Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ fbf9db64

History | View | Annotate | Download (63.9 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 *
24
 * TODO:
25
 *  o Downstream port handoff
26
 */
27

    
28
#include "hw.h"
29
#include "qemu-timer.h"
30
#include "usb.h"
31
#include "pci.h"
32
#include "monitor.h"
33
#include "trace.h"
34

    
35
#define EHCI_DEBUG   0
36

    
37
#if EHCI_DEBUG
38
#define DPRINTF printf
39
#else
40
#define DPRINTF(...)
41
#endif
42

    
43
/* internal processing - reset HC to try and recover */
44
#define USB_RET_PROCERR   (-99)
45

    
46
#define MMIO_SIZE        0x1000
47

    
48
/* Capability Registers Base Address - section 2.2 */
49
#define CAPREGBASE       0x0000
50
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
51
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
52
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
53
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
54
#define EECP             HCCPARAMS + 1
55
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
56
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
57

    
58
#define OPREGBASE        0x0020        // Operational Registers Base Address
59

    
60
#define USBCMD           OPREGBASE + 0x0000
61
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
62
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
63
#define USBCMD_FLS       (3 << 2)      // Frame List Size
64
#define USBCMD_FLS_SH    2             // Frame List Size Shift
65
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
66
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
67
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
68
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
69
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
70
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
71
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
72
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
73

    
74
#define USBSTS           OPREGBASE + 0x0004
75
#define USBSTS_RO_MASK   0x0000003f
76
#define USBSTS_INT       (1 << 0)      // USB Interrupt
77
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
78
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
79
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
80
#define USBSTS_HSE       (1 << 4)      // Host System Error
81
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
82
#define USBSTS_HALT      (1 << 12)     // HC Halted
83
#define USBSTS_REC       (1 << 13)     // Reclamation
84
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
85
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
86

    
87
/*
88
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
89
 *  so no need to redefine here.
90
 */
91
#define USBINTR              OPREGBASE + 0x0008
92
#define USBINTR_MASK         0x0000003f
93

    
94
#define FRINDEX              OPREGBASE + 0x000c
95
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
96
#define PERIODICLISTBASE     OPREGBASE + 0x0014
97
#define ASYNCLISTADDR        OPREGBASE + 0x0018
98
#define ASYNCLISTADDR_MASK   0xffffffe0
99

    
100
#define CONFIGFLAG           OPREGBASE + 0x0040
101

    
102
#define PORTSC               (OPREGBASE + 0x0044)
103
#define PORTSC_BEGIN         PORTSC
104
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
105
/*
106
 * Bits that are reserved or are read-only are masked out of values
107
 * written to us by software
108
 */
109
#define PORTSC_RO_MASK       0x007021c4
110
#define PORTSC_RWC_MASK      0x0000002a
111
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
112
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
113
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
114
#define PORTSC_PTC           (15 << 16)   // Port Test Control
115
#define PORTSC_PTC_SH        16           // Port Test Control shift
116
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
117
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
118
#define PORTSC_POWNER        (1 << 13)    // Port Owner
119
#define PORTSC_PPOWER        (1 << 12)    // Port Power
120
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
121
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
122
#define PORTSC_PRESET        (1 << 8)     // Port Reset
123
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
124
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
125
#define PORTSC_OCC           (1 << 5)     // Over Current Change
126
#define PORTSC_OCA           (1 << 4)     // Over Current Active
127
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
128
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
129
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
130
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
131

    
132
#define FRAME_TIMER_FREQ 1000
133
#define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
134

    
135
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
136
#define NB_PORTS         4        // Number of downstream ports
137
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
138
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
139
#define MAX_QH           100      // Max allowable queue heads in a chain
140

    
141
/*  Internal periodic / asynchronous schedule state machine states
142
 */
143
typedef enum {
144
    EST_INACTIVE = 1000,
145
    EST_ACTIVE,
146
    EST_EXECUTING,
147
    EST_SLEEPING,
148
    /*  The following states are internal to the state machine function
149
    */
150
    EST_WAITLISTHEAD,
151
    EST_FETCHENTRY,
152
    EST_FETCHQH,
153
    EST_FETCHITD,
154
    EST_ADVANCEQUEUE,
155
    EST_FETCHQTD,
156
    EST_EXECUTE,
157
    EST_WRITEBACK,
158
    EST_HORIZONTALQH
159
} EHCI_STATES;
160

    
161
/* macros for accessing fields within next link pointer entry */
162
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
163
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
164
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
165

