Statistics
| Branch: | Revision:

root / linux-user / qemu.h @ fb5590f7

History | View | Annotate | Download (14.1 kB)

1
#ifndef QEMU_H
2
#define QEMU_H
3

    
4
#include <signal.h>
5
#include <string.h>
6

    
7
#include "cpu.h"
8

    
9
#undef DEBUG_REMAP
10
#ifdef DEBUG_REMAP
11
#include <stdlib.h>
12
#endif /* DEBUG_REMAP */
13

    
14
#include "qemu-types.h"
15

    
16
#include "thunk.h"
17
#include "syscall_defs.h"
18
#include "syscall.h"
19
#include "target_signal.h"
20
#include "gdbstub.h"
21
#include "qemu-queue.h"
22

    
23
#if defined(CONFIG_USE_NPTL)
24
#define THREAD __thread
25
#else
26
#define THREAD
27
#endif
28

    
29
/* This struct is used to hold certain information about the image.
30
 * Basically, it replicates in user space what would be certain
31
 * task_struct fields in the kernel
32
 */
33
struct image_info {
34
        abi_ulong       load_bias;
35
        abi_ulong       load_addr;
36
        abi_ulong       start_code;
37
        abi_ulong       end_code;
38
        abi_ulong       start_data;
39
        abi_ulong       end_data;
40
        abi_ulong       start_brk;
41
        abi_ulong       brk;
42
        abi_ulong       start_mmap;
43
        abi_ulong       mmap;
44
        abi_ulong       rss;
45
        abi_ulong       start_stack;
46
        abi_ulong       stack_limit;
47
        abi_ulong       entry;
48
        abi_ulong       code_offset;
49
        abi_ulong       data_offset;
50
        abi_ulong       saved_auxv;
51
        abi_ulong       auxv_len;
52
        abi_ulong       arg_start;
53
        abi_ulong       arg_end;
54
        int                personality;
55
#ifdef CONFIG_USE_FDPIC
56
        abi_ulong       loadmap_addr;
57
        uint16_t        nsegs;
58
        void           *loadsegs;
59
        abi_ulong       pt_dynamic_addr;
60
        struct image_info *other_info;
61
#endif
62
};
63

    
64
#ifdef TARGET_I386
65
/* Information about the current linux thread */
66
struct vm86_saved_state {
67
    uint32_t eax; /* return code */
68
    uint32_t ebx;
69
    uint32_t ecx;
70
    uint32_t edx;
71
    uint32_t esi;
72
    uint32_t edi;
73
    uint32_t ebp;
74
    uint32_t esp;
75
    uint32_t eflags;
76
    uint32_t eip;
77
    uint16_t cs, ss, ds, es, fs, gs;
78
};
79
#endif
80

    
81
#ifdef TARGET_ARM
82
/* FPU emulator */
83
#include "nwfpe/fpa11.h"
84
#endif
85

    
86
#define MAX_SIGQUEUE_SIZE 1024
87

    
88
struct sigqueue {
89
    struct sigqueue *next;
90
    target_siginfo_t info;
91
};
92

    
93
struct emulated_sigtable {
94
    int pending; /* true if signal is pending */
95
    struct sigqueue *first;
96
    struct sigqueue info; /* in order to always have memory for the
97
                             first signal, we put it here */
98
};
99

    
100
/* NOTE: we force a big alignment so that the stack stored after is
101
   aligned too */
102
typedef struct TaskState {
103
    pid_t ts_tid;     /* tid (or pid) of this task */
104
#ifdef TARGET_ARM
105
    /* FPA state */
106
    FPA11 fpa;
107
    int swi_errno;
108
#endif
109
#ifdef TARGET_UNICORE32
110
    int swi_errno;
111
#endif
112
#if defined(TARGET_I386) && !defined(TARGET_X86_64)
113
    abi_ulong target_v86;
114
    struct vm86_saved_state vm86_saved_regs;
115
    struct target_vm86plus_struct vm86plus;
116
    uint32_t v86flags;
117
    uint32_t v86mask;
118
#endif
119
#ifdef CONFIG_USE_NPTL
120
    abi_ulong child_tidptr;
121
#endif
122
#ifdef TARGET_M68K
123
    int sim_syscalls;
124
#endif
125
#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
126
    /* Extra fields for semihosted binaries.  */
127
    uint32_t heap_base;
128
    uint32_t heap_limit;
129
#endif
130
    uint32_t stack_base;
131
    int used; /* non zero if used */
132
    struct image_info *info;
133
    struct linux_binprm *bprm;
134

    
135
    struct emulated_sigtable sigtab[TARGET_NSIG];
136
    struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
137
    struct sigqueue *first_free; /* first free siginfo queue entry */
138
    int signal_pending; /* non zero if a signal may be pending */
139
} __attribute__((aligned(16))) TaskState;
140

    
141
extern char *exec_path;
142
void init_task_state(TaskState *ts);
143
void task_settid(TaskState *);
144
void stop_all_tasks(void);
145
extern const char *qemu_uname_release;
146
extern unsigned long mmap_min_addr;
147

