Statistics
| Branch: | Revision:

root / qemu-doc.texi @ f7b4f61f

History | View | Annotate | Download (66.2 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 Beige PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93
@item Siemens SX1 smartphone (OMAP310 processor)
94
@item Syborg SVP base model (ARM Cortex-A8).
95
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
96
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
97
@end itemize
98

    
99
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
100

    
101
@node Installation
102
@chapter Installation
103

    
104
If you want to compile QEMU yourself, see @ref{compilation}.
105

    
106
@menu
107
* install_linux::   Linux
108
* install_windows:: Windows
109
* install_mac::     Macintosh
110
@end menu
111

    
112
@node install_linux
113
@section Linux
114

    
115
If a precompiled package is available for your distribution - you just
116
have to install it. Otherwise, see @ref{compilation}.
117

    
118
@node install_windows
119
@section Windows
120

    
121
Download the experimental binary installer at
122
@url{http://www.free.oszoo.org/@/download.html}.
123

    
124
@node install_mac
125
@section Mac OS X
126

    
127
Download the experimental binary installer at
128
@url{http://www.free.oszoo.org/@/download.html}.
129

    
130
@node QEMU PC System emulator
131
@chapter QEMU PC System emulator
132

    
133
@menu
134
* pcsys_introduction:: Introduction
135
* pcsys_quickstart::   Quick Start
136
* sec_invocation::     Invocation
137
* pcsys_keys::         Keys
138
* pcsys_monitor::      QEMU Monitor
139
* disk_images::        Disk Images
140
* pcsys_network::      Network emulation
141
* direct_linux_boot::  Direct Linux Boot
142
* pcsys_usb::          USB emulation
143
* vnc_security::       VNC security
144
* gdb_usage::          GDB usage
145
* pcsys_os_specific::  Target OS specific information
146
@end menu
147

    
148
@node pcsys_introduction
149
@section Introduction
150

    
151
@c man begin DESCRIPTION
152

    
153
The QEMU PC System emulator simulates the
154
following peripherals:
155

    
156
@itemize @minus
157
@item
158
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
159
@item
160
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
161
extensions (hardware level, including all non standard modes).
162
@item
163
PS/2 mouse and keyboard
164
@item
165
2 PCI IDE interfaces with hard disk and CD-ROM support
166
@item
167
Floppy disk
168
@item
169
PCI and ISA network adapters
170
@item
171
Serial ports
172
@item
173
Creative SoundBlaster 16 sound card
174
@item
175
ENSONIQ AudioPCI ES1370 sound card
176
@item
177
Intel 82801AA AC97 Audio compatible sound card
178
@item
179
Adlib(OPL2) - Yamaha YM3812 compatible chip
180
@item
181
Gravis Ultrasound GF1 sound card
182
@item
183
CS4231A compatible sound card
184
@item
185
PCI UHCI USB controller and a virtual USB hub.
186
@end itemize
187

    
188
SMP is supported with up to 255 CPUs.
189

    
190
Note that adlib, gus and cs4231a are only available when QEMU was
191
configured with --audio-card-list option containing the name(s) of
192
required card(s).
193

    
194
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
195
VGA BIOS.
196

    
197
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
198

    
199
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
200
by Tibor "TS" Sch?tz.
201

    
202
CS4231A is the chip used in Windows Sound System and GUSMAX products
203

    
204
@c man end
205

    
206
@node pcsys_quickstart
207
@section Quick Start
208

    
209
Download and uncompress the linux image (@file{linux.img}) and type:
210

    
211
@example
212
qemu linux.img
213
@end example
214

    
215
Linux should boot and give you a prompt.
216

    
217
@node sec_invocation
218
@section Invocation
219

    
220
@example
221
@c man begin SYNOPSIS
222
usage: qemu [options] [@var{disk_image}]
223
@c man end
224
@end example
225

    
226
@c man begin OPTIONS
227
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
228
targets do not need a disk image.
229

    
230
@include qemu-options.texi
231

    
232
@c man end
233

    
234
@node pcsys_keys
235
@section Keys
236

    
237
@c man begin OPTIONS
238

    
239
During the graphical emulation, you can use the following keys:
240
@table @key
241
@item Ctrl-Alt-f
242
Toggle full screen
243

    
244
@item Ctrl-Alt-u
245
Restore the screen's un-scaled dimensions
246

    
247
@item Ctrl-Alt-n
248
Switch to virtual console 'n'. Standard console mappings are:
249
@table @emph
250
@item 1
251
Target system display
252
@item 2
253
Monitor
254
@item 3
255
Serial port
256
@end table
257

    
258
@item Ctrl-Alt
259
Toggle mouse and keyboard grab.
260
@end table
261

    
262
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
263
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
264

    
265
During emulation, if you are using the @option{-nographic} option, use
266
@key{Ctrl-a h} to get terminal commands:
267

    
268
@table @key
269
@item Ctrl-a h
270
@item Ctrl-a ?
271
Print this help
272
@item Ctrl-a x
273
Exit emulator
274
@item Ctrl-a s
275
Save disk data back to file (if -snapshot)
276
@item Ctrl-a t
277
Toggle console timestamps
278
@item Ctrl-a b
279
Send break (magic sysrq in Linux)
280
@item Ctrl-a c
281
Switch between console and monitor
282
@item Ctrl-a Ctrl-a
283
Send Ctrl-a
284
@end table
285
@c man end
286

    
287
@ignore
288

    
289
@c man begin SEEALSO
290
The HTML documentation of QEMU for more precise information and Linux
291
user mode emulator invocation.
292
@c man end
293

    
294
@c man begin AUTHOR
295
Fabrice Bellard
296
@c man end
297

    
298
@end ignore
299

    
300
@node pcsys_monitor
301
@section QEMU Monitor
302

    
303
The QEMU monitor is used to give complex commands to the QEMU
304
emulator. You can use it to:
305

    
306
@itemize @minus
307

    
308
@item
309
Remove or insert removable media images
310
(such as CD-ROM or floppies).
311

    
312
@item
313
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
314
from a disk file.
315

    
316
@item Inspect the VM state without an external debugger.
317

    
318
@end itemize
319

    
320
@subsection Commands
321

    
322
The following commands are available:
323

    
324
@include qemu-monitor.texi
325

    
326
@subsection Integer expressions
327

    
328
The monitor understands integers expressions for every integer
329
argument. You can use register names to get the value of specifics
330
CPU registers by prefixing them with @emph{$}.
331

    
332
@node disk_images
333
@section Disk Images
334

    
335
Since version 0.6.1, QEMU supports many disk image formats, including
336
growable disk images (their size increase as non empty sectors are
337
written), compressed and encrypted disk images. Version 0.8.3 added
338
the new qcow2 disk image format which is essential to support VM
339
snapshots.
340

    
341
@menu
342
* disk_images_quickstart::    Quick start for disk image creation
343
* disk_images_snapshot_mode:: Snapshot mode
344
* vm_snapshots::              VM snapshots
345
* qemu_img_invocation::       qemu-img Invocation
346
* qemu_nbd_invocation::       qemu-nbd Invocation
347
* host_drives::               Using host drives
348
* disk_images_fat_images::    Virtual FAT disk images
349
* disk_images_nbd::           NBD access
350
@end menu
351

    
352
@node disk_images_quickstart
353
@subsection Quick start for disk image creation
354

    
355
You can create a disk image with the command:
356
@example
357
qemu-img create myimage.img mysize
358
@end example
359
where @var{myimage.img} is the disk image filename and @var{mysize} is its
360
size in kilobytes. You can add an @code{M} suffix to give the size in
361
megabytes and a @code{G} suffix for gigabytes.
362

    
363
See @ref{qemu_img_invocation} for more information.
364

    
365
@node disk_images_snapshot_mode
366
@subsection Snapshot mode
367

    
368
If you use the option @option{-snapshot}, all disk images are
369
considered as read only. When sectors in written, they are written in
370
a temporary file created in @file{/tmp}. You can however force the
371
write back to the raw disk images by using the @code{commit} monitor
372
command (or @key{C-a s} in the serial console).
373

    
374
@node vm_snapshots
375
@subsection VM snapshots
376

    
377
VM snapshots are snapshots of the complete virtual machine including
378
CPU state, RAM, device state and the content of all the writable
379
disks. In order to use VM snapshots, you must have at least one non
380
removable and writable block device using the @code{qcow2} disk image
381
format. Normally this device is the first virtual hard drive.
382

