32
{
637 100d9891 aurel32
    return rtc_init_sqw(base, irq, NULL, base_year);
638 100d9891 aurel32
}
639 100d9891 aurel32
640 2ca9d013 ths
/* Memory mapped interface */
641 9596ebb7 pbrook
static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
642 2ca9d013 ths
{
643 2ca9d013 ths
    RTCState *s = opaque;
644 2ca9d013 ths
645 8da3ff18 pbrook
    return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
646 2ca9d013 ths
}
647 2ca9d013 ths
648 9596ebb7 pbrook
static void cmos_mm_writeb (void *opaque,
649 9596ebb7 pbrook
                            target_phys_addr_t addr, uint32_t value)
650 2ca9d013 ths
{
651 2ca9d013 ths
    RTCState *s = opaque;
652 2ca9d013 ths
653 8da3ff18 pbrook
    cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
654 2ca9d013 ths
}
655 2ca9d013 ths
656 9596ebb7 pbrook
static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
657 2ca9d013 ths
{
658 2ca9d013 ths
    RTCState *s = opaque;
659 18c6e2ff ths
    uint32_t val;
660 2ca9d013 ths
661 8da3ff18 pbrook
    val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
662 18c6e2ff ths
#ifdef TARGET_WORDS_BIGENDIAN
663 18c6e2ff ths
    val = bswap16(val);
664 18c6e2ff ths
#endif
665 18c6e2ff ths
    return val;
666 2ca9d013 ths
}
667 2ca9d013 ths
668 9596ebb7 pbrook
static void cmos_mm_writew (void *opaque,
669 9596ebb7 pbrook
                            target_phys_addr_t addr, uint32_t value)
670 2ca9d013 ths
{
671 2ca9d013 ths
    RTCState *s = opaque;
672 18c6e2ff ths
#ifdef TARGET_WORDS_BIGENDIAN
673 18c6e2ff ths
    value = bswap16(value);
674 18c6e2ff ths
#endif
675 8da3ff18 pbrook
    cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
676 2ca9d013 ths
}
677 2ca9d013 ths
678 9596ebb7 pbrook
static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
679 2ca9d013 ths
{
680 2ca9d013 ths
    RTCState *s = opaque;
681 18c6e2ff ths
    uint32_t val;
682 2ca9d013 ths
683 8da3ff18 pbrook
    val = cmos_ioport_read(s, addr >> s->it_shift);
684 18c6e2ff ths
#ifdef TARGET_WORDS_BIGENDIAN
685 18c6e2ff ths
    val = bswap32(val);
686 18c6e2ff ths
#endif
687 18c6e2ff ths
    return val;
688 2ca9d013 ths
}
689 2ca9d013 ths
690 9596ebb7 pbrook
static void cmos_mm_writel (void *opaque,
691 9596ebb7 pbrook
                            target_phys_addr_t addr, uint32_t value)
692 2ca9d013 ths
{
693 2ca9d013 ths
    RTCState *s = opaque;
694 18c6e2ff ths
#ifdef TARGET_WORDS_BIGENDIAN
695 18c6e2ff ths
    value = bswap32(value);
696 18c6e2ff ths
#endif
697 8da3ff18 pbrook
    cmos_ioport_write(s, addr >> s->it_shift, value);
698 2ca9d013 ths
}
699 2ca9d013 ths
700 d60efc6b Blue Swirl
static CPUReadMemoryFunc * const rtc_mm_read[] = {
701 2ca9d013 ths
    &cmos_mm_readb,
702 2ca9d013 ths
    &cmos_mm_readw,
703 2ca9d013 ths
    &cmos_mm_readl,
704 2ca9d013 ths
};
705 2ca9d013 ths
706 d60efc6b Blue Swirl
static CPUWriteMemoryFunc * const rtc_mm_write[] = {
707 2ca9d013 ths
    &cmos_mm_writeb,
708 2ca9d013 ths
    &cmos_mm_writew,
709 2ca9d013 ths
    &cmos_mm_writel,
710 2ca9d013 ths
};
711 2ca9d013 ths
712 42fc73a1 aurel32
RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
713 42fc73a1 aurel32
                      int base_year)
714 2ca9d013 ths
{
715 2ca9d013 ths
    RTCState *s;
716 2ca9d013 ths
    int io_memory;
717 2ca9d013 ths
718 2ca9d013 ths
    s = qemu_mallocz(sizeof(RTCState));
719 2ca9d013 ths
720 2ca9d013 ths
    s->irq = irq;
721 2ca9d013 ths
    s->cmos_data[RTC_REG_A] = 0x26;
722 2ca9d013 ths
    s->cmos_data[RTC_REG_B] = 0x02;
723 2ca9d013 ths
    s->cmos_data[RTC_REG_C] = 0x00;
724 2ca9d013 ths
    s->cmos_data[RTC_REG_D] = 0x80;
725 2ca9d013 ths
726 42fc73a1 aurel32
    s->base_year = base_year;
727 2ca9d013 ths
    rtc_set_date_from_host(s);
728 2ca9d013 ths
729 2ca9d013 ths
    s->periodic_timer = qemu_new_timer(vm_clock,
730 2ca9d013 ths
                                       rtc_periodic_timer, s);
731 2ca9d013 ths
    s->second_timer = qemu_new_timer(vm_clock,
732 2ca9d013 ths
                                     rtc_update_second, s);
733 2ca9d013 ths
    s->second_timer2 = qemu_new_timer(vm_clock,
734 2ca9d013 ths
                                      rtc_update_second2, s);
735 2ca9d013 ths
736 2ca9d013 ths
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
737 2ca9d013 ths
    qemu_mod_timer(s->second_timer2, s->next_second_time);
738 2ca9d013 ths
739 1eed09cb Avi Kivity
    io_memory = cpu_register_io_memory(rtc_mm_read, rtc_mm_write, s);
740 18c6e2ff ths
    cpu_register_physical_memory(base, 2 << it_shift, io_memory);
741 2ca9d013 ths
742 2ca9d013 ths
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
743 73822ec8 aliguori
#ifdef TARGET_I386
744 73822ec8 aliguori
    if (rtc_td_hack)
745 73822ec8 aliguori
        register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
746 73822ec8 aliguori
#endif
747 a08d4367 Jan Kiszka
    qemu_register_reset(rtc_reset, s);
748 2ca9d013 ths
    return s;
749 2ca9d013 ths
}