    
148
/* ??? See if we can avoid exposing so much of the loader internals.  */
149
/*
150
 * MAX_ARG_PAGES defines the number of pages allocated for arguments
151
 * and envelope for the new program. 32 should suffice, this gives
152
 * a maximum env+arg of 128kB w/4KB pages!
153
 */
154
#define MAX_ARG_PAGES 33
155

    
156
/* Read a good amount of data initially, to hopefully get all the
157
   program headers loaded.  */
158
#define BPRM_BUF_SIZE  1024
159

    
160
/*
161
 * This structure is used to hold the arguments that are
162
 * used when loading binaries.
163
 */
164
struct linux_binprm {
165
        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
166
        void *page[MAX_ARG_PAGES];
167
        abi_ulong p;
168
        int fd;
169
        int e_uid, e_gid;
170
        int argc, envc;
171
        char **argv;
172
        char **envp;
173
        char * filename;        /* Name of binary */
174
        int (*core_dump)(int, const CPUState *); /* coredump routine */
175
};
176

    
177
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
178
abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
179
                              abi_ulong stringp, int push_ptr);
180
int loader_exec(const char * filename, char ** argv, char ** envp,
181
             struct target_pt_regs * regs, struct image_info *infop,
182
             struct linux_binprm *);
183

    
184
int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
185
                    struct image_info * info);
186
int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
187
                    struct image_info * info);
188

    
189
abi_long memcpy_to_target(abi_ulong dest, const void *src,
190
                          unsigned long len);
191
void target_set_brk(abi_ulong new_brk);
192
abi_long do_brk(abi_ulong new_brk);
193
void syscall_init(void);
194
abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
195
                    abi_long arg2, abi_long arg3, abi_long arg4,
196
                    abi_long arg5, abi_long arg6, abi_long arg7,
197
                    abi_long arg8);
198
void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
199
extern THREAD CPUState *thread_env;
200
void cpu_loop(CPUState *env);
201
char *target_strerror(int err);
202
int get_osversion(void);
203
void fork_start(void);
204
void fork_end(int child);
205

    
206
/* Return true if the proposed guest_base is suitable for the guest.
207
 * The guest code may leave a page mapped and populate it if the
208
 * address is suitable.
209
 */
210
bool guest_validate_base(unsigned long guest_base);
211

    
212
#include "qemu-log.h"
213

    
214
/* strace.c */
215
void print_syscall(int num,
216
                   abi_long arg1, abi_long arg2, abi_long arg3,
217
                   abi_long arg4, abi_long arg5, abi_long arg6);
218
void print_syscall_ret(int num, abi_long arg1);
219
extern int do_strace;
220

    
221
/* signal.c */
222
void process_pending_signals(CPUState *cpu_env);
223
void signal_init(void);
224
int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
225
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
226
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
227
int target_to_host_signal(int sig);
228
int host_to_target_signal(int sig);
229
long do_sigreturn(CPUState *env);
230
long do_rt_sigreturn(CPUState *env);
231
abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
232

    
233
#ifdef TARGET_I386
234
/* vm86.c */
235
void save_v86_state(CPUX86State *env);
236
void handle_vm86_trap(CPUX86State *env, int trapno);
237
void handle_vm86_fault(CPUX86State *env);
238
int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
239
#elif defined(TARGET_SPARC64)
240
void sparc64_set_context(CPUSPARCState *env);
241
void sparc64_get_context(CPUSPARCState *env);
242
#endif
243

    
244
/* mmap.c */
245
int target_mprotect(abi_ulong start, abi_ulong len, int prot);
246
abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
247
                     int flags, int fd, abi_ulong offset);
248
int target_munmap(abi_ulong start, abi_ulong len);
249
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
250
                       abi_ulong new_size, unsigned long flags,
251
                       abi_ulong new_addr);
252
int target_msync(abi_ulong start, abi_ulong len, int flags);
253
extern unsigned long last_brk;
254
void mmap_lock(void);
255
void mmap_unlock(void);
256
abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
257
void cpu_list_lock(void);
258
void cpu_list_unlock(void);
259
#if defined(CONFIG_USE_NPTL)
260
void mmap_fork_start(void);
261
void mmap_fork_end(int child);
262
#endif
263

    
264
/* main.c */
265
extern unsigned long guest_stack_size;
266

    
267
/* user access */
268

    
269
#define VERIFY_READ 0
270
#define VERIFY_WRITE 1 /* implies read access */
271

    
272
static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
273
{
274
    return page_check_range((target_ulong)addr, size,
275
                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
276
}
277

    
278
/* NOTE __get_user and __put_user use host pointers and don't check access. */
279
/* These are usually used to access struct data members once the
280
 * struct has been locked - usually with lock_user_struct().
281
 */
282
#define __put_user(x, hptr)\
283
({\
284
    switch(sizeof(*hptr)) {\
285
    case 1:\
286
        *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
287
        break;\
288
    case 2:\
289
        *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\
290
        break;\
291
    case 4:\
292
        *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\
293
        break;\
294
    case 8:\
295
        *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
296
        break;\
297
    default:\
298
        abort();\
299
    }\
300
    0;\
301
})
302