    
383
Use the monitor command @code{savevm} to create a new VM snapshot or
384
replace an existing one. A human readable name can be assigned to each
385
snapshot in addition to its numerical ID.
386

    
387
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
388
a VM snapshot. @code{info snapshots} lists the available snapshots
389
with their associated information:
390

    
391
@example
392
(qemu) info snapshots
393
Snapshot devices: hda
394
Snapshot list (from hda):
395
ID        TAG                 VM SIZE                DATE       VM CLOCK
396
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
397
2                                 40M 2006-08-06 12:43:29   00:00:18.633
398
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
399
@end example
400

    
401
A VM snapshot is made of a VM state info (its size is shown in
402
@code{info snapshots}) and a snapshot of every writable disk image.
403
The VM state info is stored in the first @code{qcow2} non removable
404
and writable block device. The disk image snapshots are stored in
405
every disk image. The size of a snapshot in a disk image is difficult
406
to evaluate and is not shown by @code{info snapshots} because the
407
associated disk sectors are shared among all the snapshots to save
408
disk space (otherwise each snapshot would need a full copy of all the
409
disk images).
410

    
411
When using the (unrelated) @code{-snapshot} option
412
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
413
but they are deleted as soon as you exit QEMU.
414

    
415
VM snapshots currently have the following known limitations:
416
@itemize
417
@item
418
They cannot cope with removable devices if they are removed or
419
inserted after a snapshot is done.
420
@item
421
A few device drivers still have incomplete snapshot support so their
422
state is not saved or restored properly (in particular USB).
423
@end itemize
424

    
425
@node qemu_img_invocation
426
@subsection @code{qemu-img} Invocation
427

    
428
@include qemu-img.texi
429

    
430
@node qemu_nbd_invocation
431
@subsection @code{qemu-nbd} Invocation
432

    
433
@include qemu-nbd.texi
434

    
435
@node host_drives
436
@subsection Using host drives
437

    
438
In addition to disk image files, QEMU can directly access host
439
devices. We describe here the usage for QEMU version >= 0.8.3.
440

    
441
@subsubsection Linux
442

    
443
On Linux, you can directly use the host device filename instead of a
444
disk image filename provided you have enough privileges to access
445
it. For example, use @file{/dev/cdrom} to access to the CDROM or
446
@file{/dev/fd0} for the floppy.
447

    
448
@table @code
449
@item CD
450
You can specify a CDROM device even if no CDROM is loaded. QEMU has
451
specific code to detect CDROM insertion or removal. CDROM ejection by
452
the guest OS is supported. Currently only data CDs are supported.
453
@item Floppy
454
You can specify a floppy device even if no floppy is loaded. Floppy
455
removal is currently not detected accurately (if you change floppy
456
without doing floppy access while the floppy is not loaded, the guest
457
OS will think that the same floppy is loaded).
458
@item Hard disks
459
Hard disks can be used. Normally you must specify the whole disk
460
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
461
see it as a partitioned disk. WARNING: unless you know what you do, it
462
is better to only make READ-ONLY accesses to the hard disk otherwise
463
you may corrupt your host data (use the @option{-snapshot} command
464
line option or modify the device permissions accordingly).
465
@end table
466

    
467
@subsubsection Windows
468

    
469
@table @code
470
@item CD
471
The preferred syntax is the drive letter (e.g. @file{d:}). The
472
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
473
supported as an alias to the first CDROM drive.
474

    
475
Currently there is no specific code to handle removable media, so it
476
is better to use the @code{change} or @code{eject} monitor commands to
477
change or eject media.
478
@item Hard disks
479
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
480
where @var{N} is the drive number (0 is the first hard disk).
481

    
482
WARNING: unless you know what you do, it is better to only make
483
READ-ONLY accesses to the hard disk otherwise you may corrupt your
484
host data (use the @option{-snapshot} command line so that the
485
modifications are written in a temporary file).
486
@end table
487

    
488

    
489
@subsubsection Mac OS X
490

    
491
@file{/dev/cdrom} is an alias to the first CDROM.
492

    
493
Currently there is no specific code to handle removable media, so it
494
is better to use the @code{change} or @code{eject} monitor commands to
495
change or eject media.
496

    
497
@node disk_images_fat_images
498
@subsection Virtual FAT disk images
499

    
500
QEMU can automatically create a virtual FAT disk image from a
501
directory tree. In order to use it, just type:
502

    
503
@example
504
qemu linux.img -hdb fat:/my_directory
505
@end example
506

    
507
Then you access access to all the files in the @file{/my_directory}
508
directory without having to copy them in a disk image or to export
509
them via SAMBA or NFS. The default access is @emph{read-only}.
510

    
511
Floppies can be emulated with the @code{:floppy:} option:
512

    
513
@example
514
qemu linux.img -fda fat:floppy:/my_directory
515
@end example
516

    
517
A read/write support is available for testing (beta stage) with the
518
@code{:rw:} option:
519

    
520
@example
521
qemu linux.img -fda fat:floppy:rw:/my_directory
522
@end example
523

    
524
What you should @emph{never} do:
525
@itemize
526
@item use non-ASCII filenames ;
527
@item use "-snapshot" together with ":rw:" ;
528
@item expect it to work when loadvm'ing ;
529
@item write to the FAT directory on the host system while accessing it with the guest system.
530
@end itemize
531

    
532
@node disk_images_nbd
533
@subsection NBD access
534

    
535
QEMU can access directly to block device exported using the Network Block Device
536
protocol.
537

    
538
@example
539
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
540
@end example
541

    
542
If the NBD server is located on the same host, you can use an unix socket instead
543
of an inet socket:
544

    
545
@example
546
qemu linux.img -hdb nbd:unix:/tmp/my_socket
547
@end example
548

    
549
In this case, the block device must be exported using qemu-nbd:
550

    
551
@example
552
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
553
@end example
554

    
555
The use of qemu-nbd allows to share a disk between several guests:
556
@example
557
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
558
@end example
559

    
560
and then you can use it with two guests:
561
@example
562
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
563
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
564
@end example
565

    
566
@node pcsys_network
567
@section Network emulation
568

    
569
QEMU can simulate several network cards (PCI or ISA cards on the PC
570
target) and can connect them to an arbitrary number of Virtual Local
571
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
572
VLAN. VLAN can be connected between separate instances of QEMU to
573
simulate large networks. For simpler usage, a non privileged user mode
574
network stack can replace the TAP device to have a basic network
575
connection.
576

    
577
@subsection VLANs
578

    
579
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
580
connection between several network devices. These devices can be for
581
example QEMU virtual Ethernet cards or virtual Host ethernet devices
582
(TAP devices).
583

    
584
@subsection Using TAP network interfaces
585

    
586
This is the standard way to connect QEMU to a real network. QEMU adds
587
a virtual network device on your host (called @code{tapN}), and you
588
can then configure it as if it was a real ethernet card.
589

    
590
@subsubsection Linux host
591

    
592
As an example, you can download the @file{linux-test-xxx.tar.gz}
593
archive and copy the script @file{qemu-ifup} in @file{/etc} and
594
configure properly @code{sudo} so that the command @code{ifconfig}
595
contained in @file{qemu-ifup} can be executed as root. You must verify
596
that your host kernel supports the TAP network interfaces: the
597
device @file{/dev/net/tun} must be present.
598

    
599
See @ref{sec_invocation} to have examples of command lines using the
600
TAP network interfaces.
601

    
602
@subsubsection Windows host
603

    
604
There is a virtual ethernet driver for Windows 2000/XP systems, called
605
TAP-Win32. But it is not included in standard QEMU for Windows,
606
so you will need to get it separately. It is part of OpenVPN package,
607
so download OpenVPN from : @url{http://openvpn.net/}.
608

    
609
@subsection Using the user mode network stack
610

    
611
By using the option @option{-net user} (default configuration if no
612
@option{-net} option is specified), QEMU uses a completely user mode
613
network stack (you don't need root privilege to use the virtual
614
network). The virtual network configuration is the following:
615

    
616
@example
617

    
618
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
619
                           |          (10.0.2.2)
620
                           |
621
                           ---->  DNS server (10.0.2.3)
622
                           |
623
                           ---->  SMB server (10.0.2.4)
624
@end example
625

    
626
The QEMU VM behaves as if it was behind a firewall which blocks all
627
incoming connections. You can use a DHCP client to automatically
628
configure the network in the QEMU VM. The DHCP server assign addresses
629
to the hosts starting from 10.0.2.15.
630

