Statistics
| Branch: | Revision:

root / cpu-exec.c @ facc68be

History | View | Annotate | Download (18.4 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#ifdef TARGET_I386
22
#include "exec-i386.h"
23
#endif
24
#ifdef TARGET_ARM
25
#include "exec-arm.h"
26
#endif
27

    
28
#include "disas.h"
29

    
30
//#define DEBUG_EXEC
31
//#define DEBUG_SIGNAL
32

    
33
#if defined(TARGET_ARM)
34
/* XXX: unify with i386 target */
35
void cpu_loop_exit(void)
36
{
37
    longjmp(env->jmp_env, 1);
38
}
39
#endif
40

    
41
/* main execution loop */
42

    
43
int cpu_exec(CPUState *env1)
44
{
45
    int saved_T0, saved_T1, saved_T2;
46
    CPUState *saved_env;
47
#ifdef reg_EAX
48
    int saved_EAX;
49
#endif
50
#ifdef reg_ECX
51
    int saved_ECX;
52
#endif
53
#ifdef reg_EDX
54
    int saved_EDX;
55
#endif
56
#ifdef reg_EBX
57
    int saved_EBX;
58
#endif
59
#ifdef reg_ESP
60
    int saved_ESP;
61
#endif
62
#ifdef reg_EBP
63
    int saved_EBP;
64
#endif
65
#ifdef reg_ESI
66
    int saved_ESI;
67
#endif
68
#ifdef reg_EDI
69
    int saved_EDI;
70
#endif
71
#ifdef __sparc__
72
    int saved_i7, tmp_T0;
73
#endif
74
    int code_gen_size, ret, interrupt_request;
75
    void (*gen_func)(void);
76
    TranslationBlock *tb, **ptb;
77
    uint8_t *tc_ptr, *cs_base, *pc;
78
    unsigned int flags;
79

    
80
    /* first we save global registers */
81
    saved_T0 = T0;
82
    saved_T1 = T1;
83
    saved_T2 = T2;
84
    saved_env = env;
85
    env = env1;
86
#ifdef __sparc__
87
    /* we also save i7 because longjmp may not restore it */
88
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
89
#endif
90

    
91
#if defined(TARGET_I386)
92
#ifdef reg_EAX
93
    saved_EAX = EAX;
94
    EAX = env->regs[R_EAX];
95
#endif
96
#ifdef reg_ECX
97
    saved_ECX = ECX;
98
    ECX = env->regs[R_ECX];
99
#endif
100
#ifdef reg_EDX
101
    saved_EDX = EDX;
102
    EDX = env->regs[R_EDX];
103
#endif
104
#ifdef reg_EBX
105
    saved_EBX = EBX;
106
    EBX = env->regs[R_EBX];
107
#endif
108
#ifdef reg_ESP
109
    saved_ESP = ESP;
110
    ESP = env->regs[R_ESP];
111
#endif
112
#ifdef reg_EBP
113
    saved_EBP = EBP;
114
    EBP = env->regs[R_EBP];
115
#endif
116
#ifdef reg_ESI
117
    saved_ESI = ESI;
118
    ESI = env->regs[R_ESI];
119
#endif
120
#ifdef reg_EDI
121
    saved_EDI = EDI;
122
    EDI = env->regs[R_EDI];
123
#endif
124
    
125
    /* put eflags in CPU temporary format */
126
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
127
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
128
    CC_OP = CC_OP_EFLAGS;
129
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
130
#elif defined(TARGET_ARM)
131
    {
132
        unsigned int psr;
133
        psr = env->cpsr;
134
        env->CF = (psr >> 29) & 1;
135
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
136
        env->VF = (psr << 3) & 0x80000000;
137
        env->cpsr = psr & ~0xf0000000;
138
    }
139
#else
140
#error unsupported target CPU
141
#endif
142
    env->exception_index = -1;
143

