Statistics
| Branch: | Revision:

root / qemu-doc.texi @ f9320410

History | View | Annotate | Download (85.3 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@end itemize
91

    
92
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
93

    
94
@node Installation
95
@chapter Installation
96

    
97
If you want to compile QEMU yourself, see @ref{compilation}.
98

    
99
@menu
100
* install_linux::   Linux
101
* install_windows:: Windows
102
* install_mac::     Macintosh
103
@end menu
104

    
105
@node install_linux
106
@section Linux
107

    
108
If a precompiled package is available for your distribution - you just
109
have to install it. Otherwise, see @ref{compilation}.
110

    
111
@node install_windows
112
@section Windows
113

    
114
Download the experimental binary installer at
115
@url{http://www.free.oszoo.org/@/download.html}.
116

    
117
@node install_mac
118
@section Mac OS X
119

    
120
Download the experimental binary installer at
121
@url{http://www.free.oszoo.org/@/download.html}.
122

    
123
@node QEMU PC System emulator
124
@chapter QEMU PC System emulator
125

    
126
@menu
127
* pcsys_introduction:: Introduction
128
* pcsys_quickstart::   Quick Start
129
* sec_invocation::     Invocation
130
* pcsys_keys::         Keys
131
* pcsys_monitor::      QEMU Monitor
132
* disk_images::        Disk Images
133
* pcsys_network::      Network emulation
134
* direct_linux_boot::  Direct Linux Boot
135
* pcsys_usb::          USB emulation
136
* vnc_security::       VNC security
137
* gdb_usage::          GDB usage
138
* pcsys_os_specific::  Target OS specific information
139
@end menu
140

    
141
@node pcsys_introduction
142
@section Introduction
143

    
144
@c man begin DESCRIPTION
145

    
146
The QEMU PC System emulator simulates the
147
following peripherals:
148

    
149
@itemize @minus
150
@item
151
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
152
@item
153
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
154
extensions (hardware level, including all non standard modes).
155
@item
156
PS/2 mouse and keyboard
157
@item
158
2 PCI IDE interfaces with hard disk and CD-ROM support
159
@item
160
Floppy disk
161
@item
162
PCI/ISA PCI network adapters
163
@item
164
Serial ports
165
@item
166
Creative SoundBlaster 16 sound card
167
@item
168
ENSONIQ AudioPCI ES1370 sound card
169
@item
170
Intel 82801AA AC97 Audio compatible sound card
171
@item
172
Adlib(OPL2) - Yamaha YM3812 compatible chip
173
@item
174
Gravis Ultrasound GF1 sound card
175
@item
176
PCI UHCI USB controller and a virtual USB hub.
177
@end itemize
178

    
179
SMP is supported with up to 255 CPUs.
180

    
181
Note that adlib, ac97 and gus are only available when QEMU was configured
182
with --enable-adlib, --enable-ac97 or --enable-gus respectively.
183

    
184
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
185
VGA BIOS.
186

    
187
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
188

    
189
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
190
by Tibor "TS" Schütz.
191

    
192
@c man end
193

    
194
@node pcsys_quickstart
195
@section Quick Start
196

    
197
Download and uncompress the linux image (@file{linux.img}) and type:
198

    
199
@example
200
qemu linux.img
201
@end example
202

    
203
Linux should boot and give you a prompt.
204

    
205
@node sec_invocation
206
@section Invocation
207

    
208
@example
209
@c man begin SYNOPSIS
210
usage: qemu [options] [@var{disk_image}]
211
@c man end
212
@end example
213

    
214
@c man begin OPTIONS
215
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
216

    
217
General options:
218
@table @option
219
@item -M @var{machine}
220
Select the emulated @var{machine} (@code{-M ?} for list)
221

    
222
@item -fda @var{file}
223
@item -fdb @var{file}
224
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
225
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
226

    
227
@item -hda @var{file}
228
@item -hdb @var{file}
229
@item -hdc @var{file}
230
@item -hdd @var{file}
231
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
232

    
233
@item -cdrom @var{file}
234
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
235
@option{-cdrom} at the same time). You can use the host CD-ROM by
236
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
237

    
238
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
239

    
240
Define a new drive. Valid options are:
241

    
242
@table @code
243
@item file=@var{file}
244
This option defines which disk image (@pxref{disk_images}) to use with
245
this drive. If the filename contains comma, you must double it
246
(for instance, "file=my,,file" to use file "my,file").
247
@item if=@var{interface}
248
This option defines on which type on interface the drive is connected.
249
Available types are: ide, scsi, sd, mtd, floppy, pflash.
250
@item bus=@var{bus},unit=@var{unit}
251
These options define where is connected the drive by defining the bus number and
252
the unit id.
253
@item index=@var{index}
254
This option defines where is connected the drive by using an index in the list
255
of available connectors of a given interface type.
256
@item media=@var{media}
257
This option defines the type of the media: disk or cdrom.
258
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
259
These options have the same definition as they have in @option{-hdachs}.
260
@item snapshot=@var{snapshot}
261
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
262
@item cache=@var{cache}
263
@var{cache} is "on" or "off" and allows to disable host cache to access data.
264
@item format=@var{format}
265
Specify which disk @var{format} will be used rather than detecting
266
the format.  Can be used to specifiy format=raw to avoid interpreting
267
an untrusted format header.
268
@end table
269

    
270
Instead of @option{-cdrom} you can use:
271
@example
272
qemu -drive file=file,index=2,media=cdrom
273
@end example
274

    
275
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
276
use:
277
@example
278
qemu -drive file=file,index=0,media=disk
279
qemu -drive file=file,index=1,media=disk
280
qemu -drive file=file,index=2,media=disk
281
qemu -drive file=file,index=3,media=disk
282
@end example
283

    
284
You can connect a CDROM to the slave of ide0:
285
@example
286
qemu -drive file=file,if=ide,index=1,media=cdrom
287
@end example
288

    
289
If you don't specify the "file=" argument, you define an empty drive:
290
@example
291
qemu -drive if=ide,index=1,media=cdrom
292
@end example
293

    
294
You can connect a SCSI disk with unit ID 6 on the bus #0:
295
@example
296
qemu -drive file=file,if=scsi,bus=0,unit=6
297
@end example
298

    
299
Instead of @option{-fda}, @option{-fdb}, you can use:
300
@example
301
qemu -drive file=file,index=0,if=floppy
302
qemu -drive file=file,index=1,if=floppy
303
@end example
304

    
305
By default, @var{interface} is "ide" and @var{index} is automatically
306
incremented:
307
@example
308
qemu -drive file=a -drive file=b"
309
@end example
310
is interpreted like:
311
@example
312
qemu -hda a -hdb b
313
@end example
314

    
315
@item -boot [a|c|d|n]
316
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
317
is the default.
318

    
319
@item -snapshot
320
Write to temporary files instead of disk image files. In this case,
321
the raw disk image you use is not written back. You can however force
322
the write back by pressing @key{C-a s} (@pxref{disk_images}).
323

    
324
@item -no-fd-bootchk
325
Disable boot signature checking for floppy disks in Bochs BIOS. It may
326
be needed to boot from old floppy disks.
327

    
328
@item -m @var{megs}
329
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
330
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
331
gigabytes respectively.
332

    
333
@item -smp @var{n}
334
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
335
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
336
to 4.
337

    
338
@item -audio-help
339

    
340
Will show the audio subsystem help: list of drivers, tunable
341
parameters.
342

    
343
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
344

    
345
Enable audio and selected sound hardware. Use ? to print all
346
available sound hardware.
347

    
348
@example
349
qemu -soundhw sb16,adlib hda
350
qemu -soundhw es1370 hda
351
qemu -soundhw ac97 hda
352
qemu -soundhw all hda
353
qemu -soundhw ?
354
@end example
355

    
356
Note that Linux's i810_audio OSS kernel (for AC97) module might
357
require manually specifying clocking.
358

    
359
@example
360
modprobe i810_audio clocking=48000
361
@end example
362

    
363
@item -localtime
364
Set the real time clock to local time (the default is to UTC
365
time). This option is needed to have correct date in MS-DOS or
366
Windows.
367

    
368
@item -startdate @var{date}
369
Set the initial date of the real time clock. Valid format for
370
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
371
@code{2006-06-17}. The default value is @code{now}.
372

    
373
@item -pidfile @var{file}
374
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
375
from a script.
376

    
377
@item -daemonize
378
Daemonize the QEMU process after initialization.  QEMU will not detach from
379
standard IO until it is ready to receive connections on any of its devices.
380
This option is a useful way for external programs to launch QEMU without having
381
to cope with initialization race conditions.
382

    
383
@item -win2k-hack
384
Use it when installing Windows 2000 to avoid a disk full bug. After
385
Windows 2000 is installed, you no longer need this option (this option
386
slows down the IDE transfers).
387

    
388
@item -option-rom @var{file}
389
Load the contents of @var{file} as an option ROM.
390
This option is useful to load things like EtherBoot.
391

    
392
@item -name @var{name}
393
Sets the @var{name} of the guest.
394
This name will be display in the SDL window caption.
395
The @var{name} will also be used for the VNC server.
396

    
397
@end table
398

    
399
Display options:
400
@table @option
401

    
402
@item -nographic
403

    
404
Normally, QEMU uses SDL to display the VGA output. With this option,
405
you can totally disable graphical output so that QEMU is a simple
406
command line application. The emulated serial port is redirected on
407
the console. Therefore, you can still use QEMU to debug a Linux kernel
408
with a serial console.
409

    
410
@item -curses
411

    
412
Normally, QEMU uses SDL to display the VGA output.  With this option,
413
QEMU can display the VGA output when in text mode using a 
414
curses/ncurses interface.  Nothing is displayed in graphical mode.
415

    
416
@item -no-frame
417

    
418
Do not use decorations for SDL windows and start them using the whole
419
available screen space. This makes the using QEMU in a dedicated desktop
420
workspace more convenient.
421

    
422
@item -no-quit
423

    
424
Disable SDL window close capability.
425

    
426
@item -full-screen
427
Start in full screen.
428

    
429
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
430

    
431
Normally, QEMU uses SDL to display the VGA output.  With this option,
432
you can have QEMU listen on VNC display @var{display} and redirect the VGA
433
display over the VNC session.  It is very useful to enable the usb
434
tablet device when using this option (option @option{-usbdevice
435
tablet}). When using the VNC display, you must use the @option{-k}
436
parameter to set the keyboard layout if you are not using en-us. Valid
437
syntax for the @var{display} is
438

    
439
@table @code
440

    
441
@item @var{host}:@var{d}
442

    
443
TCP connections will only be allowed from @var{host} on display @var{d}.
444
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
445
be omitted in which case the server will accept connections from any host.
446