    
631
In order to check that the user mode network is working, you can ping
632
the address 10.0.2.2 and verify that you got an address in the range
633
10.0.2.x from the QEMU virtual DHCP server.
634

    
635
Note that @code{ping} is not supported reliably to the internet as it
636
would require root privileges. It means you can only ping the local
637
router (10.0.2.2).
638

    
639
When using the built-in TFTP server, the router is also the TFTP
640
server.
641

    
642
When using the @option{-redir} option, TCP or UDP connections can be
643
redirected from the host to the guest. It allows for example to
644
redirect X11, telnet or SSH connections.
645

    
646
@subsection Connecting VLANs between QEMU instances
647

    
648
Using the @option{-net socket} option, it is possible to make VLANs
649
that span several QEMU instances. See @ref{sec_invocation} to have a
650
basic example.
651

    
652
@node direct_linux_boot
653
@section Direct Linux Boot
654

    
655
This section explains how to launch a Linux kernel inside QEMU without
656
having to make a full bootable image. It is very useful for fast Linux
657
kernel testing.
658

    
659
The syntax is:
660
@example
661
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
662
@end example
663

    
664
Use @option{-kernel} to provide the Linux kernel image and
665
@option{-append} to give the kernel command line arguments. The
666
@option{-initrd} option can be used to provide an INITRD image.
667

    
668
When using the direct Linux boot, a disk image for the first hard disk
669
@file{hda} is required because its boot sector is used to launch the
670
Linux kernel.
671

    
672
If you do not need graphical output, you can disable it and redirect
673
the virtual serial port and the QEMU monitor to the console with the
674
@option{-nographic} option. The typical command line is:
675
@example
676
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
677
     -append "root=/dev/hda console=ttyS0" -nographic
678
@end example
679

    
680
Use @key{Ctrl-a c} to switch between the serial console and the
681
monitor (@pxref{pcsys_keys}).
682

    
683
@node pcsys_usb
684
@section USB emulation
685

    
686
QEMU emulates a PCI UHCI USB controller. You can virtually plug
687
virtual USB devices or real host USB devices (experimental, works only
688
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
689
as necessary to connect multiple USB devices.
690

    
691
@menu
692
* usb_devices::
693
* host_usb_devices::
694
@end menu
695
@node usb_devices
696
@subsection Connecting USB devices
697

    
698
USB devices can be connected with the @option{-usbdevice} commandline option
699
or the @code{usb_add} monitor command.  Available devices are:
700

    
701
@table @code
702
@item mouse
703
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
704
@item tablet
705
Pointer device that uses absolute coordinates (like a touchscreen).
706
This means qemu is able to report the mouse position without having
707
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
708
@item disk:@var{file}
709
Mass storage device based on @var{file} (@pxref{disk_images})
710
@item host:@var{bus.addr}
711
Pass through the host device identified by @var{bus.addr}
712
(Linux only)
713
@item host:@var{vendor_id:product_id}
714
Pass through the host device identified by @var{vendor_id:product_id}
715
(Linux only)
716
@item wacom-tablet
717
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
718
above but it can be used with the tslib library because in addition to touch
719
coordinates it reports touch pressure.
720
@item keyboard
721
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
722
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
723
Serial converter. This emulates an FTDI FT232BM chip connected to host character
724
device @var{dev}. The available character devices are the same as for the
725
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
726
used to override the default 0403:6001. For instance, 
727
@example
728
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
729
@end example
730
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
731
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
732
@item braille
733
Braille device.  This will use BrlAPI to display the braille output on a real
734
or fake device.
735
@item net:@var{options}
736
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
737
specifies NIC options as with @code{-net nic,}@var{options} (see description).
738
For instance, user-mode networking can be used with
739
@example
740
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
741
@end example
742
Currently this cannot be used in machines that support PCI NICs.
743
@item bt[:@var{hci-type}]
744
Bluetooth dongle whose type is specified in the same format as with
745
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
746
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
747
This USB device implements the USB Transport Layer of HCI.  Example
748
usage:
749
@example
750
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
751
@end example
752
@end table
753

    
754
@node host_usb_devices
755
@subsection Using host USB devices on a Linux host
756

    
757
WARNING: this is an experimental feature. QEMU will slow down when
758
using it. USB devices requiring real time streaming (i.e. USB Video
759
Cameras) are not supported yet.
760

    
761
@enumerate
762
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
763
is actually using the USB device. A simple way to do that is simply to
764
disable the corresponding kernel module by renaming it from @file{mydriver.o}
765
to @file{mydriver.o.disabled}.
766

    
767
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
768
@example
769
ls /proc/bus/usb
770
001  devices  drivers
771
@end example
772

    
773
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
774
@example
775
chown -R myuid /proc/bus/usb
776
@end example
777

    
778
@item Launch QEMU and do in the monitor:
779
@example
780
info usbhost
781
  Device 1.2, speed 480 Mb/s
782
    Class 00: USB device 1234:5678, USB DISK
783
@end example
784
You should see the list of the devices you can use (Never try to use
785
hubs, it won't work).
786

    
787
@item Add the device in QEMU by using:
788
@example
789
usb_add host:1234:5678
790
@end example
791

    
792
Normally the guest OS should report that a new USB device is
793
plugged. You can use the option @option{-usbdevice} to do the same.
794

    
795
@item Now you can try to use the host USB device in QEMU.
796

    
797
@end enumerate
798

    
799
When relaunching QEMU, you may have to unplug and plug again the USB
800
device to make it work again (this is a bug).
801

    
802
@node vnc_security
803
@section VNC security
804

    
805
The VNC server capability provides access to the graphical console
806
of the guest VM across the network. This has a number of security
807
considerations depending on the deployment scenarios.
808

    
809
@menu
810
* vnc_sec_none::
811
* vnc_sec_password::
812
* vnc_sec_certificate::
813
* vnc_sec_certificate_verify::
814
* vnc_sec_certificate_pw::
815
* vnc_sec_sasl::
816
* vnc_sec_certificate_sasl::
817
* vnc_generate_cert::
818
* vnc_setup_sasl::
819
@end menu
820
@node vnc_sec_none
821
@subsection Without passwords
822

    
823
The simplest VNC server setup does not include any form of authentication.
824
For this setup it is recommended to restrict it to listen on a UNIX domain
825
socket only. For example
826

    
827
@example
828
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
829
@end example
830

    
831
This ensures that only users on local box with read/write access to that
832
path can access the VNC server. To securely access the VNC server from a
833
remote machine, a combination of netcat+ssh can be used to provide a secure
834
tunnel.
835

    
836
@node vnc_sec_password
837
@subsection With passwords
838

    
839
The VNC protocol has limited support for password based authentication. Since
840
the protocol limits passwords to 8 characters it should not be considered
841
to provide high security. The password can be fairly easily brute-forced by
842
a client making repeat connections. For this reason, a VNC server using password
843
authentication should be restricted to only listen on the loopback interface
844
or UNIX domain sockets. Password authentication is requested with the @code{password}
845
option, and then once QEMU is running the password is set with the monitor. Until
846
the monitor is used to set the password all clients will be rejected.
847

    
848
@example
849
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
850
(qemu) change vnc password
851
Password: ********
852
(qemu)
853
@end example
854

    
855
@node vnc_sec_certificate
856
@subsection With x509 certificates
857

    
858
The QEMU VNC server also implements the VeNCrypt extension allowing use of
859
TLS for encryption of the session, and x509 certificates for authentication.
860
The use of x509 certificates is strongly recommended, because TLS on its
861
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
862
support provides a secure session, but no authentication. This allows any
863
client to connect, and provides an encrypted session.
864

    
865
@example
866
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
867
@end example
868

    
869
In the above example @code{/etc/pki/qemu} should contain at least three files,
870
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
871
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
872
NB the @code{server-key.pem} file should be protected with file mode 0600 to
873
only be readable by the user owning it.
874

    
875
@node vnc_sec_certificate_verify
876
@subsection With x509 certificates and client verification
877

    
878
Certificates can also provide a means to authenticate the client connecting.
879
The server will request that the client provide a certificate, which it will
880
then validate against the CA certificate. This is a good choice if deploying
881
in an environment with a private internal certificate authority.
882

    
883
@example
884
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
885
@end example
886

    
887

    
888
@node vnc_sec_certificate_pw
889
@subsection With x509 certificates, client verification and passwords
890