    
144
    /* prepare setjmp context for exception handling */
145
    for(;;) {
146
        if (setjmp(env->jmp_env) == 0) {
147
            /* if an exception is pending, we execute it here */
148
            if (env->exception_index >= 0) {
149
                if (env->exception_index >= EXCP_INTERRUPT) {
150
                    /* exit request from the cpu execution loop */
151
                    ret = env->exception_index;
152
                    break;
153
                } else if (env->user_mode_only) {
154
                    /* if user mode only, we simulate a fake exception
155
                       which will be hanlded outside the cpu execution
156
                       loop */
157
#if defined(TARGET_I386)
158
                    do_interrupt_user(env->exception_index, 
159
                                      env->exception_is_int, 
160
                                      env->error_code, 
161
                                      env->exception_next_eip);
162
#endif
163
                    ret = env->exception_index;
164
                    break;
165
                } else {
166
#if defined(TARGET_I386)
167
                    /* simulate a real cpu exception. On i386, it can
168
                       trigger new exceptions, but we do not handle
169
                       double or triple faults yet. */
170
                    do_interrupt(env->exception_index, 
171
                                 env->exception_is_int, 
172
                                 env->error_code, 
173
                                 env->exception_next_eip, 0);
174
#endif
175
                }
176
                env->exception_index = -1;
177
            }
178
            T0 = 0; /* force lookup of first TB */
179
            for(;;) {
180
#ifdef __sparc__
181
                /* g1 can be modified by some libc? functions */ 
182
                tmp_T0 = T0;
183
#endif            
184
                interrupt_request = env->interrupt_request;
185
                if (__builtin_expect(interrupt_request, 0)) {
186
#if defined(TARGET_I386)
187
                    /* if hardware interrupt pending, we execute it */
188
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
189
                        (env->eflags & IF_MASK) && 
190
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
191
                        int intno;
192
                        intno = cpu_x86_get_pic_interrupt(env);
193
                        if (loglevel) {
194
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
195
                        }
196
                        do_interrupt(intno, 0, 0, 0, 1);
197
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
198
                        /* ensure that no TB jump will be modified as
199
                           the program flow was changed */
200
#ifdef __sparc__
201
                        tmp_T0 = 0;
202
#else
203
                        T0 = 0;
204
#endif
205
                    }
206
#endif
207
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
208
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
209
                        env->exception_index = EXCP_INTERRUPT;
210
                        cpu_loop_exit();
211
                    }
212
                }
213
#ifdef DEBUG_EXEC
214
                if (loglevel) {
215
#if defined(TARGET_I386)
216
                    /* restore flags in standard format */
217
                    env->regs[R_EAX] = EAX;
218
                    env->regs[R_EBX] = EBX;
219
                    env->regs[R_ECX] = ECX;
220
                    env->regs[R_EDX] = EDX;
221
                    env->regs[R_ESI] = ESI;
222
                    env->regs[R_EDI] = EDI;
223
                    env->regs[R_EBP] = EBP;
224
                    env->regs[R_ESP] = ESP;
225
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
226
                    cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
227
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
228
#elif defined(TARGET_ARM)
229
                    env->cpsr = compute_cpsr();
230
                    cpu_arm_dump_state(env, logfile, 0);
231
                    env->cpsr &= ~0xf0000000;
232
#else
233
#error unsupported target CPU 
234
#endif
235
                }
236
#endif
237
                /* we record a subset of the CPU state. It will
238
                   always be the same before a given translated block
239
                   is executed. */
240
#if defined(TARGET_I386)
241
                flags = env->hflags;
242
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
243
                cs_base = env->segs[R_CS].base;
244
                pc = cs_base + env->eip;
245
#elif defined(TARGET_ARM)
246
                flags = 0;
247
                cs_base = 0;
248
                pc = (uint8_t *)env->regs[15];
249
#else
250
#error unsupported CPU
251
#endif
252
                tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, 
253
                             flags);
254
                if (!tb) {
255
                    spin_lock(&tb_lock);
256
                    /* if no translated code available, then translate it now */
257
                    tb = tb_alloc((unsigned long)pc);
258
                    if (!tb) {
259
                        /* flush must be done */
260
                        tb_flush();
261
                        /* cannot fail at this point */
262
                        tb = tb_alloc((unsigned long)pc);
263
                        /* don't forget to invalidate previous TB info */
264
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
265
                        T0 = 0;
266
                    }
267
                    tc_ptr = code_gen_ptr;
268
                    tb->tc_ptr = tc_ptr;
269
                    tb->cs_base = (unsigned long)cs_base;
270
                    tb->flags = flags;
271
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
272
                    *ptb = tb;
273
                    tb->hash_next = NULL;
274
                    tb_link(tb);
275
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
276
                    spin_unlock(&tb_lock);
277
                }
278
#ifdef DEBUG_EXEC
279
                if (loglevel) {
280
                    fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
281
                            (long)tb->tc_ptr, (long)tb->pc,
282
                            lookup_symbol((void *)tb->pc));
283
                }
284
#endif
285
#ifdef __sparc__
286
                T0 = tmp_T0;
287
#endif            
288
                /* see if we can patch the calling TB. */
289
                if (T0 != 0) {
290
                    spin_lock(&tb_lock);
291
                    tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
292
                    spin_unlock(&tb_lock);
293
                }
294
                tc_ptr = tb->tc_ptr;
295
                env->current_tb = tb;
296
                /* execute the generated code */
297
                gen_func = (void *)tc_ptr;
298
#if defined(__sparc__)
299
                __asm__ __volatile__("call        %0\n\t"
300
                                     "mov        %%o7,%%i0"
301
                                     : /* no outputs */
302
                                     : "r" (gen_func) 
303
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
304
#elif defined(__arm__)
305
                asm volatile ("mov pc, %0\n\t"
306
                              ".global exec_loop\n\t"
307
                              "exec_loop:\n\t"
308
                              : /* no outputs */
309
                              : "r" (gen_func)
310
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
311
#else
312
                gen_func();
313
#endif
314
                env->current_tb = NULL;
315
                /* reset soft MMU for next block (it can currently
316
                   only be set by a memory fault) */
317
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
318
                if (env->hflags & HF_SOFTMMU_MASK) {
319
                    env->hflags &= ~HF_SOFTMMU_MASK;
320
                    /* do not allow linking to another block */
321
                    T0 = 0;
322
                }
323
#endif
324
            }
325
        } else {
326
        }
327
    } /* for(;;) */
328