    
447
@item @code{unix}:@var{path}
448

    
449
Connections will be allowed over UNIX domain sockets where @var{path} is the
450
location of a unix socket to listen for connections on.
451

    
452
@item none
453

    
454
VNC is initialized but not started. The monitor @code{change} command
455
can be used to later start the VNC server.
456

    
457
@end table
458

    
459
Following the @var{display} value there may be one or more @var{option} flags
460
separated by commas. Valid options are
461

    
462
@table @code
463

    
464
@item reverse
465

    
466
Connect to a listening VNC client via a ``reverse'' connection. The
467
client is specified by the @var{display}. For reverse network
468
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
469
is a TCP port number, not a display number.
470

    
471
@item password
472

    
473
Require that password based authentication is used for client connections.
474
The password must be set separately using the @code{change} command in the
475
@ref{pcsys_monitor}
476

    
477
@item tls
478

    
479
Require that client use TLS when communicating with the VNC server. This
480
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
481
attack. It is recommended that this option be combined with either the
482
@var{x509} or @var{x509verify} options.
483

    
484
@item x509=@var{/path/to/certificate/dir}
485

    
486
Valid if @option{tls} is specified. Require that x509 credentials are used
487
for negotiating the TLS session. The server will send its x509 certificate
488
to the client. It is recommended that a password be set on the VNC server
489
to provide authentication of the client when this is used. The path following
490
this option specifies where the x509 certificates are to be loaded from.
491
See the @ref{vnc_security} section for details on generating certificates.
492

    
493
@item x509verify=@var{/path/to/certificate/dir}
494

    
495
Valid if @option{tls} is specified. Require that x509 credentials are used
496
for negotiating the TLS session. The server will send its x509 certificate
497
to the client, and request that the client send its own x509 certificate.
498
The server will validate the client's certificate against the CA certificate,
499
and reject clients when validation fails. If the certificate authority is
500
trusted, this is a sufficient authentication mechanism. You may still wish
501
to set a password on the VNC server as a second authentication layer. The
502
path following this option specifies where the x509 certificates are to
503
be loaded from. See the @ref{vnc_security} section for details on generating
504
certificates.
505

    
506
@end table
507

    
508
@item -k @var{language}
509

    
510
Use keyboard layout @var{language} (for example @code{fr} for
511
French). This option is only needed where it is not easy to get raw PC
512
keycodes (e.g. on Macs, with some X11 servers or with a VNC
513
display). You don't normally need to use it on PC/Linux or PC/Windows
514
hosts.
515

    
516
The available layouts are:
517
@example
518
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
519
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
520
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
521
@end example
522

    
523
The default is @code{en-us}.
524

    
525
@end table
526

    
527
USB options:
528
@table @option
529

    
530
@item -usb
531
Enable the USB driver (will be the default soon)
532

    
533
@item -usbdevice @var{devname}
534
Add the USB device @var{devname}. @xref{usb_devices}.
535

    
536
@table @code
537

    
538
@item mouse
539
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
540

    
541
@item tablet
542
Pointer device that uses absolute coordinates (like a touchscreen). This
543
means qemu is able to report the mouse position without having to grab the
544
mouse. Also overrides the PS/2 mouse emulation when activated.
545

    
546
@item disk:file
547
Mass storage device based on file
548

    
549
@item host:bus.addr
550
Pass through the host device identified by bus.addr (Linux only).
551

    
552
@item host:vendor_id:product_id
553
Pass through the host device identified by vendor_id:product_id (Linux only).
554

    
555
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
556
Serial converter to host character device @var{dev}, see @code{-serial} for the
557
available devices.
558

    
559
@item braille
560
Braille device.  This will use BrlAPI to display the braille output on a real
561
or fake device.
562

    
563
@end table
564

    
565
@end table
566

    
567
Network options:
568

    
569
@table @option
570

    
571
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
572
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
573
= 0 is the default). The NIC is an ne2k_pci by default on the PC
574
target. Optionally, the MAC address can be changed. If no
575
@option{-net} option is specified, a single NIC is created.
576
Qemu can emulate several different models of network card.
577
Valid values for @var{type} are
578
@code{i82551}, @code{i82557b}, @code{i82559er},
579
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
580
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
581
Not all devices are supported on all targets.  Use -net nic,model=?
582
for a list of available devices for your target.
583

    
584
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
585
Use the user mode network stack which requires no administrator
586
privilege to run.  @option{hostname=name} can be used to specify the client
587
hostname reported by the builtin DHCP server.
588

    
589
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
590
Connect the host TAP network interface @var{name} to VLAN @var{n} and
591
use the network script @var{file} to configure it. The default
592
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
593
disable script execution. If @var{name} is not
594
provided, the OS automatically provides one. @option{fd}=@var{h} can be
595
used to specify the handle of an already opened host TAP interface. Example:
596

    
597
@example
598
qemu linux.img -net nic -net tap
599
@end example
600

    
601
More complicated example (two NICs, each one connected to a TAP device)
602
@example
603
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
604
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
605
@end example
606

    
607

    
608
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
609

    
610
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
611
machine using a TCP socket connection. If @option{listen} is
612
specified, QEMU waits for incoming connections on @var{port}
613
(@var{host} is optional). @option{connect} is used to connect to
614
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
615
specifies an already opened TCP socket.
616

    
617
Example:
618
@example
619
# launch a first QEMU instance
620
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
621
               -net socket,listen=:1234
622
# connect the VLAN 0 of this instance to the VLAN 0
623
# of the first instance
624
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
625
               -net socket,connect=127.0.0.1:1234
626
@end example
627

    
628
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
629

    
630
Create a VLAN @var{n} shared with another QEMU virtual
631
machines using a UDP multicast socket, effectively making a bus for
632
every QEMU with same multicast address @var{maddr} and @var{port}.
633
NOTES:
634
@enumerate
635
@item
636
Several QEMU can be running on different hosts and share same bus (assuming
637
correct multicast setup for these hosts).
638
@item
639
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
640
@url{http://user-mode-linux.sf.net}.
641
@item
642
Use @option{fd=h} to specify an already opened UDP multicast socket.
643
@end enumerate
644

    
645
Example:
646
@example
647
# launch one QEMU instance
648
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
649
               -net socket,mcast=230.0.0.1:1234
650
# launch another QEMU instance on same "bus"
651
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
652
               -net socket,mcast=230.0.0.1:1234
653
# launch yet another QEMU instance on same "bus"
654
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
655
               -net socket,mcast=230.0.0.1:1234
656
@end example
657

    
658
Example (User Mode Linux compat.):
659
@example
660
# launch QEMU instance (note mcast address selected
661
# is UML's default)
662
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
663
               -net socket,mcast=239.192.168.1:1102
664
# launch UML
665
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
666
@end example
667

    
668
@item -net none
669
Indicate that no network devices should be configured. It is used to
670
override the default configuration (@option{-net nic -net user}) which
671
is activated if no @option{-net} options are provided.
672

    
673
@item -tftp @var{dir}
674
When using the user mode network stack, activate a built-in TFTP
675
server. The files in @var{dir} will be exposed as the root of a TFTP server.
676
The TFTP client on the guest must be configured in binary mode (use the command
677
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
678
usual 10.0.2.2.
679

    
680
@item -bootp @var{file}
681
When using the user mode network stack, broadcast @var{file} as the BOOTP
682
filename.  In conjunction with @option{-tftp}, this can be used to network boot
683
a guest from a local directory.
684

    
685
Example (using pxelinux):
686
@example
687
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
688
@end example
689

    
690
@item -smb @var{dir}
691
When using the user mode network stack, activate a built-in SMB
692
server so that Windows OSes can access to the host files in @file{@var{dir}}
693
transparently.
694

    
695
In the guest Windows OS, the line:
696
@example
697
10.0.2.4 smbserver
698
@end example
699
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
700
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
701

    
702
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
703

    
704
Note that a SAMBA server must be installed on the host OS in
705
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
706
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
707

    
708
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
709

    
710
When using the user mode network stack, redirect incoming TCP or UDP
711
connections to the host port @var{host-port} to the guest
712
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
713
is not specified, its value is 10.0.2.15 (default address given by the
714
built-in DHCP server).
715

    
716
For example, to redirect host X11 connection from screen 1 to guest
717
screen 0, use the following:
718

    
719
@example
720
# on the host
721
qemu -redir tcp:6001::6000 [...]
722
# this host xterm should open in the guest X11 server
723
xterm -display :1
724
@end example
725

    
726
To redirect telnet connections from host port 5555 to telnet port on
727
the guest, use the following:
728

    
729
@example
730
# on the host
731
qemu -redir tcp:5555::23 [...]
732
telnet localhost 5555
733
@end example
734

    
735
Then when you use on the host @code{telnet localhost 5555}, you
736
connect to the guest telnet server.
737

    
738
@end table
739

    
740
Linux boot specific: When using these options, you can use a given
741
Linux kernel without installing it in the disk image. It can be useful
742
for easier testing of various kernels.
743

    
744
@table @option
745

    
746
@item -kernel @var{bzImage}
747
Use @var{bzImage} as kernel image.
748

    
749
@item -append @var{cmdline}
750
Use @var{cmdline} as kernel command line
751

    
752
@item -initrd @var{file}
753
Use @var{file} as initial ram disk.
754

    
755
@end table
756

    
757
Debug/Expert options:
758
@table @option
759

    
760
@item -serial @var{dev}
761
Redirect the virtual serial port to host character device
762
@var{dev}. The default device is @code{vc} in graphical mode and
763
@code{stdio} in non graphical mode.
764

    
765
This option can be used several times to simulate up to 4 serials
766
ports.
767

    
768
Use @code{-serial none} to disable all serial ports.
769

    
770
Available character devices are:
771
@table @code
772
@item vc[:WxH]
773
Virtual console. Optionally, a width and height can be given in pixel with
774
@example
775
vc:800x600
776
@end example
777
It is also possible to specify width or height in characters:
778
@example
779
vc:80Cx24C
780
@end example
781
@item pty
782
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
783
@item none
784
No device is allocated.
785
@item null
786
void device
787
@item /dev/XXX
788
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
789
parameters are set according to the emulated ones.
790
@item /dev/parport@var{N}
791
[Linux only, parallel port only] Use host parallel port
792
@var{N}. Currently SPP and EPP parallel port features can be used.
793
@item file:@var{filename}
794
Write output to @var{filename}. No character can be read.
795
@item stdio
796
[Unix only] standard input/output
797
@item pipe:@var{filename}
798
name pipe @var{filename}
799
@item COM@var{n}
800
[Windows only] Use host serial port @var{n}
801
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
802
This implements UDP Net Console.
803
When @var{remote_host} or @var{src_ip} are not specified
804
they default to @code{0.0.0.0}.
805
When not using a specified @var{src_port} a random port is automatically chosen.
806