    
891
Finally, the previous method can be combined with VNC password authentication
892
to provide two layers of authentication for clients.
893

    
894
@example
895
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
896
(qemu) change vnc password
897
Password: ********
898
(qemu)
899
@end example
900

    
901

    
902
@node vnc_sec_sasl
903
@subsection With SASL authentication
904

    
905
The SASL authentication method is a VNC extension, that provides an
906
easily extendable, pluggable authentication method. This allows for
907
integration with a wide range of authentication mechanisms, such as
908
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
909
The strength of the authentication depends on the exact mechanism
910
configured. If the chosen mechanism also provides a SSF layer, then
911
it will encrypt the datastream as well.
912

    
913
Refer to the later docs on how to choose the exact SASL mechanism
914
used for authentication, but assuming use of one supporting SSF,
915
then QEMU can be launched with:
916

    
917
@example
918
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
919
@end example
920

    
921
@node vnc_sec_certificate_sasl
922
@subsection With x509 certificates and SASL authentication
923

    
924
If the desired SASL authentication mechanism does not supported
925
SSF layers, then it is strongly advised to run it in combination
926
with TLS and x509 certificates. This provides securely encrypted
927
data stream, avoiding risk of compromising of the security
928
credentials. This can be enabled, by combining the 'sasl' option
929
with the aforementioned TLS + x509 options:
930

    
931
@example
932
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
933
@end example
934

    
935

    
936
@node vnc_generate_cert
937
@subsection Generating certificates for VNC
938

    
939
The GNU TLS packages provides a command called @code{certtool} which can
940
be used to generate certificates and keys in PEM format. At a minimum it
941
is neccessary to setup a certificate authority, and issue certificates to
942
each server. If using certificates for authentication, then each client
943
will also need to be issued a certificate. The recommendation is for the
944
server to keep its certificates in either @code{/etc/pki/qemu} or for
945
unprivileged users in @code{$HOME/.pki/qemu}.
946

    
947
@menu
948
* vnc_generate_ca::
949
* vnc_generate_server::
950
* vnc_generate_client::
951
@end menu
952
@node vnc_generate_ca
953
@subsubsection Setup the Certificate Authority
954

    
955
This step only needs to be performed once per organization / organizational
956
unit. First the CA needs a private key. This key must be kept VERY secret
957
and secure. If this key is compromised the entire trust chain of the certificates
958
issued with it is lost.
959

    
960
@example
961
# certtool --generate-privkey > ca-key.pem
962
@end example
963

    
964
A CA needs to have a public certificate. For simplicity it can be a self-signed
965
certificate, or one issue by a commercial certificate issuing authority. To
966
generate a self-signed certificate requires one core piece of information, the
967
name of the organization.
968

    
969
@example
970
# cat > ca.info <<EOF
971
cn = Name of your organization
972
ca
973
cert_signing_key
974
EOF
975
# certtool --generate-self-signed \
976
           --load-privkey ca-key.pem
977
           --template ca.info \
978
           --outfile ca-cert.pem
979
@end example
980

    
981
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
982
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
983

    
984
@node vnc_generate_server
985
@subsubsection Issuing server certificates
986

    
987
Each server (or host) needs to be issued with a key and certificate. When connecting
988
the certificate is sent to the client which validates it against the CA certificate.
989
The core piece of information for a server certificate is the hostname. This should
990
be the fully qualified hostname that the client will connect with, since the client
991
will typically also verify the hostname in the certificate. On the host holding the
992
secure CA private key:
993

    
994
@example
995
# cat > server.info <<EOF
996
organization = Name  of your organization
997
cn = server.foo.example.com
998
tls_www_server
999
encryption_key
1000
signing_key
1001
EOF
1002
# certtool --generate-privkey > server-key.pem
1003
# certtool --generate-certificate \
1004
           --load-ca-certificate ca-cert.pem \
1005
           --load-ca-privkey ca-key.pem \
1006
           --load-privkey server server-key.pem \
1007
           --template server.info \
1008
           --outfile server-cert.pem
1009
@end example
1010

    
1011
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1012
to the server for which they were generated. The @code{server-key.pem} is security
1013
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1014

    
1015
@node vnc_generate_client
1016
@subsubsection Issuing client certificates
1017

    
1018
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1019
certificates as its authentication mechanism, each client also needs to be issued
1020
a certificate. The client certificate contains enough metadata to uniquely identify
1021
the client, typically organization, state, city, building, etc. On the host holding
1022
the secure CA private key:
1023

    
1024
@example
1025
# cat > client.info <<EOF
1026
country = GB
1027
state = London
1028
locality = London
1029
organiazation = Name of your organization
1030
cn = client.foo.example.com
1031
tls_www_client
1032
encryption_key
1033
signing_key
1034
EOF
1035
# certtool --generate-privkey > client-key.pem
1036
# certtool --generate-certificate \
1037
           --load-ca-certificate ca-cert.pem \
1038
           --load-ca-privkey ca-key.pem \
1039
           --load-privkey client-key.pem \
1040
           --template client.info \
1041
           --outfile client-cert.pem
1042
@end example
1043

    
1044
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1045
copied to the client for which they were generated.
1046

    
1047

    
1048
@node vnc_setup_sasl
1049

    
1050
@subsection Configuring SASL mechanisms
1051

    
1052
The following documentation assumes use of the Cyrus SASL implementation on a
1053
Linux host, but the principals should apply to any other SASL impl. When SASL
1054
is enabled, the mechanism configuration will be loaded from system default
1055
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1056
unprivileged user, an environment variable SASL_CONF_PATH can be used
1057
to make it search alternate locations for the service config.
1058

    
1059
The default configuration might contain
1060

    
1061
@example
1062
mech_list: digest-md5
1063
sasldb_path: /etc/qemu/passwd.db
1064
@end example
1065

    
1066
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1067
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1068
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1069
command. While this mechanism is easy to configure and use, it is not
1070
considered secure by modern standards, so only suitable for developers /
1071
ad-hoc testing.
1072

    
1073
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1074
mechanism
1075

    
1076
@example
1077
mech_list: gssapi
1078
keytab: /etc/qemu/krb5.tab
1079
@end example
1080

    
1081
For this to work the administrator of your KDC must generate a Kerberos
1082
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1083
replacing 'somehost.example.com' with the fully qualified host name of the
1084
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1085

    
1086
Other configurations will be left as an exercise for the reader. It should
1087
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1088
encryption. For all other mechanisms, VNC should always be configured to
1089
use TLS and x509 certificates to protect security credentials from snooping.
1090

    
1091
@node gdb_usage
1092
@section GDB usage
1093

    
1094
QEMU has a primitive support to work with gdb, so that you can do
1095
'Ctrl-C' while the virtual machine is running and inspect its state.
1096

    
1097
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1098
gdb connection:
1099
@example
1100
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1101
       -append "root=/dev/hda"
1102
Connected to host network interface: tun0
1103
Waiting gdb connection on port 1234
1104
@end example
1105

    
1106
Then launch gdb on the 'vmlinux' executable:
1107
@example
1108
> gdb vmlinux
1109
@end example
1110

    
1111
In gdb, connect to QEMU:
1112
@example
1113
(gdb) target remote localhost:1234
1114
@end example
1115

    
1116
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1117
@example
1118
(gdb) c
1119
@end example
1120

    
1121
Here are some useful tips in order to use gdb on system code:
1122

    
1123
@enumerate
1124
@item
1125
Use @code{info reg} to display all the CPU registers.
1126
@item
1127
Use @code{x/10i $eip} to display the code at the PC position.
1128
@item
1129
Use @code{set architecture i8086} to dump 16 bit code. Then use
1130
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1131
@end enumerate
1132

    
1133
Advanced debugging options:
1134

    
1135
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1136
@table @code
1137
@item maintenance packet qqemu.sstepbits
1138

    
1139
This will display the MASK bits used to control the single stepping IE:
1140
@example
1141
(gdb) maintenance packet qqemu.sstepbits
1142
sending: "qqemu.sstepbits"
1143
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1144
@end example
1145
@item maintenance packet qqemu.sstep
1146

    
1147
This will display the current value of the mask used when single stepping IE:
1148
@example
1149
(gdb) maintenance packet qqemu.sstep
1150
sending: "qqemu.sstep"
1151
received: "0x7"
1152
@end example
1153
@item maintenance packet Qqemu.sstep=HEX_VALUE
1154