    
329

    
330
#if defined(TARGET_I386)
331
    /* restore flags in standard format */
332
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
333

    
334
    /* restore global registers */
335
#ifdef reg_EAX
336
    EAX = saved_EAX;
337
#endif
338
#ifdef reg_ECX
339
    ECX = saved_ECX;
340
#endif
341
#ifdef reg_EDX
342
    EDX = saved_EDX;
343
#endif
344
#ifdef reg_EBX
345
    EBX = saved_EBX;
346
#endif
347
#ifdef reg_ESP
348
    ESP = saved_ESP;
349
#endif
350
#ifdef reg_EBP
351
    EBP = saved_EBP;
352
#endif
353
#ifdef reg_ESI
354
    ESI = saved_ESI;
355
#endif
356
#ifdef reg_EDI
357
    EDI = saved_EDI;
358
#endif
359
#elif defined(TARGET_ARM)
360
    env->cpsr = compute_cpsr();
361
#else
362
#error unsupported target CPU
363
#endif
364
#ifdef __sparc__
365
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
366
#endif
367
    T0 = saved_T0;
368
    T1 = saved_T1;
369
    T2 = saved_T2;
370
    env = saved_env;
371
    return ret;
372
}
373

    
374
#if defined(TARGET_I386)
375

    
376
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
377
{
378
    CPUX86State *saved_env;
379