    
807
If you just want a simple readonly console you can use @code{netcat} or
808
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
809
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
810
will appear in the netconsole session.
811

    
812
If you plan to send characters back via netconsole or you want to stop
813
and start qemu a lot of times, you should have qemu use the same
814
source port each time by using something like @code{-serial
815
udp::4555@@:4556} to qemu. Another approach is to use a patched
816
version of netcat which can listen to a TCP port and send and receive
817
characters via udp.  If you have a patched version of netcat which
818
activates telnet remote echo and single char transfer, then you can
819
use the following options to step up a netcat redirector to allow
820
telnet on port 5555 to access the qemu port.
821
@table @code
822
@item Qemu Options:
823
-serial udp::4555@@:4556
824
@item netcat options:
825
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
826
@item telnet options:
827
localhost 5555
828
@end table
829

    
830

    
831
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
832
The TCP Net Console has two modes of operation.  It can send the serial
833
I/O to a location or wait for a connection from a location.  By default
834
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
835
the @var{server} option QEMU will wait for a client socket application
836
to connect to the port before continuing, unless the @code{nowait}
837
option was specified.  The @code{nodelay} option disables the Nagle buffering
838
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
839
one TCP connection at a time is accepted. You can use @code{telnet} to
840
connect to the corresponding character device.
841
@table @code
842
@item Example to send tcp console to 192.168.0.2 port 4444
843
-serial tcp:192.168.0.2:4444
844
@item Example to listen and wait on port 4444 for connection
845
-serial tcp::4444,server
846
@item Example to not wait and listen on ip 192.168.0.100 port 4444
847
-serial tcp:192.168.0.100:4444,server,nowait
848
@end table
849

    
850
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
851
The telnet protocol is used instead of raw tcp sockets.  The options
852
work the same as if you had specified @code{-serial tcp}.  The
853
difference is that the port acts like a telnet server or client using
854
telnet option negotiation.  This will also allow you to send the
855
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
856
sequence.  Typically in unix telnet you do it with Control-] and then
857
type "send break" followed by pressing the enter key.
858

    
859
@item unix:@var{path}[,server][,nowait]
860
A unix domain socket is used instead of a tcp socket.  The option works the
861
same as if you had specified @code{-serial tcp} except the unix domain socket
862
@var{path} is used for connections.
863

    
864
@item mon:@var{dev_string}
865
This is a special option to allow the monitor to be multiplexed onto
866
another serial port.  The monitor is accessed with key sequence of
867
@key{Control-a} and then pressing @key{c}. See monitor access
868
@ref{pcsys_keys} in the -nographic section for more keys.
869
@var{dev_string} should be any one of the serial devices specified
870
above.  An example to multiplex the monitor onto a telnet server
871
listening on port 4444 would be:
872
@table @code
873
@item -serial mon:telnet::4444,server,nowait
874
@end table
875

    
876
@item braille
877
Braille device.  This will use BrlAPI to display the braille output on a real
878
or fake device.
879

    
880
@end table
881

    
882
@item -parallel @var{dev}
883
Redirect the virtual parallel port to host device @var{dev} (same
884
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
885
be used to use hardware devices connected on the corresponding host
886
parallel port.
887

    
888
This option can be used several times to simulate up to 3 parallel
889
ports.
890

    
891
Use @code{-parallel none} to disable all parallel ports.
892

    
893
@item -monitor @var{dev}
894
Redirect the monitor to host device @var{dev} (same devices as the
895
serial port).
896
The default device is @code{vc} in graphical mode and @code{stdio} in
897
non graphical mode.
898

    
899
@item -echr numeric_ascii_value
900
Change the escape character used for switching to the monitor when using
901
monitor and serial sharing.  The default is @code{0x01} when using the
902
@code{-nographic} option.  @code{0x01} is equal to pressing
903
@code{Control-a}.  You can select a different character from the ascii
904
control keys where 1 through 26 map to Control-a through Control-z.  For
905
instance you could use the either of the following to change the escape
906
character to Control-t.
907
@table @code
908
@item -echr 0x14
909
@item -echr 20
910
@end table
911

    
912
@item -s
913
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
914
@item -p @var{port}
915
Change gdb connection port.  @var{port} can be either a decimal number
916
to specify a TCP port, or a host device (same devices as the serial port).
917
@item -S
918
Do not start CPU at startup (you must type 'c' in the monitor).
919
@item -d
920
Output log in /tmp/qemu.log
921
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
922
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
923
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
924
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
925
all those parameters. This option is useful for old MS-DOS disk
926
images.
927

    
928
@item -L path
929
Set the directory for the BIOS, VGA BIOS and keymaps.
930

    
931
@item -std-vga
932
Simulate a standard VGA card with Bochs VBE extensions (default is
933
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
934
VBE extensions (e.g. Windows XP) and if you want to use high
935
resolution modes (>= 1280x1024x16) then you should use this option.
936

    
937
@item -no-acpi
938
Disable ACPI (Advanced Configuration and Power Interface) support. Use
939
it if your guest OS complains about ACPI problems (PC target machine
940
only).
941

    
942
@item -no-reboot
943
Exit instead of rebooting.
944

    
945
@item -no-shutdown
946
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
947
This allows for instance switching to monitor to commit changes to the
948
disk image.
949

    
950
@item -loadvm file
951
Start right away with a saved state (@code{loadvm} in monitor)
952

    
953
@item -semihosting
954
Enable semihosting syscall emulation (ARM and M68K target machines only).
955

    
956
On ARM this implements the "Angel" interface.
957
On M68K this implements the "ColdFire GDB" interface used by libgloss.
958

    
959
Note that this allows guest direct access to the host filesystem,
960
so should only be used with trusted guest OS.
961
@end table
962

    
963
@c man end
964

    
965
@node pcsys_keys
966
@section Keys
967

    
968
@c man begin OPTIONS
969

    
970
During the graphical emulation, you can use the following keys:
971
@table @key
972
@item Ctrl-Alt-f
973
Toggle full screen
974

    
975
@item Ctrl-Alt-n
976
Switch to virtual console 'n'. Standard console mappings are:
977
@table @emph
978
@item 1
979
Target system display
980
@item 2
981
Monitor
982
@item 3
983
Serial port
984
@end table
985

    
986
@item Ctrl-Alt
987
Toggle mouse and keyboard grab.
988
@end table
989

    
990
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
991
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
992

    
993
During emulation, if you are using the @option{-nographic} option, use
994
@key{Ctrl-a h} to get terminal commands:
995

    
996
@table @key
997
@item Ctrl-a h
998
Print this help
999
@item Ctrl-a x
1000
Exit emulator
1001
@item Ctrl-a s
1002
Save disk data back to file (if -snapshot)
1003
@item Ctrl-a t
1004
toggle console timestamps
1005
@item Ctrl-a b
1006
Send break (magic sysrq in Linux)
1007
@item Ctrl-a c
1008
Switch between console and monitor
1009
@item Ctrl-a Ctrl-a
1010
Send Ctrl-a
1011
@end table
1012
@c man end
1013

    
1014
@ignore
1015

    
1016
@c man begin SEEALSO
1017
The HTML documentation of QEMU for more precise information and Linux
1018
user mode emulator invocation.
1019
@c man end
1020

    
1021
@c man begin AUTHOR
1022
Fabrice Bellard
1023
@c man end
1024

    
1025
@end ignore
1026

    
1027
@node pcsys_monitor
1028
@section QEMU Monitor
1029

    
1030
The QEMU monitor is used to give complex commands to the QEMU
1031
emulator. You can use it to:
1032

    
1033
@itemize @minus
1034

    
1035
@item
1036
Remove or insert removable media images
1037
(such as CD-ROM or floppies).
1038

    
1039
@item
1040
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1041
from a disk file.
1042

    
1043
@item Inspect the VM state without an external debugger.
1044

    
1045
@end itemize
1046

    
1047
@subsection Commands
1048

    
1049
The following commands are available:
1050

    
1051
@table @option
1052

    
1053
@item help or ? [@var{cmd}]
1054
Show the help for all commands or just for command @var{cmd}.
1055

    
1056
@item commit
1057
Commit changes to the disk images (if -snapshot is used).
1058

    
1059
@item info @var{subcommand}
1060
Show various information about the system state.
1061

    
1062
@table @option
1063
@item info network
1064
show the various VLANs and the associated devices
1065
@item info block
1066
show the block devices
1067
@item info registers
1068
show the cpu registers
1069
@item info history
1070
show the command line history
1071
@item info pci
1072
show emulated PCI device
1073
@item info usb
1074
show USB devices plugged on the virtual USB hub
1075
@item info usbhost
1076
show all USB host devices
1077
@item info capture
1078
show information about active capturing
1079
@item info snapshots
1080
show list of VM snapshots
1081
@item info mice
1082
show which guest mouse is receiving events
1083
@end table
1084

    
1085
@item q or quit
1086
Quit the emulator.
1087

    
1088
@item eject [-f] @var{device}
1089
Eject a removable medium (use -f to force it).
1090

    
1091
@item change @var{device} @var{setting}
1092

    
1093
Change the configuration of a device.
1094

    
1095
@table @option
1096
@item change @var{diskdevice} @var{filename}
1097
Change the medium for a removable disk device to point to @var{filename}. eg
1098

    
1099
@example
1100
(qemu) change ide1-cd0 /path/to/some.iso
1101
@end example
1102

    
1103
@item change vnc @var{display},@var{options}
1104
Change the configuration of the VNC server. The valid syntax for @var{display}
1105
and @var{options} are described at @ref{sec_invocation}. eg
1106

    
1107
@example
1108
(qemu) change vnc localhost:1
1109
@end example
1110

    
1111
@item change vnc password
1112

    
1113
Change the password associated with the VNC server. The monitor will prompt for
1114
the new password to be entered. VNC passwords are only significant upto 8 letters.
1115
eg.
1116

    
1117
@example
1118
(qemu) change vnc password
1119
Password: ********
1120
@end example
1121

    
1122
@end table
1123

    
1124
@item screendump @var{filename}
1125
Save screen into PPM image @var{filename}.
1126

    
1127
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1128
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1129
with optional scroll axis @var{dz}.
1130

    
1131
@item mouse_button @var{val}
1132
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1133

    
1134
@item mouse_set @var{index}
1135
Set which mouse device receives events at given @var{index}, index
1136
can be obtained with
1137
@example
1138
info mice
1139
@end example
1140