    
1155
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1156
@example
1157
(gdb) maintenance packet Qqemu.sstep=0x5
1158
sending: "qemu.sstep=0x5"
1159
received: "OK"
1160
@end example
1161
@end table
1162

    
1163
@node pcsys_os_specific
1164
@section Target OS specific information
1165

    
1166
@subsection Linux
1167

    
1168
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1169
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1170
color depth in the guest and the host OS.
1171

    
1172
When using a 2.6 guest Linux kernel, you should add the option
1173
@code{clock=pit} on the kernel command line because the 2.6 Linux
1174
kernels make very strict real time clock checks by default that QEMU
1175
cannot simulate exactly.
1176

    
1177
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1178
not activated because QEMU is slower with this patch. The QEMU
1179
Accelerator Module is also much slower in this case. Earlier Fedora
1180
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1181
patch by default. Newer kernels don't have it.
1182

    
1183
@subsection Windows
1184

    
1185
If you have a slow host, using Windows 95 is better as it gives the
1186
best speed. Windows 2000 is also a good choice.
1187

    
1188
@subsubsection SVGA graphic modes support
1189

    
1190
QEMU emulates a Cirrus Logic GD5446 Video
1191
card. All Windows versions starting from Windows 95 should recognize
1192
and use this graphic card. For optimal performances, use 16 bit color
1193
depth in the guest and the host OS.
1194

    
1195
If you are using Windows XP as guest OS and if you want to use high
1196
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1197
1280x1024x16), then you should use the VESA VBE virtual graphic card
1198
(option @option{-std-vga}).
1199

    
1200
@subsubsection CPU usage reduction
1201

    
1202
Windows 9x does not correctly use the CPU HLT
1203
instruction. The result is that it takes host CPU cycles even when
1204
idle. You can install the utility from
1205
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1206
problem. Note that no such tool is needed for NT, 2000 or XP.
1207

    
1208
@subsubsection Windows 2000 disk full problem
1209

    
1210
Windows 2000 has a bug which gives a disk full problem during its
1211
installation. When installing it, use the @option{-win2k-hack} QEMU
1212
option to enable a specific workaround. After Windows 2000 is
1213
installed, you no longer need this option (this option slows down the
1214
IDE transfers).
1215

    
1216
@subsubsection Windows 2000 shutdown
1217

    
1218
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1219
can. It comes from the fact that Windows 2000 does not automatically
1220
use the APM driver provided by the BIOS.
1221

    
1222
In order to correct that, do the following (thanks to Struan
1223
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1224
Add/Troubleshoot a device => Add a new device & Next => No, select the
1225
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1226
(again) a few times. Now the driver is installed and Windows 2000 now
1227
correctly instructs QEMU to shutdown at the appropriate moment.
1228

    
1229
@subsubsection Share a directory between Unix and Windows
1230

    
1231
See @ref{sec_invocation} about the help of the option @option{-smb}.
1232

    
1233
@subsubsection Windows XP security problem
1234

    
1235
Some releases of Windows XP install correctly but give a security
1236
error when booting:
1237
@example
1238
A problem is preventing Windows from accurately checking the
1239
license for this computer. Error code: 0x800703e6.
1240
@end example
1241

    
1242
The workaround is to install a service pack for XP after a boot in safe
1243
mode. Then reboot, and the problem should go away. Since there is no
1244
network while in safe mode, its recommended to download the full
1245
installation of SP1 or SP2 and transfer that via an ISO or using the
1246
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1247

    
1248
@subsection MS-DOS and FreeDOS
1249

    
1250
@subsubsection CPU usage reduction
1251

    
1252
DOS does not correctly use the CPU HLT instruction. The result is that
1253
it takes host CPU cycles even when idle. You can install the utility
1254
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1255
problem.
1256

    
1257
@node QEMU System emulator for non PC targets
1258
@chapter QEMU System emulator for non PC targets
1259

    
1260
QEMU is a generic emulator and it emulates many non PC
1261
machines. Most of the options are similar to the PC emulator. The
1262
differences are mentioned in the following sections.
1263

    
1264
@menu
1265
* QEMU PowerPC System emulator::
1266
* Sparc32 System emulator::
1267
* Sparc64 System emulator::
1268
* MIPS System emulator::
1269
* ARM System emulator::
1270
* ColdFire System emulator::
1271
@end menu
1272

    
1273
@node QEMU PowerPC System emulator
1274
@section QEMU PowerPC System emulator
1275

    
1276
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1277
or PowerMac PowerPC system.
1278

    
1279
QEMU emulates the following PowerMac peripherals:
1280

    
1281
@itemize @minus
1282
@item
1283
UniNorth or Grackle PCI Bridge
1284
@item
1285
PCI VGA compatible card with VESA Bochs Extensions
1286
@item
1287
2 PMAC IDE interfaces with hard disk and CD-ROM support
1288
@item
1289
NE2000 PCI adapters
1290
@item
1291
Non Volatile RAM
1292
@item
1293
VIA-CUDA with ADB keyboard and mouse.
1294
@end itemize
1295

    
1296
QEMU emulates the following PREP peripherals:
1297

    
1298
@itemize @minus
1299
@item
1300
PCI Bridge
1301
@item
1302
PCI VGA compatible card with VESA Bochs Extensions
1303
@item
1304
2 IDE interfaces with hard disk and CD-ROM support
1305
@item
1306
Floppy disk
1307
@item
1308
NE2000 network adapters
1309
@item
1310
Serial port
1311
@item
1312
PREP Non Volatile RAM
1313
@item
1314
PC compatible keyboard and mouse.
1315
@end itemize
1316

    
1317
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1318
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1319

    
1320
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1321
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1322
v2) portable firmware implementation. The goal is to implement a 100%
1323
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1324

    
1325
@c man begin OPTIONS
1326

    
1327
The following options are specific to the PowerPC emulation:
1328

    
1329
@table @option
1330

    
1331
@item -g WxH[xDEPTH]
1332

    
1333
Set the initial VGA graphic mode. The default is 800x600x15.
1334

    
1335
@item -prom-env string
1336

    
1337
Set OpenBIOS variables in NVRAM, for example:
1338

    
1339
@example
1340
qemu-system-ppc -prom-env 'auto-boot?=false' \
1341
 -prom-env 'boot-device=hd:2,\yaboot' \
1342
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1343
@end example
1344

    
1345
These variables are not used by Open Hack'Ware.
1346

    
1347
@end table
1348

    
1349
@c man end
1350

    
1351

    
1352
More information is available at
1353
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1354

    
1355
@node Sparc32 System emulator
1356
@section Sparc32 System emulator
1357

    
1358
Use the executable @file{qemu-system-sparc} to simulate the following
1359
Sun4m architecture machines:
1360
@itemize @minus
1361
@item
1362
SPARCstation 4
1363
@item
1364
SPARCstation 5
1365
@item
1366
SPARCstation 10
1367
@item
1368
SPARCstation 20
1369
@item
1370
SPARCserver 600MP
1371
@item
1372
SPARCstation LX
1373
@item
1374
SPARCstation Voyager
1375
@item
1376
SPARCclassic
1377
@item
1378
SPARCbook
1379
@end itemize
1380

    
1381
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1382
but Linux limits the number of usable CPUs to 4.
1383

    
1384
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1385
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1386
emulators are not usable yet.
1387

    
1388
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1389

    
1390
@itemize @minus
1391
@item
1392
IOMMU or IO-UNITs
1393
@item
1394
TCX Frame buffer
1395
@item
1396
Lance (Am7990) Ethernet
1397
@item
1398
Non Volatile RAM M48T02/M48T08
1399
@item
1400
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1401
and power/reset logic
1402
@item
1403
ESP SCSI controller with hard disk and CD-ROM support
1404
@item
1405
Floppy drive (not on SS-600MP)
1406
@item
1407
CS4231 sound device (only on SS-5, not working yet)
1408
@end itemize
1409

    
1410
The number of peripherals is fixed in the architecture.  Maximum
1411
memory size depends on the machine type, for SS-5 it is 256MB and for
1412
others 2047MB.
1413

    
1414
Since version 0.8.2, QEMU uses OpenBIOS
1415
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1416
firmware implementation. The goal is to implement a 100% IEEE
1417
1275-1994 (referred to as Open Firmware) compliant firmware.
1418

    
1419
A sample Linux 2.6 series kernel and ram disk image are available on
1420
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1421
some kernel versions work. Please note that currently Solaris kernels
1422
don't work probably due to interface issues between OpenBIOS and
1423
Solaris.
1424