    
380
    saved_env = env;
381
    env = s;
382
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
383
        selector &= 0xffff;
384
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
385
                               (uint8_t *)(selector << 4), 0xffff, 0);
386
    } else {
387
        load_seg(seg_reg, selector, 0);
388
    }
389
    env = saved_env;
390
}
391

    
392
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
393
{
394
    CPUX86State *saved_env;
395

    
396
    saved_env = env;
397
    env = s;
398
    
399
    helper_fsave(ptr, data32);
400

    
401
    env = saved_env;
402
}
403

    
404
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
405
{
406
    CPUX86State *saved_env;
407

    
408
    saved_env = env;
409
    env = s;
410
    
411
    helper_frstor(ptr, data32);
412

    
413
    env = saved_env;
414
}
415

    
416
#endif /* TARGET_I386 */
417

    
418
#undef EAX
419
#undef ECX
420
#undef EDX
421
#undef EBX
422
#undef ESP
423
#undef EBP
424
#undef ESI
425
#undef EDI
426
#undef EIP
427
#include <signal.h>
428
#include <sys/ucontext.h>
429

    
430
#if defined(TARGET_I386)
431

    
432
/* 'pc' is the host PC at which the exception was raised. 'address' is
433
   the effective address of the memory exception. 'is_write' is 1 if a
434
   write caused the exception and otherwise 0'. 'old_set' is the
435
   signal set which should be restored */
436
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
437
                                    int is_write, sigset_t *old_set)
438
{
439
    TranslationBlock *tb;
440
    int ret;
441

    
442
    if (cpu_single_env)
443
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
444
#if defined(DEBUG_SIGNAL)
445
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
446
           pc, address, is_write, *(unsigned long *)old_set);
447
#endif
448
    /* XXX: locking issue */
449
    if (is_write && page_unprotect(address)) {
450
        return 1;
451
    }
452
    /* see if it is an MMU fault */
453
    ret = cpu_x86_handle_mmu_fault(env, address, is_write);
454
    if (ret < 0)
455
        return 0; /* not an MMU fault */
456
    if (ret == 0)
457
        return 1; /* the MMU fault was handled without causing real CPU fault */
458
    /* now we have a real cpu fault */
459
    tb = tb_find_pc(pc);
460
    if (tb) {
461
        /* the PC is inside the translated code. It means that we have
462
           a virtual CPU fault */
463
        cpu_restore_state(tb, env, pc);
464
    }
465
    if (ret == 1) {
466
#if 0
467
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
468
               env->eip, env->cr[2], env->error_code);
469
#endif
470
        /* we restore the process signal mask as the sigreturn should
471
           do it (XXX: use sigsetjmp) */
472
        sigprocmask(SIG_SETMASK, old_set, NULL);
473
        raise_exception_err(EXCP0E_PAGE, env->error_code);
474
    } else {
475
        /* activate soft MMU for this block */
476
        env->hflags |= HF_SOFTMMU_MASK;
477
        sigprocmask(SIG_SETMASK, old_set, NULL);
478
        cpu_loop_exit();
479
    }
480
    /* never comes here */
481
    return 1;
482
}
483

    
484
#elif defined(TARGET_ARM)
485
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
486
                                    int is_write, sigset_t *old_set)
487
{
488
    /* XXX: do more */
489
    return 0;
490
}
491
#else
492
#error unsupported target CPU
493
#endif
494

    
495
#if defined(__i386__)
496

    
497
int cpu_signal_handler(int host_signum, struct siginfo *info, 
498
                       void *puc)
499
{
500
    struct ucontext *uc = puc;
501
    unsigned long pc;
502
    
503
#ifndef REG_EIP
504
/* for glibc 2.1 */
505
#define REG_EIP    EIP
506
#define REG_ERR    ERR
507
#define REG_TRAPNO TRAPNO
508
#endif
509
    pc = uc->uc_mcontext.gregs[REG_EIP];
510
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
511
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
512
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
513
                             &uc->uc_sigmask);
514
}
515