    
1141
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1142
Capture audio into @var{filename}. Using sample rate @var{frequency}
1143
bits per sample @var{bits} and number of channels @var{channels}.
1144

    
1145
Defaults:
1146
@itemize @minus
1147
@item Sample rate = 44100 Hz - CD quality
1148
@item Bits = 16
1149
@item Number of channels = 2 - Stereo
1150
@end itemize
1151

    
1152
@item stopcapture @var{index}
1153
Stop capture with a given @var{index}, index can be obtained with
1154
@example
1155
info capture
1156
@end example
1157

    
1158
@item log @var{item1}[,...]
1159
Activate logging of the specified items to @file{/tmp/qemu.log}.
1160

    
1161
@item savevm [@var{tag}|@var{id}]
1162
Create a snapshot of the whole virtual machine. If @var{tag} is
1163
provided, it is used as human readable identifier. If there is already
1164
a snapshot with the same tag or ID, it is replaced. More info at
1165
@ref{vm_snapshots}.
1166

    
1167
@item loadvm @var{tag}|@var{id}
1168
Set the whole virtual machine to the snapshot identified by the tag
1169
@var{tag} or the unique snapshot ID @var{id}.
1170

    
1171
@item delvm @var{tag}|@var{id}
1172
Delete the snapshot identified by @var{tag} or @var{id}.
1173

    
1174
@item stop
1175
Stop emulation.
1176

    
1177
@item c or cont
1178
Resume emulation.
1179

    
1180
@item gdbserver [@var{port}]
1181
Start gdbserver session (default @var{port}=1234)
1182

    
1183
@item x/fmt @var{addr}
1184
Virtual memory dump starting at @var{addr}.
1185

    
1186
@item xp /@var{fmt} @var{addr}
1187
Physical memory dump starting at @var{addr}.
1188

    
1189
@var{fmt} is a format which tells the command how to format the
1190
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1191

    
1192
@table @var
1193
@item count
1194
is the number of items to be dumped.
1195

    
1196
@item format
1197
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1198
c (char) or i (asm instruction).
1199

    
1200
@item size
1201
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1202
@code{h} or @code{w} can be specified with the @code{i} format to
1203
respectively select 16 or 32 bit code instruction size.
1204

    
1205
@end table
1206

    
1207
Examples:
1208
@itemize
1209
@item
1210
Dump 10 instructions at the current instruction pointer:
1211
@example
1212
(qemu) x/10i $eip
1213
0x90107063:  ret
1214
0x90107064:  sti
1215
0x90107065:  lea    0x0(%esi,1),%esi
1216
0x90107069:  lea    0x0(%edi,1),%edi
1217
0x90107070:  ret
1218
0x90107071:  jmp    0x90107080
1219
0x90107073:  nop
1220
0x90107074:  nop
1221
0x90107075:  nop
1222
0x90107076:  nop
1223
@end example
1224

    
1225
@item
1226
Dump 80 16 bit values at the start of the video memory.
1227
@smallexample
1228
(qemu) xp/80hx 0xb8000
1229
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1230
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1231
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1232
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1233
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1234
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1235
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1236
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1237
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1238
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1239
@end smallexample
1240
@end itemize
1241

    
1242
@item p or print/@var{fmt} @var{expr}
1243

    
1244
Print expression value. Only the @var{format} part of @var{fmt} is
1245
used.
1246

    
1247
@item sendkey @var{keys}
1248

    
1249
Send @var{keys} to the emulator. Use @code{-} to press several keys
1250
simultaneously. Example:
1251
@example
1252
sendkey ctrl-alt-f1
1253
@end example
1254

    
1255
This command is useful to send keys that your graphical user interface
1256
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1257

    
1258
@item system_reset
1259

    
1260
Reset the system.
1261

    
1262
@item boot_set @var{bootdevicelist}
1263

    
1264
Define new values for the boot device list. Those values will override
1265
the values specified on the command line through the @code{-boot} option.
1266

    
1267
The values that can be specified here depend on the machine type, but are
1268
the same that can be specified in the @code{-boot} command line option.
1269

    
1270
@item usb_add @var{devname}
1271

    
1272
Add the USB device @var{devname}.  For details of available devices see
1273
@ref{usb_devices}
1274

    
1275
@item usb_del @var{devname}
1276

    
1277
Remove the USB device @var{devname} from the QEMU virtual USB
1278
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1279
command @code{info usb} to see the devices you can remove.
1280

    
1281
@end table
1282

    
1283
@subsection Integer expressions
1284

    
1285
The monitor understands integers expressions for every integer
1286
argument. You can use register names to get the value of specifics
1287
CPU registers by prefixing them with @emph{$}.
1288

    
1289
@node disk_images
1290
@section Disk Images
1291

    
1292
Since version 0.6.1, QEMU supports many disk image formats, including
1293
growable disk images (their size increase as non empty sectors are
1294
written), compressed and encrypted disk images. Version 0.8.3 added
1295
the new qcow2 disk image format which is essential to support VM
1296
snapshots.
1297

    
1298
@menu
1299
* disk_images_quickstart::    Quick start for disk image creation
1300
* disk_images_snapshot_mode:: Snapshot mode
1301
* vm_snapshots::              VM snapshots
1302
* qemu_img_invocation::       qemu-img Invocation
1303
* host_drives::               Using host drives
1304
* disk_images_fat_images::    Virtual FAT disk images
1305
@end menu
1306

    
1307
@node disk_images_quickstart
1308
@subsection Quick start for disk image creation
1309

    
1310
You can create a disk image with the command:
1311
@example
1312
qemu-img create myimage.img mysize
1313
@end example
1314
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1315
size in kilobytes. You can add an @code{M} suffix to give the size in
1316
megabytes and a @code{G} suffix for gigabytes.
1317

    
1318
See @ref{qemu_img_invocation} for more information.
1319

    
1320
@node disk_images_snapshot_mode
1321
@subsection Snapshot mode
1322

    
1323
If you use the option @option{-snapshot}, all disk images are
1324
considered as read only. When sectors in written, they are written in
1325
a temporary file created in @file{/tmp}. You can however force the
1326
write back to the raw disk images by using the @code{commit} monitor
1327
command (or @key{C-a s} in the serial console).
1328

    
1329
@node vm_snapshots
1330
@subsection VM snapshots
1331

    
1332
VM snapshots are snapshots of the complete virtual machine including
1333
CPU state, RAM, device state and the content of all the writable
1334
disks. In order to use VM snapshots, you must have at least one non
1335
removable and writable block device using the @code{qcow2} disk image
1336
format. Normally this device is the first virtual hard drive.
1337

    
1338
Use the monitor command @code{savevm} to create a new VM snapshot or
1339
replace an existing one. A human readable name can be assigned to each
1340
snapshot in addition to its numerical ID.
1341

    
1342
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1343
a VM snapshot. @code{info snapshots} lists the available snapshots
1344
with their associated information:
1345

    
1346
@example
1347
(qemu) info snapshots
1348
Snapshot devices: hda
1349
Snapshot list (from hda):
1350
ID        TAG                 VM SIZE                DATE       VM CLOCK
1351
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1352
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1353
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1354
@end example
1355

    
1356
A VM snapshot is made of a VM state info (its size is shown in
1357
@code{info snapshots}) and a snapshot of every writable disk image.
1358
The VM state info is stored in the first @code{qcow2} non removable
1359
and writable block device. The disk image snapshots are stored in
1360
every disk image. The size of a snapshot in a disk image is difficult
1361
to evaluate and is not shown by @code{info snapshots} because the
1362
associated disk sectors are shared among all the snapshots to save
1363
disk space (otherwise each snapshot would need a full copy of all the
1364
disk images).
1365

    
1366
When using the (unrelated) @code{-snapshot} option
1367
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1368
but they are deleted as soon as you exit QEMU.
1369

    
1370
VM snapshots currently have the following known limitations:
1371
@itemize
1372
@item
1373
They cannot cope with removable devices if they are removed or
1374
inserted after a snapshot is done.
1375
@item
1376
A few device drivers still have incomplete snapshot support so their
1377
state is not saved or restored properly (in particular USB).
1378
@end itemize
1379

    
1380
@node qemu_img_invocation
1381
@subsection @code{qemu-img} Invocation
1382

    
1383
@include qemu-img.texi
1384

    
1385
@node host_drives
1386
@subsection Using host drives
1387

    
1388
In addition to disk image files, QEMU can directly access host
1389
devices. We describe here the usage for QEMU version >= 0.8.3.
1390

    
1391
@subsubsection Linux
1392

    
1393
On Linux, you can directly use the host device filename instead of a
1394
disk image filename provided you have enough privileges to access
1395
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1396
@file{/dev/fd0} for the floppy.
1397

    
1398
@table @code
1399
@item CD
1400
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1401
specific code to detect CDROM insertion or removal. CDROM ejection by
1402
the guest OS is supported. Currently only data CDs are supported.
1403
@item Floppy
1404
You can specify a floppy device even if no floppy is loaded. Floppy
1405
removal is currently not detected accurately (if you change floppy
1406
without doing floppy access while the floppy is not loaded, the guest
1407
OS will think that the same floppy is loaded).
1408
@item Hard disks
1409
Hard disks can be used. Normally you must specify the whole disk
1410
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1411
see it as a partitioned disk. WARNING: unless you know what you do, it
1412
is better to only make READ-ONLY accesses to the hard disk otherwise
1413
you may corrupt your host data (use the @option{-snapshot} command
1414
line option or modify the device permissions accordingly).
1415
@end table
1416

    
1417
@subsubsection Windows
1418

    
1419
@table @code
1420
@item CD
1421
The preferred syntax is the drive letter (e.g. @file{d:}). The
1422
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1423
supported as an alias to the first CDROM drive.
1424

    
1425
Currently there is no specific code to handle removable media, so it
1426
is better to use the @code{change} or @code{eject} monitor commands to
1427
change or eject media.
1428
@item Hard disks
1429
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1430
where @var{N} is the drive number (0 is the first hard disk).
1431

    
1432
WARNING: unless you know what you do, it is better to only make
1433
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1434
host data (use the @option{-snapshot} command line so that the
1435
modifications are written in a temporary file).
1436
@end table
1437

    
1438

    
1439
@subsubsection Mac OS X
1440

    
1441
@file{/dev/cdrom} is an alias to the first CDROM.
1442

    
1443
Currently there is no specific code to handle removable media, so it
1444
is better to use the @code{change} or @code{eject} monitor commands to
1445
change or eject media.
1446

    
1447
@node disk_images_fat_images
1448
@subsection Virtual FAT disk images
1449

    
1450
QEMU can automatically create a virtual FAT disk image from a
1451
directory tree. In order to use it, just type:
1452