    
1425
@c man begin OPTIONS
1426

    
1427
The following options are specific to the Sparc32 emulation:
1428

    
1429
@table @option
1430

    
1431
@item -g WxHx[xDEPTH]
1432

    
1433
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1434
the only other possible mode is 1024x768x24.
1435

    
1436
@item -prom-env string
1437

    
1438
Set OpenBIOS variables in NVRAM, for example:
1439

    
1440
@example
1441
qemu-system-sparc -prom-env 'auto-boot?=false' \
1442
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1443
@end example
1444

    
1445
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
1446

    
1447
Set the emulated machine type. Default is SS-5.
1448

    
1449
@end table
1450

    
1451
@c man end
1452

    
1453
@node Sparc64 System emulator
1454
@section Sparc64 System emulator
1455

    
1456
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1457
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1458
Niagara (T1) machine. The emulator is not usable for anything yet, but
1459
it can launch some kernels.
1460

    
1461
QEMU emulates the following peripherals:
1462

    
1463
@itemize @minus
1464
@item
1465
UltraSparc IIi APB PCI Bridge
1466
@item
1467
PCI VGA compatible card with VESA Bochs Extensions
1468
@item
1469
PS/2 mouse and keyboard
1470
@item
1471
Non Volatile RAM M48T59
1472
@item
1473
PC-compatible serial ports
1474
@item
1475
2 PCI IDE interfaces with hard disk and CD-ROM support
1476
@item
1477
Floppy disk
1478
@end itemize
1479

    
1480
@c man begin OPTIONS
1481

    
1482
The following options are specific to the Sparc64 emulation:
1483

    
1484
@table @option
1485

    
1486
@item -prom-env string
1487

    
1488
Set OpenBIOS variables in NVRAM, for example:
1489

    
1490
@example
1491
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1492
@end example
1493

    
1494
@item -M [sun4u|sun4v|Niagara]
1495

    
1496
Set the emulated machine type. The default is sun4u.
1497

    
1498
@end table
1499

    
1500
@c man end
1501

    
1502
@node MIPS System emulator
1503
@section MIPS System emulator
1504

    
1505
Four executables cover simulation of 32 and 64-bit MIPS systems in
1506
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1507
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1508
Five different machine types are emulated:
1509

    
1510
@itemize @minus
1511
@item
1512
A generic ISA PC-like machine "mips"
1513
@item
1514
The MIPS Malta prototype board "malta"
1515
@item
1516
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1517
@item
1518
MIPS emulator pseudo board "mipssim"
1519
@item
1520
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1521
@end itemize
1522

    
1523
The generic emulation is supported by Debian 'Etch' and is able to
1524
install Debian into a virtual disk image. The following devices are
1525
emulated:
1526

    
1527
@itemize @minus
1528
@item
1529
A range of MIPS CPUs, default is the 24Kf
1530
@item
1531
PC style serial port
1532
@item
1533
PC style IDE disk
1534
@item
1535
NE2000 network card
1536
@end itemize
1537

    
1538
The Malta emulation supports the following devices:
1539

    
1540
@itemize @minus
1541
@item
1542
Core board with MIPS 24Kf CPU and Galileo system controller
1543
@item
1544
PIIX4 PCI/USB/SMbus controller
1545
@item
1546
The Multi-I/O chip's serial device
1547
@item
1548
PCI network cards (PCnet32 and others)
1549
@item
1550
Malta FPGA serial device
1551
@item
1552
Cirrus (default) or any other PCI VGA graphics card
1553
@end itemize
1554

    
1555
The ACER Pica emulation supports:
1556

    
1557
@itemize @minus
1558
@item
1559
MIPS R4000 CPU
1560
@item
1561
PC-style IRQ and DMA controllers
1562
@item
1563
PC Keyboard
1564
@item
1565
IDE controller
1566
@end itemize
1567

    
1568
The mipssim pseudo board emulation provides an environment similiar
1569
to what the proprietary MIPS emulator uses for running Linux.
1570
It supports:
1571

    
1572
@itemize @minus
1573
@item
1574
A range of MIPS CPUs, default is the 24Kf
1575
@item
1576
PC style serial port
1577
@item
1578
MIPSnet network emulation
1579
@end itemize
1580

    
1581
The MIPS Magnum R4000 emulation supports:
1582

    
1583
@itemize @minus
1584
@item
1585
MIPS R4000 CPU
1586
@item
1587
PC-style IRQ controller
1588
@item
1589
PC Keyboard
1590
@item
1591
SCSI controller
1592
@item
1593
G364 framebuffer
1594
@end itemize
1595

    
1596

    
1597
@node ARM System emulator
1598
@section ARM System emulator
1599

    
1600
Use the executable @file{qemu-system-arm} to simulate a ARM
1601
machine. The ARM Integrator/CP board is emulated with the following
1602
devices:
1603

    
1604
@itemize @minus
1605
@item
1606
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1607
@item
1608
Two PL011 UARTs
1609
@item
1610
SMC 91c111 Ethernet adapter
1611
@item
1612
PL110 LCD controller
1613
@item
1614
PL050 KMI with PS/2 keyboard and mouse.
1615
@item
1616
PL181 MultiMedia Card Interface with SD card.
1617
@end itemize
1618

    
1619
The ARM Versatile baseboard is emulated with the following devices:
1620

    
1621
@itemize @minus
1622
@item
1623
ARM926E, ARM1136 or Cortex-A8 CPU
1624
@item
1625
PL190 Vectored Interrupt Controller
1626
@item
1627
Four PL011 UARTs
1628
@item
1629
SMC 91c111 Ethernet adapter
1630
@item
1631
PL110 LCD controller
1632
@item
1633
PL050 KMI with PS/2 keyboard and mouse.
1634
@item
1635
PCI host bridge.  Note the emulated PCI bridge only provides access to
1636
PCI memory space.  It does not provide access to PCI IO space.
1637
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1638
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1639
mapped control registers.
1640
@item
1641
PCI OHCI USB controller.
1642
@item
1643
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1644
@item
1645
PL181 MultiMedia Card Interface with SD card.
1646
@end itemize
1647

    
1648
The ARM RealView Emulation baseboard is emulated with the following devices:
1649

    
1650
@itemize @minus
1651
@item
1652
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
1653
@item
1654
ARM AMBA Generic/Distributed Interrupt Controller
1655
@item
1656
Four PL011 UARTs
1657
@item
1658
SMC 91c111 Ethernet adapter
1659
@item
1660
PL110 LCD controller
1661
@item
1662
PL050 KMI with PS/2 keyboard and mouse
1663
@item
1664
PCI host bridge
1665
@item
1666
PCI OHCI USB controller
1667
@item
1668
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1669
@item
1670
PL181 MultiMedia Card Interface with SD card.
1671
@end itemize
1672

    
1673
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1674
and "Terrier") emulation includes the following peripherals:
1675

    
1676
@itemize @minus
1677
@item
1678
Intel PXA270 System-on-chip (ARM V5TE core)
1679
@item
1680
NAND Flash memory
1681
@item
1682
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1683
@item
1684
On-chip OHCI USB controller
1685
@item
1686
On-chip LCD controller
1687
@item
1688
On-chip Real Time Clock
1689
@item
1690
TI ADS7846 touchscreen controller on SSP bus
1691
@item
1692
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1693
@item
1694
GPIO-connected keyboard controller and LEDs
1695
@item
1696
Secure Digital card connected to PXA MMC/SD host
1697
@item
1698
Three on-chip UARTs
1699
@item
1700
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1701
@end itemize
1702

    
1703
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1704
following elements:
1705

    
1706
@itemize @minus
1707
@item
1708
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1709
@item
1710
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1711
@item
1712
On-chip LCD controller
1713
@item
1714
On-chip Real Time Clock
1715
@item
1716
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1717
CODEC, connected through MicroWire and I@math{^2}S busses
1718
@item
1719
GPIO-connected matrix keypad
1720
@item
1721
Secure Digital card connected to OMAP MMC/SD host
1722
@item
1723
Three on-chip UARTs
1724
@end itemize
1725

    
1726
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1727
emulation supports the following elements:
1728