    
303
#define __get_user(x, hptr) \
304
({\
305
    switch(sizeof(*hptr)) {\
306
    case 1:\
307
        x = (typeof(*hptr))*(uint8_t *)(hptr);\
308
        break;\
309
    case 2:\
310
        x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
311
        break;\
312
    case 4:\
313
        x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
314
        break;\
315
    case 8:\
316
        x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
317
        break;\
318
    default:\
319
        /* avoid warning */\
320
        x = 0;\
321
        abort();\
322
    }\
323
    0;\
324
})
325

    
326
/* put_user()/get_user() take a guest address and check access */
327
/* These are usually used to access an atomic data type, such as an int,
328
 * that has been passed by address.  These internally perform locking
329
 * and unlocking on the data type.
330
 */
331
#define put_user(x, gaddr, target_type)                                        \
332
({                                                                        \
333
    abi_ulong __gaddr = (gaddr);                                        \
334
    target_type *__hptr;                                                \
335
    abi_long __ret;                                                        \
336
    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
337
        __ret = __put_user((x), __hptr);                                \
338
        unlock_user(__hptr, __gaddr, sizeof(target_type));                \
339
    } else                                                                \
340
        __ret = -TARGET_EFAULT;                                                \
341
    __ret;                                                                \
342
})
343

    
344
#define get_user(x, gaddr, target_type)                                        \
345
({                                                                        \
346
    abi_ulong __gaddr = (gaddr);                                        \
347
    target_type *__hptr;                                                \
348
    abi_long __ret;                                                        \
349
    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
350
        __ret = __get_user((x), __hptr);                                \
351
        unlock_user(__hptr, __gaddr, 0);                                \
352
    } else {                                                                \
353
        /* avoid warning */                                                \
354
        (x) = 0;                                                        \
355
        __ret = -TARGET_EFAULT;                                                \
356
    }                                                                        \
357
    __ret;                                                                \
358
})
359

    
360
#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
361
#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
362
#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
363
#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
364
#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
365
#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
366
#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
367
#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
368
#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
369
#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
370

    
371
#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
372
#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
373
#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
374
#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
375
#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
376
#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
377
#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
378
#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
379
#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
380
#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
381

    
382
/* copy_from_user() and copy_to_user() are usually used to copy data
383
 * buffers between the target and host.  These internally perform
384
 * locking/unlocking of the memory.
385
 */
386
abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
387
abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
388

    
389
/* Functions for accessing guest memory.  The tget and tput functions
390
   read/write single values, byteswapping as necessary.  The lock_user
391
   gets a pointer to a contiguous area of guest memory, but does not perform
392
   and byteswapping.  lock_user may return either a pointer to the guest
393
   memory, or a temporary buffer.  */
394

    
395
/* Lock an area of guest memory into the host.  If copy is true then the
396
   host area will have the same contents as the guest.  */
397
static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
398
{
399
    if (!access_ok(type, guest_addr, len))
400
        return NULL;
401
#ifdef DEBUG_REMAP
402
    {
403
        void *addr;
404
        addr = malloc(len);
405
        if (copy)
406
            memcpy(addr, g2h(guest_addr), len);
407
        else
408
            memset(addr, 0, len);
409
        return addr;
410
    }
411
#else
412
    return g2h(guest_addr);
413
#endif
414
}
415

    
416
/* Unlock an area of guest memory.  The first LEN bytes must be
417
   flushed back to guest memory. host_ptr = NULL is explicitly
418
   allowed and does nothing. */
419
static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
420
                               long len)
421
{
422

    
423
#ifdef DEBUG_REMAP
424
    if (!host_ptr)
425
        return;
426
    if (host_ptr == g2h(guest_addr))
427
        return;
428
    if (len > 0)
429
        memcpy(g2h(guest_addr), host_ptr, len);
430
    free(host_ptr);
431
#endif
432
}
433

    
434
/* Return the length of a string in target memory or -TARGET_EFAULT if
435
   access error. */
436
abi_long target_strlen(abi_ulong gaddr);
437

    
438
/* Like lock_user but for null terminated strings.  */
439
static inline void *lock_user_string(abi_ulong guest_addr)
440
{
441
    abi_long len;
442
    len = target_strlen(guest_addr);
443
    if (len < 0)
444
        return NULL;
445
    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
446
}
447

    
448
/* Helper macros for locking/ulocking a target struct.  */
449
#define lock_user_struct(type, host_ptr, guest_addr, copy)        \
450
    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
451
#define unlock_user_struct(host_ptr, guest_addr, copy)                \
452
    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
453

    
454
#if defined(CONFIG_USE_NPTL)
455
#include <pthread.h>
456
#endif
457

    
458
#endif /* QEMU_H */