    
1453
@example
1454
qemu linux.img -hdb fat:/my_directory
1455
@end example
1456

    
1457
Then you access access to all the files in the @file{/my_directory}
1458
directory without having to copy them in a disk image or to export
1459
them via SAMBA or NFS. The default access is @emph{read-only}.
1460

    
1461
Floppies can be emulated with the @code{:floppy:} option:
1462

    
1463
@example
1464
qemu linux.img -fda fat:floppy:/my_directory
1465
@end example
1466

    
1467
A read/write support is available for testing (beta stage) with the
1468
@code{:rw:} option:
1469

    
1470
@example
1471
qemu linux.img -fda fat:floppy:rw:/my_directory
1472
@end example
1473

    
1474
What you should @emph{never} do:
1475
@itemize
1476
@item use non-ASCII filenames ;
1477
@item use "-snapshot" together with ":rw:" ;
1478
@item expect it to work when loadvm'ing ;
1479
@item write to the FAT directory on the host system while accessing it with the guest system.
1480
@end itemize
1481

    
1482
@node pcsys_network
1483
@section Network emulation
1484

    
1485
QEMU can simulate several network cards (PCI or ISA cards on the PC
1486
target) and can connect them to an arbitrary number of Virtual Local
1487
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1488
VLAN. VLAN can be connected between separate instances of QEMU to
1489
simulate large networks. For simpler usage, a non privileged user mode
1490
network stack can replace the TAP device to have a basic network
1491
connection.
1492

    
1493
@subsection VLANs
1494

    
1495
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1496
connection between several network devices. These devices can be for
1497
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1498
(TAP devices).
1499

    
1500
@subsection Using TAP network interfaces
1501

    
1502
This is the standard way to connect QEMU to a real network. QEMU adds
1503
a virtual network device on your host (called @code{tapN}), and you
1504
can then configure it as if it was a real ethernet card.
1505

    
1506
@subsubsection Linux host
1507

    
1508
As an example, you can download the @file{linux-test-xxx.tar.gz}
1509
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1510
configure properly @code{sudo} so that the command @code{ifconfig}
1511
contained in @file{qemu-ifup} can be executed as root. You must verify
1512
that your host kernel supports the TAP network interfaces: the
1513
device @file{/dev/net/tun} must be present.
1514

    
1515
See @ref{sec_invocation} to have examples of command lines using the
1516
TAP network interfaces.
1517

    
1518
@subsubsection Windows host
1519

    
1520
There is a virtual ethernet driver for Windows 2000/XP systems, called
1521
TAP-Win32. But it is not included in standard QEMU for Windows,
1522
so you will need to get it separately. It is part of OpenVPN package,
1523
so download OpenVPN from : @url{http://openvpn.net/}.
1524

    
1525
@subsection Using the user mode network stack
1526

    
1527
By using the option @option{-net user} (default configuration if no
1528
@option{-net} option is specified), QEMU uses a completely user mode
1529
network stack (you don't need root privilege to use the virtual
1530
network). The virtual network configuration is the following:
1531

    
1532
@example
1533

    
1534
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1535
                           |          (10.0.2.2)
1536
                           |
1537
                           ---->  DNS server (10.0.2.3)
1538
                           |
1539
                           ---->  SMB server (10.0.2.4)
1540
@end example
1541

    
1542
The QEMU VM behaves as if it was behind a firewall which blocks all
1543
incoming connections. You can use a DHCP client to automatically
1544
configure the network in the QEMU VM. The DHCP server assign addresses
1545
to the hosts starting from 10.0.2.15.
1546

    
1547
In order to check that the user mode network is working, you can ping
1548
the address 10.0.2.2 and verify that you got an address in the range
1549
10.0.2.x from the QEMU virtual DHCP server.
1550

    
1551
Note that @code{ping} is not supported reliably to the internet as it
1552
would require root privileges. It means you can only ping the local
1553
router (10.0.2.2).
1554

    
1555
When using the built-in TFTP server, the router is also the TFTP
1556
server.
1557

    
1558
When using the @option{-redir} option, TCP or UDP connections can be
1559
redirected from the host to the guest. It allows for example to
1560
redirect X11, telnet or SSH connections.
1561

    
1562
@subsection Connecting VLANs between QEMU instances
1563

    
1564
Using the @option{-net socket} option, it is possible to make VLANs
1565
that span several QEMU instances. See @ref{sec_invocation} to have a
1566
basic example.
1567

    
1568
@node direct_linux_boot
1569
@section Direct Linux Boot
1570

    
1571
This section explains how to launch a Linux kernel inside QEMU without
1572
having to make a full bootable image. It is very useful for fast Linux
1573
kernel testing.
1574

    
1575
The syntax is:
1576
@example
1577
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1578
@end example
1579

    
1580
Use @option{-kernel} to provide the Linux kernel image and
1581
@option{-append} to give the kernel command line arguments. The
1582
@option{-initrd} option can be used to provide an INITRD image.
1583

    
1584
When using the direct Linux boot, a disk image for the first hard disk
1585
@file{hda} is required because its boot sector is used to launch the
1586
Linux kernel.
1587

    
1588
If you do not need graphical output, you can disable it and redirect
1589
the virtual serial port and the QEMU monitor to the console with the
1590
@option{-nographic} option. The typical command line is:
1591
@example
1592
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1593
     -append "root=/dev/hda console=ttyS0" -nographic
1594
@end example
1595

    
1596
Use @key{Ctrl-a c} to switch between the serial console and the
1597
monitor (@pxref{pcsys_keys}).
1598

    
1599
@node pcsys_usb
1600
@section USB emulation
1601

    
1602
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1603
virtual USB devices or real host USB devices (experimental, works only
1604
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1605
as necessary to connect multiple USB devices.
1606

    
1607
@menu
1608
* usb_devices::
1609
* host_usb_devices::
1610
@end menu
1611
@node usb_devices
1612
@subsection Connecting USB devices
1613

    
1614
USB devices can be connected with the @option{-usbdevice} commandline option
1615
or the @code{usb_add} monitor command.  Available devices are:
1616

    
1617
@table @code
1618
@item mouse
1619
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1620
@item tablet
1621
Pointer device that uses absolute coordinates (like a touchscreen).
1622
This means qemu is able to report the mouse position without having
1623
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1624
@item disk:@var{file}
1625
Mass storage device based on @var{file} (@pxref{disk_images})
1626
@item host:@var{bus.addr}
1627
Pass through the host device identified by @var{bus.addr}
1628
(Linux only)
1629
@item host:@var{vendor_id:product_id}
1630
Pass through the host device identified by @var{vendor_id:product_id}
1631
(Linux only)
1632
@item wacom-tablet
1633
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1634
above but it can be used with the tslib library because in addition to touch
1635
coordinates it reports touch pressure.
1636
@item keyboard
1637
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1638
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1639
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1640
device @var{dev}. The available character devices are the same as for the
1641
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1642
used to override the default 0403:6001. For instance, 
1643
@example
1644
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1645
@end example
1646
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1647
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1648
@item braille
1649
Braille device.  This will use BrlAPI to display the braille output on a real
1650
or fake device.
1651
@end table
1652

    
1653
@node host_usb_devices
1654
@subsection Using host USB devices on a Linux host
1655

    
1656
WARNING: this is an experimental feature. QEMU will slow down when
1657
using it. USB devices requiring real time streaming (i.e. USB Video
1658
Cameras) are not supported yet.
1659

    
1660
@enumerate
1661
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1662
is actually using the USB device. A simple way to do that is simply to
1663
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1664
to @file{mydriver.o.disabled}.
1665

    
1666
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1667
@example
1668
ls /proc/bus/usb
1669
001  devices  drivers
1670
@end example
1671

    
1672
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1673
@example
1674
chown -R myuid /proc/bus/usb
1675
@end example
1676

    
1677
@item Launch QEMU and do in the monitor:
1678
@example
1679
info usbhost
1680
  Device 1.2, speed 480 Mb/s
1681
    Class 00: USB device 1234:5678, USB DISK
1682
@end example
1683
You should see the list of the devices you can use (Never try to use
1684
hubs, it won't work).
1685

    
1686
@item Add the device in QEMU by using:
1687
@example
1688
usb_add host:1234:5678
1689
@end example
1690

    
1691
Normally the guest OS should report that a new USB device is
1692
plugged. You can use the option @option{-usbdevice} to do the same.
1693

    
1694
@item Now you can try to use the host USB device in QEMU.
1695

    
1696
@end enumerate
1697

    
1698
When relaunching QEMU, you may have to unplug and plug again the USB
1699
device to make it work again (this is a bug).
1700

    
1701
@node vnc_security
1702
@section VNC security
1703

    
1704
The VNC server capability provides access to the graphical console
1705
of the guest VM across the network. This has a number of security
1706
considerations depending on the deployment scenarios.
1707

    
1708
@menu
1709
* vnc_sec_none::
1710
* vnc_sec_password::
1711
* vnc_sec_certificate::
1712
* vnc_sec_certificate_verify::
1713
* vnc_sec_certificate_pw::
1714
* vnc_generate_cert::
1715
@end menu
1716
@node vnc_sec_none
1717
@subsection Without passwords
1718

    
1719
The simplest VNC server setup does not include any form of authentication.
1720
For this setup it is recommended to restrict it to listen on a UNIX domain
1721
socket only. For example
1722

    
1723
@example
1724
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1725
@end example
1726

    
1727
This ensures that only users on local box with read/write access to that
1728
path can access the VNC server. To securely access the VNC server from a
1729
remote machine, a combination of netcat+ssh can be used to provide a secure
1730
tunnel.
1731

    
1732
@node vnc_sec_password
1733
@subsection With passwords
1734

    
1735
The VNC protocol has limited support for password based authentication. Since
1736
the protocol limits passwords to 8 characters it should not be considered
1737
to provide high security. The password can be fairly easily brute-forced by
1738
a client making repeat connections. For this reason, a VNC server using password
1739
authentication should be restricted to only listen on the loopback interface
1740
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1741
option, and then once QEMU is running the password is set with the monitor. Until
1742
the monitor is used to set the password all clients will be rejected.
1743

    
1744
@example
1745
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1746
(qemu) change vnc password
1747
Password: ********
1748
(qemu)
1749
@end example
1750

    
1751
@node vnc_sec_certificate
1752
@subsection With x509 certificates
1753

    
1754
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1755
TLS for encryption of the session, and x509 certificates for authentication.
1756
The use of x509 certificates is strongly recommended, because TLS on its
1757
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1758
support provides a secure session, but no authentication. This allows any
1759
client to connect, and provides an encrypted session.
1760

    
1761
@example
1762
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1763
@end example
1764