    
1729
@itemize @minus
1730
@item
1731
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1732
@item
1733
RAM and non-volatile OneNAND Flash memories
1734
@item
1735
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1736
display controller and a LS041y3 MIPI DBI-C controller
1737
@item
1738
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1739
driven through SPI bus
1740
@item
1741
National Semiconductor LM8323-controlled qwerty keyboard driven
1742
through I@math{^2}C bus
1743
@item
1744
Secure Digital card connected to OMAP MMC/SD host
1745
@item
1746
Three OMAP on-chip UARTs and on-chip STI debugging console
1747
@item
1748
A Bluetooth(R) transciever and HCI connected to an UART
1749
@item
1750
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1751
TUSB6010 chip - only USB host mode is supported
1752
@item
1753
TI TMP105 temperature sensor driven through I@math{^2}C bus
1754
@item
1755
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1756
@item
1757
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1758
through CBUS
1759
@end itemize
1760

    
1761
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1762
devices:
1763

    
1764
@itemize @minus
1765
@item
1766
Cortex-M3 CPU core.
1767
@item
1768
64k Flash and 8k SRAM.
1769
@item
1770
Timers, UARTs, ADC and I@math{^2}C interface.
1771
@item
1772
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1773
@end itemize
1774

    
1775
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1776
devices:
1777

    
1778
@itemize @minus
1779
@item
1780
Cortex-M3 CPU core.
1781
@item
1782
256k Flash and 64k SRAM.
1783
@item
1784
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1785
@item
1786
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1787
@end itemize
1788

    
1789
The Freecom MusicPal internet radio emulation includes the following
1790
elements:
1791

    
1792
@itemize @minus
1793
@item
1794
Marvell MV88W8618 ARM core.
1795
@item
1796
32 MB RAM, 256 KB SRAM, 8 MB flash.
1797
@item
1798
Up to 2 16550 UARTs
1799
@item
1800
MV88W8xx8 Ethernet controller
1801
@item
1802
MV88W8618 audio controller, WM8750 CODEC and mixer
1803
@item
1804
128?64 display with brightness control
1805
@item
1806
2 buttons, 2 navigation wheels with button function
1807
@end itemize
1808

    
1809
The Siemens SX1 models v1 and v2 (default) basic emulation.
1810
The emulaton includes the following elements:
1811

    
1812
@itemize @minus
1813
@item
1814
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1815
@item
1816
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1817
V1
1818
1 Flash of 16MB and 1 Flash of 8MB
1819
V2
1820
1 Flash of 32MB
1821
@item
1822
On-chip LCD controller
1823
@item
1824
On-chip Real Time Clock
1825
@item
1826
Secure Digital card connected to OMAP MMC/SD host
1827
@item
1828
Three on-chip UARTs
1829
@end itemize
1830

    
1831
The "Syborg" Symbian Virtual Platform base model includes the following
1832
elements:
1833

    
1834
@itemize @minus
1835
@item
1836
ARM Cortex-A8 CPU
1837
@item
1838
Interrupt controller
1839
@item
1840
Timer
1841
@item
1842
Real Time Clock
1843
@item
1844
Keyboard
1845
@item
1846
Framebuffer
1847
@item
1848
Touchscreen
1849
@item
1850
UARTs
1851
@end itemize
1852

    
1853
A Linux 2.6 test image is available on the QEMU web site. More
1854
information is available in the QEMU mailing-list archive.
1855

    
1856
@c man begin OPTIONS
1857

    
1858
The following options are specific to the ARM emulation:
1859

    
1860
@table @option
1861

    
1862
@item -semihosting
1863
Enable semihosting syscall emulation.
1864

    
1865
On ARM this implements the "Angel" interface.
1866

    
1867
Note that this allows guest direct access to the host filesystem,
1868
so should only be used with trusted guest OS.
1869

    
1870
@end table
1871

    
1872
@node ColdFire System emulator
1873
@section ColdFire System emulator
1874

    
1875
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1876
The emulator is able to boot a uClinux kernel.
1877

    
1878
The M5208EVB emulation includes the following devices:
1879

    
1880
@itemize @minus
1881
@item
1882
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1883
@item
1884
Three Two on-chip UARTs.
1885
@item
1886
Fast Ethernet Controller (FEC)
1887
@end itemize
1888

    
1889
The AN5206 emulation includes the following devices:
1890

    
1891
@itemize @minus
1892
@item
1893
MCF5206 ColdFire V2 Microprocessor.
1894
@item
1895
Two on-chip UARTs.
1896
@end itemize
1897

    
1898
@c man begin OPTIONS
1899

    
1900
The following options are specific to the ARM emulation:
1901

    
1902
@table @option
1903

    
1904
@item -semihosting
1905
Enable semihosting syscall emulation.
1906

    
1907
On M68K this implements the "ColdFire GDB" interface used by libgloss.
1908

    
1909
Note that this allows guest direct access to the host filesystem,
1910
so should only be used with trusted guest OS.
1911

    
1912
@end table
1913

    
1914
@node QEMU User space emulator
1915
@chapter QEMU User space emulator
1916

    
1917
@menu
1918
* Supported Operating Systems ::
1919
* Linux User space emulator::
1920
* Mac OS X/Darwin User space emulator ::
1921
* BSD User space emulator ::
1922
@end menu
1923

    
1924
@node Supported Operating Systems
1925
@section Supported Operating Systems
1926

    
1927
The following OS are supported in user space emulation:
1928

    
1929
@itemize @minus
1930
@item
1931
Linux (referred as qemu-linux-user)
1932
@item
1933
Mac OS X/Darwin (referred as qemu-darwin-user)
1934
@item
1935
BSD (referred as qemu-bsd-user)
1936
@end itemize
1937

    
1938
@node Linux User space emulator
1939
@section Linux User space emulator
1940

    
1941
@menu
1942
* Quick Start::
1943
* Wine launch::
1944
* Command line options::
1945
* Other binaries::
1946
@end menu
1947

    
1948
@node Quick Start
1949
@subsection Quick Start
1950

    
1951
In order to launch a Linux process, QEMU needs the process executable
1952
itself and all the target (x86) dynamic libraries used by it.
1953

    
1954
@itemize
1955

    
1956
@item On x86, you can just try to launch any process by using the native
1957
libraries:
1958

    
1959
@example
1960
qemu-i386 -L / /bin/ls
1961
@end example
1962

    
1963
@code{-L /} tells that the x86 dynamic linker must be searched with a
1964
@file{/} prefix.
1965

    
1966
@item Since QEMU is also a linux process, you can launch qemu with
1967
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1968

    
1969
@example
1970
qemu-i386 -L / qemu-i386 -L / /bin/ls
1971
@end example
1972

    
1973
@item On non x86 CPUs, you need first to download at least an x86 glibc
1974
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1975
@code{LD_LIBRARY_PATH} is not set:
1976

    
1977
@example
1978
unset LD_LIBRARY_PATH
1979
@end example
1980

    
1981
Then you can launch the precompiled @file{ls} x86 executable:
1982

    
1983
@example
1984
qemu-i386 tests/i386/ls
1985
@end example
1986
You can look at @file{qemu-binfmt-conf.sh} so that
1987
QEMU is automatically launched by the Linux kernel when you try to
1988
launch x86 executables. It requires the @code{binfmt_misc} module in the
1989
Linux kernel.
1990

    
1991
@item The x86 version of QEMU is also included. You can try weird things such as:
1992
@example
1993
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1994
          /usr/local/qemu-i386/bin/ls-i386
1995
@end example
1996

    
1997
@end itemize
1998

    
1999
@node Wine launch
2000
@subsection Wine launch
2001

    
2002
@itemize
2003

    
2004
@item Ensure that you have a working QEMU with the x86 glibc
2005
distribution (see previous section). In order to verify it, you must be
2006
able to do:
2007

    
2008
@example
2009
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2010
@end example
2011

    
2012
@item Download the binary x86 Wine install
2013
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2014

    
2015
@item Configure Wine on your account. Look at the provided script
2016
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2017
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2018

    
2019
@item Then you can try the example @file{putty.exe}:
2020

    
2021
@example
2022
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2023
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2024
@end example
2025

    
2026
@end itemize
2027

    
2028
@node Command line options
2029
@subsection Command line options
2030

    
2031
@example
2032
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] program [arguments...]
2033
@end example
2034

    
2035
@table @option
2036
@item -h
2037
Print the help
2038
@item -L path
2039
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2040
@item -s size
2041
Set the x86 stack size in bytes (default=524288)
2042
@item -cpu model
2043
Select CPU model (-cpu ? for list and additional feature selection)
2044
@item -B offset
2045
Offset guest address by the specified number of bytes.  This is useful when
2046
the address region rewuired by guest applications is reserved on the host.
2047
Ths option is currently only supported on some hosts.
2048
@end table
2049