    
166
/* link pointer types */
167
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
168
#define NLPTR_TYPE_QH            1     // queue head
169
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
170
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
171

    
172

    
173
/*  EHCI spec version 1.0 Section 3.3
174
 */
175
typedef struct EHCIitd {
176
    uint32_t next;
177

    
178
    uint32_t transact[8];
179
#define ITD_XACT_ACTIVE          (1 << 31)
180
#define ITD_XACT_DBERROR         (1 << 30)
181
#define ITD_XACT_BABBLE          (1 << 29)
182
#define ITD_XACT_XACTERR         (1 << 28)
183
#define ITD_XACT_LENGTH_MASK     0x0fff0000
184
#define ITD_XACT_LENGTH_SH       16
185
#define ITD_XACT_IOC             (1 << 15)
186
#define ITD_XACT_PGSEL_MASK      0x00007000
187
#define ITD_XACT_PGSEL_SH        12
188
#define ITD_XACT_OFFSET_MASK     0x00000fff
189

    
190
    uint32_t bufptr[7];
191
#define ITD_BUFPTR_MASK          0xfffff000
192
#define ITD_BUFPTR_SH            12
193
#define ITD_BUFPTR_EP_MASK       0x00000f00
194
#define ITD_BUFPTR_EP_SH         8
195
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
196
#define ITD_BUFPTR_DEVADDR_SH    0
197
#define ITD_BUFPTR_DIRECTION     (1 << 11)
198
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
199
#define ITD_BUFPTR_MAXPKT_SH     0
200
#define ITD_BUFPTR_MULT_MASK     0x00000003
201
#define ITD_BUFPTR_MULT_SH       0
202
} EHCIitd;
203

    
204
/*  EHCI spec version 1.0 Section 3.4
205
 */
206
typedef struct EHCIsitd {
207
    uint32_t next;                  // Standard next link pointer
208
    uint32_t epchar;
209
#define SITD_EPCHAR_IO              (1 << 31)
210
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
211
#define SITD_EPCHAR_PORTNUM_SH      24
212
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
213
#define SITD_EPCHAR_HUBADDR_SH      16
214
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
215
#define SITD_EPCHAR_EPNUM_SH        8
216
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
217

    
218
    uint32_t uframe;
219
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
220
#define SITD_UFRAME_CMASK_SH        8
221
#define SITD_UFRAME_SMASK_MASK      0x000000ff
222

    
223
    uint32_t results;
224
#define SITD_RESULTS_IOC              (1 << 31)
225
#define SITD_RESULTS_PGSEL            (1 << 30)
226
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
227
#define SITD_RESULTS_TYBYTES_SH       16
228
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
229
#define SITD_RESULTS_CPROGMASK_SH     8
230
#define SITD_RESULTS_ACTIVE           (1 << 7)
231
#define SITD_RESULTS_ERR              (1 << 6)
232
#define SITD_RESULTS_DBERR            (1 << 5)
233
#define SITD_RESULTS_BABBLE           (1 << 4)
234
#define SITD_RESULTS_XACTERR          (1 << 3)
235
#define SITD_RESULTS_MISSEDUF         (1 << 2)
236
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
237

    
238
    uint32_t bufptr[2];
239
#define SITD_BUFPTR_MASK              0xfffff000
240
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
241
#define SITD_BUFPTR_TPOS_MASK         0x00000018
242
#define SITD_BUFPTR_TPOS_SH           3
243
#define SITD_BUFPTR_TCNT_MASK         0x00000007
244

    
245
    uint32_t backptr;                 // Standard next link pointer
246
} EHCIsitd;
247

    
248
/*  EHCI spec version 1.0 Section 3.5
249
 */
250
typedef struct EHCIqtd {
251
    uint32_t next;                    // Standard next link pointer
252
    uint32_t altnext;                 // Standard next link pointer
253
    uint32_t token;
254
#define QTD_TOKEN_DTOGGLE             (1 << 31)
255
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
256
#define QTD_TOKEN_TBYTES_SH           16
257
#define QTD_TOKEN_IOC                 (1 << 15)
258
#define QTD_TOKEN_CPAGE_MASK          0x00007000
259
#define QTD_TOKEN_CPAGE_SH            12
260
#define QTD_TOKEN_CERR_MASK           0x00000c00
261
#define QTD_TOKEN_CERR_SH             10
262
#define QTD_TOKEN_PID_MASK            0x00000300
263
#define QTD_TOKEN_PID_SH              8
264
#define QTD_TOKEN_ACTIVE              (1 << 7)
265
#define QTD_TOKEN_HALT                (1 << 6)
266
#define QTD_TOKEN_DBERR               (1 << 5)
267
#define QTD_TOKEN_BABBLE              (1 << 4)
268
#define QTD_TOKEN_XACTERR             (1 << 3)
269
#define QTD_TOKEN_MISSEDUF            (1 << 2)
270
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
271
#define QTD_TOKEN_PING                (1 << 0)
272