    
1765
In the above example @code{/etc/pki/qemu} should contain at least three files,
1766
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1767
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1768
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1769
only be readable by the user owning it.
1770

    
1771
@node vnc_sec_certificate_verify
1772
@subsection With x509 certificates and client verification
1773

    
1774
Certificates can also provide a means to authenticate the client connecting.
1775
The server will request that the client provide a certificate, which it will
1776
then validate against the CA certificate. This is a good choice if deploying
1777
in an environment with a private internal certificate authority.
1778

    
1779
@example
1780
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1781
@end example
1782

    
1783

    
1784
@node vnc_sec_certificate_pw
1785
@subsection With x509 certificates, client verification and passwords
1786

    
1787
Finally, the previous method can be combined with VNC password authentication
1788
to provide two layers of authentication for clients.
1789

    
1790
@example
1791
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1792
(qemu) change vnc password
1793
Password: ********
1794
(qemu)
1795
@end example
1796

    
1797
@node vnc_generate_cert
1798
@subsection Generating certificates for VNC
1799

    
1800
The GNU TLS packages provides a command called @code{certtool} which can
1801
be used to generate certificates and keys in PEM format. At a minimum it
1802
is neccessary to setup a certificate authority, and issue certificates to
1803
each server. If using certificates for authentication, then each client
1804
will also need to be issued a certificate. The recommendation is for the
1805
server to keep its certificates in either @code{/etc/pki/qemu} or for
1806
unprivileged users in @code{$HOME/.pki/qemu}.
1807

    
1808
@menu
1809
* vnc_generate_ca::
1810
* vnc_generate_server::
1811
* vnc_generate_client::
1812
@end menu
1813
@node vnc_generate_ca
1814
@subsubsection Setup the Certificate Authority
1815

    
1816
This step only needs to be performed once per organization / organizational
1817
unit. First the CA needs a private key. This key must be kept VERY secret
1818
and secure. If this key is compromised the entire trust chain of the certificates
1819
issued with it is lost.
1820

    
1821
@example
1822
# certtool --generate-privkey > ca-key.pem
1823
@end example
1824

    
1825
A CA needs to have a public certificate. For simplicity it can be a self-signed
1826
certificate, or one issue by a commercial certificate issuing authority. To
1827
generate a self-signed certificate requires one core piece of information, the
1828
name of the organization.
1829

    
1830
@example
1831
# cat > ca.info <<EOF
1832
cn = Name of your organization
1833
ca
1834
cert_signing_key
1835
EOF
1836
# certtool --generate-self-signed \
1837
           --load-privkey ca-key.pem
1838
           --template ca.info \
1839
           --outfile ca-cert.pem
1840
@end example
1841

    
1842
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1843
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1844

    
1845
@node vnc_generate_server
1846
@subsubsection Issuing server certificates
1847

    
1848
Each server (or host) needs to be issued with a key and certificate. When connecting
1849
the certificate is sent to the client which validates it against the CA certificate.
1850
The core piece of information for a server certificate is the hostname. This should
1851
be the fully qualified hostname that the client will connect with, since the client
1852
will typically also verify the hostname in the certificate. On the host holding the
1853
secure CA private key:
1854

    
1855
@example
1856
# cat > server.info <<EOF
1857
organization = Name  of your organization
1858
cn = server.foo.example.com
1859
tls_www_server
1860
encryption_key
1861
signing_key
1862
EOF
1863
# certtool --generate-privkey > server-key.pem
1864
# certtool --generate-certificate \
1865
           --load-ca-certificate ca-cert.pem \
1866
           --load-ca-privkey ca-key.pem \
1867
           --load-privkey server server-key.pem \
1868
           --template server.info \
1869
           --outfile server-cert.pem
1870
@end example
1871

    
1872
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1873
to the server for which they were generated. The @code{server-key.pem} is security
1874
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1875

    
1876
@node vnc_generate_client
1877
@subsubsection Issuing client certificates
1878

    
1879
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1880
certificates as its authentication mechanism, each client also needs to be issued
1881
a certificate. The client certificate contains enough metadata to uniquely identify
1882
the client, typically organization, state, city, building, etc. On the host holding
1883
the secure CA private key:
1884

    
1885
@example
1886
# cat > client.info <<EOF
1887
country = GB
1888
state = London
1889
locality = London
1890
organiazation = Name of your organization
1891
cn = client.foo.example.com
1892
tls_www_client
1893
encryption_key
1894
signing_key
1895
EOF
1896
# certtool --generate-privkey > client-key.pem
1897
# certtool --generate-certificate \
1898
           --load-ca-certificate ca-cert.pem \
1899
           --load-ca-privkey ca-key.pem \
1900
           --load-privkey client-key.pem \
1901
           --template client.info \
1902
           --outfile client-cert.pem
1903
@end example
1904

    
1905
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1906
copied to the client for which they were generated.
1907

    
1908
@node gdb_usage
1909
@section GDB usage
1910

    
1911
QEMU has a primitive support to work with gdb, so that you can do
1912
'Ctrl-C' while the virtual machine is running and inspect its state.
1913

    
1914
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1915
gdb connection:
1916
@example
1917
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1918
       -append "root=/dev/hda"
1919
Connected to host network interface: tun0
1920
Waiting gdb connection on port 1234
1921
@end example
1922

    
1923
Then launch gdb on the 'vmlinux' executable:
1924
@example
1925
> gdb vmlinux
1926
@end example
1927

    
1928
In gdb, connect to QEMU:
1929
@example
1930
(gdb) target remote localhost:1234
1931
@end example
1932

    
1933
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1934
@example
1935
(gdb) c
1936
@end example
1937

    
1938
Here are some useful tips in order to use gdb on system code:
1939

    
1940
@enumerate
1941
@item
1942
Use @code{info reg} to display all the CPU registers.
1943
@item
1944
Use @code{x/10i $eip} to display the code at the PC position.
1945
@item
1946
Use @code{set architecture i8086} to dump 16 bit code. Then use
1947
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1948
@end enumerate
1949

    
1950
@node pcsys_os_specific
1951
@section Target OS specific information
1952

    
1953
@subsection Linux
1954

    
1955
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1956
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1957
color depth in the guest and the host OS.
1958

    
1959
When using a 2.6 guest Linux kernel, you should add the option
1960
@code{clock=pit} on the kernel command line because the 2.6 Linux
1961
kernels make very strict real time clock checks by default that QEMU
1962
cannot simulate exactly.
1963

    
1964
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1965
not activated because QEMU is slower with this patch. The QEMU
1966
Accelerator Module is also much slower in this case. Earlier Fedora
1967
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1968
patch by default. Newer kernels don't have it.
1969

    
1970
@subsection Windows
1971

    
1972
If you have a slow host, using Windows 95 is better as it gives the
1973
best speed. Windows 2000 is also a good choice.
1974

    
1975
@subsubsection SVGA graphic modes support
1976

    
1977
QEMU emulates a Cirrus Logic GD5446 Video
1978
card. All Windows versions starting from Windows 95 should recognize
1979
and use this graphic card. For optimal performances, use 16 bit color
1980
depth in the guest and the host OS.
1981

    
1982
If you are using Windows XP as guest OS and if you want to use high
1983
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1984
1280x1024x16), then you should use the VESA VBE virtual graphic card
1985
(option @option{-std-vga}).
1986

    
1987
@subsubsection CPU usage reduction
1988

    
1989
Windows 9x does not correctly use the CPU HLT
1990
instruction. The result is that it takes host CPU cycles even when
1991
idle. You can install the utility from
1992
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1993
problem. Note that no such tool is needed for NT, 2000 or XP.
1994

    
1995
@subsubsection Windows 2000 disk full problem
1996

    
1997
Windows 2000 has a bug which gives a disk full problem during its
1998
installation. When installing it, use the @option{-win2k-hack} QEMU
1999
option to enable a specific workaround. After Windows 2000 is
2000
installed, you no longer need this option (this option slows down the
2001
IDE transfers).
2002

    
2003
@subsubsection Windows 2000 shutdown
2004

    
2005
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2006
can. It comes from the fact that Windows 2000 does not automatically
2007
use the APM driver provided by the BIOS.
2008

    
2009
In order to correct that, do the following (thanks to Struan
2010
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2011
Add/Troubleshoot a device => Add a new device & Next => No, select the
2012
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2013
(again) a few times. Now the driver is installed and Windows 2000 now
2014
correctly instructs QEMU to shutdown at the appropriate moment.
2015

    
2016
@subsubsection Share a directory between Unix and Windows
2017

    
2018
See @ref{sec_invocation} about the help of the option @option{-smb}.
2019

    
2020
@subsubsection Windows XP security problem
2021

    
2022
Some releases of Windows XP install correctly but give a security
2023
error when booting:
2024
@example
2025
A problem is preventing Windows from accurately checking the
2026
license for this computer. Error code: 0x800703e6.
2027
@end example
2028

    
2029
The workaround is to install a service pack for XP after a boot in safe
2030
mode. Then reboot, and the problem should go away. Since there is no
2031
network while in safe mode, its recommended to download the full
2032
installation of SP1 or SP2 and transfer that via an ISO or using the
2033
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2034

    
2035
@subsection MS-DOS and FreeDOS
2036

    
2037
@subsubsection CPU usage reduction
2038

    
2039
DOS does not correctly use the CPU HLT instruction. The result is that
2040
it takes host CPU cycles even when idle. You can install the utility
2041
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2042
problem.
2043

    
2044
@node QEMU System emulator for non PC targets
2045
@chapter QEMU System emulator for non PC targets
2046

    
2047
QEMU is a generic emulator and it emulates many non PC
2048
machines. Most of the options are similar to the PC emulator. The
2049
differences are mentioned in the following sections.
2050

    
2051
@menu
2052
* QEMU PowerPC System emulator::
2053
* Sparc32 System emulator::
2054
* Sparc64 System emulator::
2055
* MIPS System emulator::
2056
* ARM System emulator::
2057
* ColdFire System emulator::
2058
@end menu
2059

    
2060
@node QEMU PowerPC System emulator
2061
@section QEMU PowerPC System emulator
2062

    
2063
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2064
or PowerMac PowerPC system.
2065

    
2066
QEMU emulates the following PowerMac peripherals:
2067

    
2068
@itemize @minus
2069
@item
2070
UniNorth PCI Bridge
2071
@item
2072
PCI VGA compatible card with VESA Bochs Extensions
2073
@item
2074
2 PMAC IDE interfaces with hard disk and CD-ROM support
2075
@item
2076
NE2000 PCI adapters
2077
@item
2078
Non Volatile RAM
2079
@item
2080
VIA-CUDA with ADB keyboard and mouse.
2081
@end itemize
2082