    
2050
Debug options:
2051

    
2052
@table @option
2053
@item -d
2054
Activate log (logfile=/tmp/qemu.log)
2055
@item -p pagesize
2056
Act as if the host page size was 'pagesize' bytes
2057
@item -g port
2058
Wait gdb connection to port
2059
@item -singlestep
2060
Run the emulation in single step mode.
2061
@end table
2062

    
2063
Environment variables:
2064

    
2065
@table @env
2066
@item QEMU_STRACE
2067
Print system calls and arguments similar to the 'strace' program
2068
(NOTE: the actual 'strace' program will not work because the user
2069
space emulator hasn't implemented ptrace).  At the moment this is
2070
incomplete.  All system calls that don't have a specific argument
2071
format are printed with information for six arguments.  Many
2072
flag-style arguments don't have decoders and will show up as numbers.
2073
@end table
2074

    
2075
@node Other binaries
2076
@subsection Other binaries
2077

    
2078
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2079
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2080
configurations), and arm-uclinux bFLT format binaries.
2081

    
2082
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2083
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2084
coldfire uClinux bFLT format binaries.
2085

    
2086
The binary format is detected automatically.
2087

    
2088
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2089

    
2090
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2091
(Sparc64 CPU, 32 bit ABI).
2092

    
2093
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2094
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2095

    
2096
@node Mac OS X/Darwin User space emulator
2097
@section Mac OS X/Darwin User space emulator
2098

    
2099
@menu
2100
* Mac OS X/Darwin Status::
2101
* Mac OS X/Darwin Quick Start::
2102
* Mac OS X/Darwin Command line options::
2103
@end menu
2104

    
2105
@node Mac OS X/Darwin Status
2106
@subsection Mac OS X/Darwin Status
2107

    
2108
@itemize @minus
2109
@item
2110
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2111
@item
2112
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2113
@item
2114
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2115
@item
2116
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2117
@end itemize
2118

    
2119
[1] If you're host commpage can be executed by qemu.
2120

    
2121
@node Mac OS X/Darwin Quick Start
2122
@subsection Quick Start
2123

    
2124
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2125
itself and all the target dynamic libraries used by it. If you don't have the FAT
2126
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2127
CD or compile them by hand.
2128

    
2129
@itemize
2130

    
2131
@item On x86, you can just try to launch any process by using the native
2132
libraries:
2133

    
2134
@example
2135
qemu-i386 /bin/ls
2136
@end example
2137

    
2138
or to run the ppc version of the executable:
2139

    
2140
@example
2141
qemu-ppc /bin/ls
2142
@end example
2143

    
2144
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2145
are installed:
2146

    
2147
@example
2148
qemu-i386 -L /opt/x86_root/ /bin/ls
2149
@end example
2150

    
2151
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2152
@file{/opt/x86_root/usr/bin/dyld}.
2153

    
2154
@end itemize
2155

    
2156
@node Mac OS X/Darwin Command line options
2157
@subsection Command line options
2158

    
2159
@example
2160
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2161
@end example
2162

    
2163
@table @option
2164
@item -h
2165
Print the help
2166
@item -L path
2167
Set the library root path (default=/)
2168
@item -s size
2169
Set the stack size in bytes (default=524288)
2170
@end table
2171

    
2172
Debug options:
2173

    
2174
@table @option
2175
@item -d
2176
Activate log (logfile=/tmp/qemu.log)
2177
@item -p pagesize
2178
Act as if the host page size was 'pagesize' bytes
2179
@item -singlestep
2180
Run the emulation in single step mode.
2181
@end table
2182

    
2183
@node BSD User space emulator
2184
@section BSD User space emulator
2185

    
2186
@menu
2187
* BSD Status::
2188
* BSD Quick Start::
2189
* BSD Command line options::
2190
@end menu
2191

    
2192
@node BSD Status
2193
@subsection BSD Status
2194

    
2195
@itemize @minus
2196
@item
2197
target Sparc64 on Sparc64: Some trivial programs work.
2198
@end itemize
2199

    
2200
@node BSD Quick Start
2201
@subsection Quick Start
2202

    
2203
In order to launch a BSD process, QEMU needs the process executable
2204
itself and all the target dynamic libraries used by it.
2205

    
2206
@itemize
2207

    
2208
@item On Sparc64, you can just try to launch any process by using the native
2209
libraries:
2210

    
2211
@example
2212
qemu-sparc64 /bin/ls
2213
@end example
2214

    
2215
@end itemize
2216

    
2217
@node BSD Command line options
2218
@subsection Command line options
2219

    
2220
@example
2221
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2222
@end example
2223

    
2224
@table @option
2225
@item -h
2226
Print the help
2227
@item -L path
2228
Set the library root path (default=/)
2229
@item -s size
2230
Set the stack size in bytes (default=524288)
2231
@item -bsd type
2232
Set the type of the emulated BSD Operating system. Valid values are
2233
FreeBSD, NetBSD and OpenBSD (default).
2234
@end table
2235

    
2236
Debug options:
2237

    
2238
@table @option
2239
@item -d
2240
Activate log (logfile=/tmp/qemu.log)
2241
@item -p pagesize
2242
Act as if the host page size was 'pagesize' bytes
2243
@item -singlestep
2244
Run the emulation in single step mode.
2245
@end table
2246

    
2247
@node compilation
2248
@chapter Compilation from the sources
2249

    
2250
@menu
2251
* Linux/Unix::
2252
* Windows::
2253
* Cross compilation for Windows with Linux::
2254
* Mac OS X::
2255
@end menu
2256

    
2257
@node Linux/Unix
2258
@section Linux/Unix
2259

    
2260
@subsection Compilation
2261

    
2262
First you must decompress the sources:
2263
@example
2264
cd /tmp
2265
tar zxvf qemu-x.y.z.tar.gz
2266
cd qemu-x.y.z
2267
@end example
2268

    
2269
Then you configure QEMU and build it (usually no options are needed):
2270
@example
2271
./configure
2272
make
2273
@end example
2274

    
2275
Then type as root user:
2276
@example
2277
make install
2278
@end example
2279
to install QEMU in @file{/usr/local}.
2280

    
2281
@node Windows
2282
@section Windows
2283

    
2284
@itemize
2285
@item Install the current versions of MSYS and MinGW from
2286
@url{http://www.mingw.org/}. You can find detailed installation
2287
instructions in the download section and the FAQ.
2288

    
2289
@item Download
2290
the MinGW development library of SDL 1.2.x
2291
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2292
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2293
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2294
directory. Edit the @file{sdl-config} script so that it gives the
2295
correct SDL directory when invoked.
2296

    
2297
@item Extract the current version of QEMU.
2298

    
2299
@item Start the MSYS shell (file @file{msys.bat}).
2300

    
2301
@item Change to the QEMU directory. Launch @file{./configure} and
2302
@file{make}.  If you have problems using SDL, verify that
2303
@file{sdl-config} can be launched from the MSYS command line.
2304

    
2305
@item You can install QEMU in @file{Program Files/Qemu} by typing
2306
@file{make install}. Don't forget to copy @file{SDL.dll} in
2307
@file{Program Files/Qemu}.
2308

    
2309
@end itemize
2310

    
2311
@node Cross compilation for Windows with Linux
2312
@section Cross compilation for Windows with Linux
2313

    
2314
@itemize
2315
@item
2316
Install the MinGW cross compilation tools available at
2317
@url{http://www.mingw.org/}.
2318

    
2319
@item
2320
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2321
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2322
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2323
the QEMU configuration script.
2324

    
2325
@item
2326
Configure QEMU for Windows cross compilation:
2327
@example
2328
./configure --enable-mingw32
2329
@end example
2330
If necessary, you can change the cross-prefix according to the prefix
2331
chosen for the MinGW tools with --cross-prefix. You can also use
2332
--prefix to set the Win32 install path.
2333

    
2334
@item You can install QEMU in the installation directory by typing
2335
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2336
installation directory.
2337

    
2338
@end itemize
2339

    
2340
Note: Currently, Wine does not seem able to launch
2341
QEMU for Win32.
2342

    
2343
@node Mac OS X
2344
@section Mac OS X
2345

    
2346
The Mac OS X patches are not fully merged in QEMU, so you should look
2347
at the QEMU mailing list archive to have all the necessary
2348
information.
2349

    
2350
@node Index
2351
@chapter Index
2352
@printindex cp
2353

    
2354
@bye