    
273
    uint32_t bufptr[5];               // Standard buffer pointer
274
#define QTD_BUFPTR_MASK               0xfffff000
275
} EHCIqtd;
276

    
277
/*  EHCI spec version 1.0 Section 3.6
278
 */
279
typedef struct EHCIqh {
280
    uint32_t next;                    // Standard next link pointer
281

    
282
    /* endpoint characteristics */
283
    uint32_t epchar;
284
#define QH_EPCHAR_RL_MASK             0xf0000000
285
#define QH_EPCHAR_RL_SH               28
286
#define QH_EPCHAR_C                   (1 << 27)
287
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
288
#define QH_EPCHAR_MPLEN_SH            16
289
#define QH_EPCHAR_H                   (1 << 15)
290
#define QH_EPCHAR_DTC                 (1 << 14)
291
#define QH_EPCHAR_EPS_MASK            0x00003000
292
#define QH_EPCHAR_EPS_SH              12
293
#define EHCI_QH_EPS_FULL              0
294
#define EHCI_QH_EPS_LOW               1
295
#define EHCI_QH_EPS_HIGH              2
296
#define EHCI_QH_EPS_RESERVED          3
297

    
298
#define QH_EPCHAR_EP_MASK             0x00000f00
299
#define QH_EPCHAR_EP_SH               8
300
#define QH_EPCHAR_I                   (1 << 7)
301
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
302
#define QH_EPCHAR_DEVADDR_SH          0
303

    
304
    /* endpoint capabilities */
305
    uint32_t epcap;
306
#define QH_EPCAP_MULT_MASK            0xc0000000
307
#define QH_EPCAP_MULT_SH              30
308
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
309
#define QH_EPCAP_PORTNUM_SH           23
310
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
311
#define QH_EPCAP_HUBADDR_SH           16
312
#define QH_EPCAP_CMASK_MASK           0x0000ff00
313
#define QH_EPCAP_CMASK_SH             8
314
#define QH_EPCAP_SMASK_MASK           0x000000ff
315
#define QH_EPCAP_SMASK_SH             0
316

    
317
    uint32_t current_qtd;             // Standard next link pointer
318
    uint32_t next_qtd;                // Standard next link pointer
319
    uint32_t altnext_qtd;
320
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
321
#define QH_ALTNEXT_NAKCNT_SH          1
322

    
323
    uint32_t token;                   // Same as QTD token
324
    uint32_t bufptr[5];               // Standard buffer pointer
325
#define BUFPTR_CPROGMASK_MASK         0x000000ff
326
#define BUFPTR_FRAMETAG_MASK          0x0000001f
327
#define BUFPTR_SBYTES_MASK            0x00000fe0
328
#define BUFPTR_SBYTES_SH              5
329
} EHCIqh;
330

    
331
/*  EHCI spec version 1.0 Section 3.7
332
 */
333
typedef struct EHCIfstn {
334
    uint32_t next;                    // Standard next link pointer
335
    uint32_t backptr;                 // Standard next link pointer
336
} EHCIfstn;
337

    
338
typedef struct EHCIQueue EHCIQueue;
339
typedef struct EHCIState EHCIState;
340

    
341
enum async_state {
342
    EHCI_ASYNC_NONE = 0,
343
    EHCI_ASYNC_INFLIGHT,
344
    EHCI_ASYNC_FINISHED,
345
};
346

    
347
struct EHCIQueue {
348
    EHCIState *ehci;
349
    QTAILQ_ENTRY(EHCIQueue) next;
350
    bool async_schedule;
351
    uint32_t seen;
352
    uint64_t ts;
353

    
354
    /* cached data from guest - needs to be flushed
355
     * when guest removes an entry (doorbell, handshake sequence)
356
     */
357
    EHCIqh qh;             // copy of current QH (being worked on)
358
    uint32_t qhaddr;       // address QH read from
359
    EHCIqtd qtd;           // copy of current QTD (being worked on)
360
    uint32_t qtdaddr;      // address QTD read from
361

    
362
    USBPacket packet;
363
    uint8_t buffer[BUFF_SIZE];
364
    int pid;
365
    uint32_t tbytes;
366
    enum async_state async;
367
    int usb_status;
368
};
369