    
2083
QEMU emulates the following PREP peripherals:
2084

    
2085
@itemize @minus
2086
@item
2087
PCI Bridge
2088
@item
2089
PCI VGA compatible card with VESA Bochs Extensions
2090
@item
2091
2 IDE interfaces with hard disk and CD-ROM support
2092
@item
2093
Floppy disk
2094
@item
2095
NE2000 network adapters
2096
@item
2097
Serial port
2098
@item
2099
PREP Non Volatile RAM
2100
@item
2101
PC compatible keyboard and mouse.
2102
@end itemize
2103

    
2104
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2105
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2106

    
2107
@c man begin OPTIONS
2108

    
2109
The following options are specific to the PowerPC emulation:
2110

    
2111
@table @option
2112

    
2113
@item -g WxH[xDEPTH]
2114

    
2115
Set the initial VGA graphic mode. The default is 800x600x15.
2116

    
2117
@end table
2118

    
2119
@c man end
2120

    
2121

    
2122
More information is available at
2123
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2124

    
2125
@node Sparc32 System emulator
2126
@section Sparc32 System emulator
2127

    
2128
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2129
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2130
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2131
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2132
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2133
of usable CPUs to 4.
2134

    
2135
QEMU emulates the following sun4m/sun4d peripherals:
2136

    
2137
@itemize @minus
2138
@item
2139
IOMMU or IO-UNITs
2140
@item
2141
TCX Frame buffer
2142
@item
2143
Lance (Am7990) Ethernet
2144
@item
2145
Non Volatile RAM M48T08
2146
@item
2147
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2148
and power/reset logic
2149
@item
2150
ESP SCSI controller with hard disk and CD-ROM support
2151
@item
2152
Floppy drive (not on SS-600MP)
2153
@item
2154
CS4231 sound device (only on SS-5, not working yet)
2155
@end itemize
2156

    
2157
The number of peripherals is fixed in the architecture.  Maximum
2158
memory size depends on the machine type, for SS-5 it is 256MB and for
2159
others 2047MB.
2160

    
2161
Since version 0.8.2, QEMU uses OpenBIOS
2162
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2163
firmware implementation. The goal is to implement a 100% IEEE
2164
1275-1994 (referred to as Open Firmware) compliant firmware.
2165

    
2166
A sample Linux 2.6 series kernel and ram disk image are available on
2167
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2168
Solaris kernels don't work.
2169

    
2170
@c man begin OPTIONS
2171

    
2172
The following options are specific to the Sparc32 emulation:
2173

    
2174
@table @option
2175

    
2176
@item -g WxHx[xDEPTH]
2177

    
2178
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2179
the only other possible mode is 1024x768x24.
2180

    
2181
@item -prom-env string
2182

    
2183
Set OpenBIOS variables in NVRAM, for example:
2184

    
2185
@example
2186
qemu-system-sparc -prom-env 'auto-boot?=false' \
2187
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2188
@end example
2189

    
2190
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2191

    
2192
Set the emulated machine type. Default is SS-5.
2193

    
2194
@end table
2195

    
2196
@c man end
2197

    
2198
@node Sparc64 System emulator
2199
@section Sparc64 System emulator
2200

    
2201
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2202
The emulator is not usable for anything yet.
2203

    
2204
QEMU emulates the following sun4u peripherals:
2205

    
2206
@itemize @minus
2207
@item
2208
UltraSparc IIi APB PCI Bridge
2209
@item
2210
PCI VGA compatible card with VESA Bochs Extensions
2211
@item
2212
Non Volatile RAM M48T59
2213
@item
2214
PC-compatible serial ports
2215
@end itemize
2216

    
2217
@node MIPS System emulator
2218
@section MIPS System emulator
2219

    
2220
Four executables cover simulation of 32 and 64-bit MIPS systems in
2221
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2222
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2223
Five different machine types are emulated:
2224

    
2225
@itemize @minus
2226
@item
2227
A generic ISA PC-like machine "mips"
2228
@item
2229
The MIPS Malta prototype board "malta"
2230
@item
2231
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2232
@item
2233
MIPS emulator pseudo board "mipssim"
2234
@item
2235
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2236
@end itemize
2237

    
2238
The generic emulation is supported by Debian 'Etch' and is able to
2239
install Debian into a virtual disk image. The following devices are
2240
emulated:
2241

    
2242
@itemize @minus
2243
@item
2244
A range of MIPS CPUs, default is the 24Kf
2245
@item
2246
PC style serial port
2247
@item
2248
PC style IDE disk
2249
@item
2250
NE2000 network card
2251
@end itemize
2252

    
2253
The Malta emulation supports the following devices:
2254

    
2255
@itemize @minus
2256
@item
2257
Core board with MIPS 24Kf CPU and Galileo system controller
2258
@item
2259
PIIX4 PCI/USB/SMbus controller
2260
@item
2261
The Multi-I/O chip's serial device
2262
@item
2263
PCnet32 PCI network card
2264
@item
2265
Malta FPGA serial device
2266
@item
2267
Cirrus VGA graphics card
2268
@end itemize
2269

    
2270
The ACER Pica emulation supports:
2271

    
2272
@itemize @minus
2273
@item
2274
MIPS R4000 CPU
2275
@item
2276
PC-style IRQ and DMA controllers
2277
@item
2278
PC Keyboard
2279
@item
2280
IDE controller
2281
@end itemize
2282

    
2283
The mipssim pseudo board emulation provides an environment similiar
2284
to what the proprietary MIPS emulator uses for running Linux.
2285
It supports:
2286

    
2287
@itemize @minus
2288
@item
2289
A range of MIPS CPUs, default is the 24Kf
2290
@item
2291
PC style serial port
2292
@item
2293
MIPSnet network emulation
2294
@end itemize
2295

    
2296
The MIPS Magnum R4000 emulation supports:
2297

    
2298
@itemize @minus
2299
@item
2300
MIPS R4000 CPU
2301
@item
2302
PC-style IRQ controller
2303
@item
2304
PC Keyboard
2305
@item
2306
SCSI controller
2307
@item
2308
G364 framebuffer
2309
@end itemize
2310

    
2311

    
2312
@node ARM System emulator
2313
@section ARM System emulator
2314

    
2315
Use the executable @file{qemu-system-arm} to simulate a ARM
2316
machine. The ARM Integrator/CP board is emulated with the following
2317
devices:
2318

    
2319
@itemize @minus
2320
@item
2321
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2322
@item
2323
Two PL011 UARTs
2324
@item
2325
SMC 91c111 Ethernet adapter
2326
@item
2327
PL110 LCD controller
2328
@item
2329
PL050 KMI with PS/2 keyboard and mouse.
2330
@item
2331
PL181 MultiMedia Card Interface with SD card.
2332
@end itemize
2333

    
2334
The ARM Versatile baseboard is emulated with the following devices:
2335

    
2336
@itemize @minus
2337
@item
2338
ARM926E, ARM1136 or Cortex-A8 CPU
2339
@item
2340
PL190 Vectored Interrupt Controller
2341
@item
2342
Four PL011 UARTs
2343
@item
2344
SMC 91c111 Ethernet adapter
2345
@item
2346
PL110 LCD controller
2347
@item
2348
PL050 KMI with PS/2 keyboard and mouse.
2349
@item
2350
PCI host bridge.  Note the emulated PCI bridge only provides access to
2351
PCI memory space.  It does not provide access to PCI IO space.
2352
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2353
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2354
mapped control registers.
2355
@item
2356
PCI OHCI USB controller.
2357
@item
2358
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2359
@item
2360
PL181 MultiMedia Card Interface with SD card.
2361
@end itemize
2362

    
2363
The ARM RealView Emulation baseboard is emulated with the following devices:
2364

    
2365
@itemize @minus
2366
@item
2367
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2368
@item
2369
ARM AMBA Generic/Distributed Interrupt Controller
2370
@item
2371
Four PL011 UARTs
2372
@item
2373
SMC 91c111 Ethernet adapter
2374
@item
2375
PL110 LCD controller
2376
@item
2377
PL050 KMI with PS/2 keyboard and mouse
2378
@item
2379
PCI host bridge
2380
@item
2381
PCI OHCI USB controller
2382
@item
2383
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2384
@item
2385
PL181 MultiMedia Card Interface with SD card.
2386
@end itemize
2387

    
2388
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2389
and "Terrier") emulation includes the following peripherals:
2390

    
2391
@itemize @minus
2392
@item
2393
Intel PXA270 System-on-chip (ARM V5TE core)
2394
@item
2395
NAND Flash memory
2396
@item
2397
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2398
@item
2399
On-chip OHCI USB controller
2400
@item
2401
On-chip LCD controller
2402
@item
2403
On-chip Real Time Clock
2404
@item
2405
TI ADS7846 touchscreen controller on SSP bus
2406
@item
2407
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2408
@item
2409
GPIO-connected keyboard controller and LEDs
2410
@item
2411
Secure Digital card connected to PXA MMC/SD host
2412
@item
2413
Three on-chip UARTs
2414
@item
2415
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2416
@end itemize
2417

    
2418
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2419
following elements:
2420

    
2421
@itemize @minus
2422
@item
2423
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2424
@item
2425
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2426
@item
2427
On-chip LCD controller
2428
@item
2429
On-chip Real Time Clock
2430
@item
2431
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2432
CODEC, connected through MicroWire and I@math{^2}S busses
2433
@item
2434
GPIO-connected matrix keypad
2435
@item
2436
Secure Digital card connected to OMAP MMC/SD host
2437
@item
2438
Three on-chip UARTs
2439
@end itemize
2440

    
2441
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2442
devices:
2443

    
2444
@itemize @minus
2445
@item
2446
Cortex-M3 CPU core.
2447
@item
2448
64k Flash and 8k SRAM.
2449
@item
2450
Timers, UARTs, ADC and I@math{^2}C interface.
2451
@item
2452
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2453
@end itemize
2454

    
2455
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2456
devices:
2457

    
2458
@itemize @minus
2459
@item
2460
Cortex-M3 CPU core.
2461
@item
2462
256k Flash and 64k SRAM.
2463
@item
2464
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2465
@item
2466
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2467
@end itemize
2468

    
2469
A Linux 2.6 test image is available on the QEMU web site. More
2470
information is available in the QEMU mailing-list archive.
2471

    
2472
@node ColdFire System emulator
2473
@section ColdFire System emulator
2474

    
2475
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2476
The emulator is able to boot a uClinux kernel.
2477

    
2478
The M5208EVB emulation includes the following devices:
2479

    
2480
@itemize @minus
2481
@item
2482
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2483
@item
2484
Three Two on-chip UARTs.
2485
@item
2486
Fast Ethernet Controller (FEC)
2487
@end itemize
2488