    
516
#elif defined(__powerpc)
517

    
518
int cpu_signal_handler(int host_signum, struct siginfo *info, 
519
                       void *puc)
520
{
521
    struct ucontext *uc = puc;
522
    struct pt_regs *regs = uc->uc_mcontext.regs;
523
    unsigned long pc;
524
    int is_write;
525

    
526
    pc = regs->nip;
527
    is_write = 0;
528
#if 0
529
    /* ppc 4xx case */
530
    if (regs->dsisr & 0x00800000)
531
        is_write = 1;
532
#else
533
    if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
534
        is_write = 1;
535
#endif
536
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
537
                             is_write, &uc->uc_sigmask);
538
}
539

    
540
#elif defined(__alpha__)
541

    
542
int cpu_signal_handler(int host_signum, struct siginfo *info, 
543
                           void *puc)
544
{
545
    struct ucontext *uc = puc;
546
    uint32_t *pc = uc->uc_mcontext.sc_pc;
547
    uint32_t insn = *pc;
548
    int is_write = 0;
549

    
550
    /* XXX: need kernel patch to get write flag faster */
551
    switch (insn >> 26) {
552
    case 0x0d: // stw
553
    case 0x0e: // stb
554
    case 0x0f: // stq_u
555
    case 0x24: // stf
556
    case 0x25: // stg
557
    case 0x26: // sts
558
    case 0x27: // stt
559
    case 0x2c: // stl
560
    case 0x2d: // stq
561
    case 0x2e: // stl_c
562
    case 0x2f: // stq_c
563
        is_write = 1;
564
    }
565

    
566
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
567
                             is_write, &uc->uc_sigmask);
568
}
569
#elif defined(__sparc__)
570

    
571
int cpu_signal_handler(int host_signum, struct siginfo *info, 
572
                       void *puc)
573
{
574
    uint32_t *regs = (uint32_t *)(info + 1);
575
    void *sigmask = (regs + 20);
576
    unsigned long pc;
577
    int is_write;
578
    uint32_t insn;
579
    
580
    /* XXX: is there a standard glibc define ? */
581
    pc = regs[1];
582
    /* XXX: need kernel patch to get write flag faster */
583
    is_write = 0;
584
    insn = *(uint32_t *)pc;
585
    if ((insn >> 30) == 3) {
586
      switch((insn >> 19) & 0x3f) {
587
      case 0x05: // stb
588
      case 0x06: // sth
589
      case 0x04: // st
590
      case 0x07: // std
591
      case 0x24: // stf
592
      case 0x27: // stdf
593
      case 0x25: // stfsr
594
        is_write = 1;
595
        break;
596
      }
597
    }
598
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
599
                             is_write, sigmask);
600
}
601

    
602
#elif defined(__arm__)
603

    
604
int cpu_signal_handler(int host_signum, struct siginfo *info, 
605
                       void *puc)
606
{
607
    struct ucontext *uc = puc;
608
    unsigned long pc;
609
    int is_write;
610
    
611
    pc = uc->uc_mcontext.gregs[R15];
612
    /* XXX: compute is_write */
613
    is_write = 0;
614
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
615
                             is_write,
616
                             &uc->uc_sigmask);
617
}
618

    
619
#elif defined(__mc68000)
620

    
621
int cpu_signal_handler(int host_signum, struct siginfo *info, 
622
                       void *puc)
623
{
624
    struct ucontext *uc = puc;
625
    unsigned long pc;
626
    int is_write;
627
    
628
    pc = uc->uc_mcontext.gregs[16];
629
    /* XXX: compute is_write */
630
    is_write = 0;
631
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
632
                             is_write,
633
                             &uc->uc_sigmask);
634
}
635

    
636
#else
637

    
638
#error host CPU specific signal handler needed
639

    
640
#endif