    
2489
The AN5206 emulation includes the following devices:
2490

    
2491
@itemize @minus
2492
@item
2493
MCF5206 ColdFire V2 Microprocessor.
2494
@item
2495
Two on-chip UARTs.
2496
@end itemize
2497

    
2498
@node QEMU User space emulator
2499
@chapter QEMU User space emulator
2500

    
2501
@menu
2502
* Supported Operating Systems ::
2503
* Linux User space emulator::
2504
* Mac OS X/Darwin User space emulator ::
2505
@end menu
2506

    
2507
@node Supported Operating Systems
2508
@section Supported Operating Systems
2509

    
2510
The following OS are supported in user space emulation:
2511

    
2512
@itemize @minus
2513
@item
2514
Linux (referred as qemu-linux-user)
2515
@item
2516
Mac OS X/Darwin (referred as qemu-darwin-user)
2517
@end itemize
2518

    
2519
@node Linux User space emulator
2520
@section Linux User space emulator
2521

    
2522
@menu
2523
* Quick Start::
2524
* Wine launch::
2525
* Command line options::
2526
* Other binaries::
2527
@end menu
2528

    
2529
@node Quick Start
2530
@subsection Quick Start
2531

    
2532
In order to launch a Linux process, QEMU needs the process executable
2533
itself and all the target (x86) dynamic libraries used by it.
2534

    
2535
@itemize
2536

    
2537
@item On x86, you can just try to launch any process by using the native
2538
libraries:
2539

    
2540
@example
2541
qemu-i386 -L / /bin/ls
2542
@end example
2543

    
2544
@code{-L /} tells that the x86 dynamic linker must be searched with a
2545
@file{/} prefix.
2546

    
2547
@item Since QEMU is also a linux process, you can launch qemu with
2548
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2549

    
2550
@example
2551
qemu-i386 -L / qemu-i386 -L / /bin/ls
2552
@end example
2553

    
2554
@item On non x86 CPUs, you need first to download at least an x86 glibc
2555
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2556
@code{LD_LIBRARY_PATH} is not set:
2557

    
2558
@example
2559
unset LD_LIBRARY_PATH
2560
@end example
2561

    
2562
Then you can launch the precompiled @file{ls} x86 executable:
2563

    
2564
@example
2565
qemu-i386 tests/i386/ls
2566
@end example
2567
You can look at @file{qemu-binfmt-conf.sh} so that
2568
QEMU is automatically launched by the Linux kernel when you try to
2569
launch x86 executables. It requires the @code{binfmt_misc} module in the
2570
Linux kernel.
2571

    
2572
@item The x86 version of QEMU is also included. You can try weird things such as:
2573
@example
2574
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2575
          /usr/local/qemu-i386/bin/ls-i386
2576
@end example
2577

    
2578
@end itemize
2579

    
2580
@node Wine launch
2581
@subsection Wine launch
2582

    
2583
@itemize
2584

    
2585
@item Ensure that you have a working QEMU with the x86 glibc
2586
distribution (see previous section). In order to verify it, you must be
2587
able to do:
2588

    
2589
@example
2590
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2591
@end example
2592

    
2593
@item Download the binary x86 Wine install
2594
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2595

    
2596
@item Configure Wine on your account. Look at the provided script
2597
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2598
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2599

    
2600
@item Then you can try the example @file{putty.exe}:
2601

    
2602
@example
2603
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2604
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2605
@end example
2606

    
2607
@end itemize
2608

    
2609
@node Command line options
2610
@subsection Command line options
2611

    
2612
@example
2613
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2614
@end example
2615

    
2616
@table @option
2617
@item -h
2618
Print the help
2619
@item -L path
2620
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2621
@item -s size
2622
Set the x86 stack size in bytes (default=524288)
2623
@end table
2624

    
2625
Debug options:
2626

    
2627
@table @option
2628
@item -d
2629
Activate log (logfile=/tmp/qemu.log)
2630
@item -p pagesize
2631
Act as if the host page size was 'pagesize' bytes
2632
@end table
2633

    
2634
Environment variables:
2635

    
2636
@table @env
2637
@item QEMU_STRACE
2638
Print system calls and arguments similar to the 'strace' program
2639
(NOTE: the actual 'strace' program will not work because the user
2640
space emulator hasn't implemented ptrace).  At the moment this is
2641
incomplete.  All system calls that don't have a specific argument
2642
format are printed with information for six arguments.  Many
2643
flag-style arguments don't have decoders and will show up as numbers.
2644
@end table
2645

    
2646
@node Other binaries
2647
@subsection Other binaries
2648

    
2649
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2650
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2651
configurations), and arm-uclinux bFLT format binaries.
2652

    
2653
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2654
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2655
coldfire uClinux bFLT format binaries.
2656

    
2657
The binary format is detected automatically.
2658

    
2659
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2660
(Sparc64 CPU, 32 bit ABI).
2661

    
2662
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2663
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2664

    
2665
@node Mac OS X/Darwin User space emulator
2666
@section Mac OS X/Darwin User space emulator
2667

    
2668
@menu
2669
* Mac OS X/Darwin Status::
2670
* Mac OS X/Darwin Quick Start::
2671
* Mac OS X/Darwin Command line options::
2672
@end menu
2673

    
2674
@node Mac OS X/Darwin Status
2675
@subsection Mac OS X/Darwin Status
2676

    
2677
@itemize @minus
2678
@item
2679
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2680
@item
2681
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2682
@item
2683
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2684
@item
2685
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2686
@end itemize
2687

    
2688
[1] If you're host commpage can be executed by qemu.
2689

    
2690
@node Mac OS X/Darwin Quick Start
2691
@subsection Quick Start
2692

    
2693
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2694
itself and all the target dynamic libraries used by it. If you don't have the FAT
2695
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2696
CD or compile them by hand.
2697

    
2698
@itemize
2699

    
2700
@item On x86, you can just try to launch any process by using the native
2701
libraries:
2702

    
2703
@example
2704
qemu-i386 /bin/ls
2705
@end example
2706

    
2707
or to run the ppc version of the executable:
2708

    
2709
@example
2710
qemu-ppc /bin/ls
2711
@end example
2712

    
2713
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2714
are installed:
2715

    
2716
@example
2717
qemu-i386 -L /opt/x86_root/ /bin/ls
2718
@end example
2719

    
2720
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2721
@file{/opt/x86_root/usr/bin/dyld}.
2722

    
2723
@end itemize
2724

    
2725
@node Mac OS X/Darwin Command line options
2726
@subsection Command line options
2727

    
2728
@example
2729
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2730
@end example
2731

    
2732
@table @option
2733
@item -h
2734
Print the help
2735
@item -L path
2736
Set the library root path (default=/)
2737
@item -s size
2738
Set the stack size in bytes (default=524288)
2739
@end table
2740

    
2741
Debug options:
2742

    
2743
@table @option
2744
@item -d
2745
Activate log (logfile=/tmp/qemu.log)
2746
@item -p pagesize
2747
Act as if the host page size was 'pagesize' bytes
2748
@end table
2749

    
2750
@node compilation
2751
@chapter Compilation from the sources
2752

    
2753
@menu
2754
* Linux/Unix::
2755
* Windows::
2756
* Cross compilation for Windows with Linux::
2757
* Mac OS X::
2758
@end menu
2759

    
2760
@node Linux/Unix
2761
@section Linux/Unix
2762

    
2763
@subsection Compilation
2764

    
2765
First you must decompress the sources:
2766
@example
2767
cd /tmp
2768
tar zxvf qemu-x.y.z.tar.gz
2769
cd qemu-x.y.z
2770
@end example
2771

    
2772
Then you configure QEMU and build it (usually no options are needed):
2773
@example
2774
./configure
2775
make
2776
@end example
2777

    
2778
Then type as root user:
2779
@example
2780
make install
2781
@end example
2782
to install QEMU in @file{/usr/local}.
2783

    
2784
@subsection GCC version
2785

    
2786
In order to compile QEMU successfully, it is very important that you
2787
have the right tools. The most important one is gcc. On most hosts and
2788
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2789
Linux distribution includes a gcc 4.x compiler, you can usually
2790
install an older version (it is invoked by @code{gcc32} or
2791
@code{gcc34}). The QEMU configure script automatically probes for
2792
these older versions so that usually you don't have to do anything.
2793

    
2794
@node Windows
2795
@section Windows
2796

    
2797
@itemize
2798
@item Install the current versions of MSYS and MinGW from
2799
@url{http://www.mingw.org/}. You can find detailed installation
2800
instructions in the download section and the FAQ.
2801

    
2802
@item Download
2803
the MinGW development library of SDL 1.2.x
2804
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2805
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2806
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2807
directory. Edit the @file{sdl-config} script so that it gives the
2808
correct SDL directory when invoked.
2809

    
2810
@item Extract the current version of QEMU.
2811

    
2812
@item Start the MSYS shell (file @file{msys.bat}).
2813

    
2814
@item Change to the QEMU directory. Launch @file{./configure} and
2815
@file{make}.  If you have problems using SDL, verify that
2816
@file{sdl-config} can be launched from the MSYS command line.
2817

    
2818
@item You can install QEMU in @file{Program Files/Qemu} by typing
2819
@file{make install}. Don't forget to copy @file{SDL.dll} in
2820
@file{Program Files/Qemu}.
2821

    
2822
@end itemize
2823

    
2824
@node Cross compilation for Windows with Linux
2825
@section Cross compilation for Windows with Linux
2826

    
2827
@itemize
2828
@item
2829
Install the MinGW cross compilation tools available at
2830
@url{http://www.mingw.org/}.
2831

    
2832
@item
2833
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2834
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2835
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2836
the QEMU configuration script.
2837

    
2838
@item
2839
Configure QEMU for Windows cross compilation:
2840
@example
2841
./configure --enable-mingw32
2842
@end example
2843
If necessary, you can change the cross-prefix according to the prefix
2844
chosen for the MinGW tools with --cross-prefix. You can also use
2845
--prefix to set the Win32 install path.
2846

    
2847
@item You can install QEMU in the installation directory by typing
2848
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2849
installation directory.
2850

    
2851
@end itemize
2852

    
2853
Note: Currently, Wine does not seem able to launch
2854
QEMU for Win32.
2855

    
2856
@node Mac OS X
2857
@section Mac OS X
2858

    
2859
The Mac OS X patches are not fully merged in QEMU, so you should look
2860
at the QEMU mailing list archive to have all the necessary
2861
information.
2862

    
2863
@node Index
2864
@chapter Index
2865
@printindex cp
2866

    
2867
@bye