    
370
struct EHCIState {
371
    PCIDevice dev;
372
    USBBus bus;
373
    qemu_irq irq;
374
    target_phys_addr_t mem_base;
375
    int mem;
376

    
377
    /* properties */
378
    uint32_t freq;
379
    uint32_t maxframes;
380

    
381
    /*
382
     *  EHCI spec version 1.0 Section 2.3
383
     *  Host Controller Operational Registers
384
     */
385
    union {
386
        uint8_t mmio[MMIO_SIZE];
387
        struct {
388
            uint8_t cap[OPREGBASE];
389
            uint32_t usbcmd;
390
            uint32_t usbsts;
391
            uint32_t usbintr;
392
            uint32_t frindex;
393
            uint32_t ctrldssegment;
394
            uint32_t periodiclistbase;
395
            uint32_t asynclistaddr;
396
            uint32_t notused[9];
397
            uint32_t configflag;
398
            uint32_t portsc[NB_PORTS];
399
        };
400
    };
401

    
402
    /*
403
     *  Internal states, shadow registers, etc
404
     */
405
    uint32_t sofv;
406
    QEMUTimer *frame_timer;
407
    int attach_poll_counter;
408
    int astate;                        // Current state in asynchronous schedule
409
    int pstate;                        // Current state in periodic schedule
410
    USBPort ports[NB_PORTS];
411
    uint32_t usbsts_pending;
412
    QTAILQ_HEAD(, EHCIQueue) queues;
413

    
414
    uint32_t a_fetch_addr;   // which address to look at next
415
    uint32_t p_fetch_addr;   // which address to look at next
416

    
417
    USBPacket ipacket;
418
    uint8_t ibuffer[BUFF_SIZE];
419
    int isoch_pause;
420

    
421
    uint64_t last_run_ns;
422
};
423

    
424
#define SET_LAST_RUN_CLOCK(s) \
425
    (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
426

    
427
/* nifty macros from Arnon's EHCI version  */
428
#define get_field(data, field) \
429
    (((data) & field##_MASK) >> field##_SH)
430

    
431
#define set_field(data, newval, field) do { \
432
    uint32_t val = *data; \
433
    val &= ~ field##_MASK; \
434
    val |= ((newval) << field##_SH) & field##_MASK; \
435
    *data = val; \
436
    } while(0)
437

    
438
static const char *ehci_state_names[] = {
439
    [ EST_INACTIVE ]     = "INACTIVE",
440
    [ EST_ACTIVE ]       = "ACTIVE",
441
    [ EST_EXECUTING ]    = "EXECUTING",
442
    [ EST_SLEEPING ]     = "SLEEPING",
443
    [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
444
    [ EST_FETCHENTRY ]   = "FETCH ENTRY",
445
    [ EST_FETCHQH ]      = "FETCH QH",
446
    [ EST_FETCHITD ]     = "FETCH ITD",
447
    [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
448
    [ EST_FETCHQTD ]     = "FETCH QTD",
449
    [ EST_EXECUTE ]      = "EXECUTE",
450
    [ EST_WRITEBACK ]    = "WRITEBACK",
451
    [ EST_HORIZONTALQH ] = "HORIZONTALQH",
452
};
453

    
454
static const char *ehci_mmio_names[] = {
455
    [ CAPLENGTH ]        = "CAPLENGTH",
456
    [ HCIVERSION ]       = "HCIVERSION",
457
    [ HCSPARAMS ]        = "HCSPARAMS",
458
    [ HCCPARAMS ]        = "HCCPARAMS",
459
    [ USBCMD ]           = "USBCMD",
460
    [ USBSTS ]           = "USBSTS",
461
    [ USBINTR ]          = "USBINTR",
462
    [ FRINDEX ]          = "FRINDEX",
463
    [ PERIODICLISTBASE ] = "P-LIST BASE",
464
    [ ASYNCLISTADDR ]    = "A-LIST ADDR",
465
    [ PORTSC_BEGIN ]     = "PORTSC #0",
466
    [ PORTSC_BEGIN + 4]  = "PORTSC #1",
467
    [ PORTSC_BEGIN + 8]  = "PORTSC #2",
468
    [ PORTSC_BEGIN + 12] = "PORTSC #3",
469
    [ CONFIGFLAG ]       = "CONFIGFLAG",
470
};
471

    
472
static const char *nr2str(const char **n, size_t len, uint32_t nr)
473
{
474
    if (nr < len && n[nr] != NULL) {
475
        return n[nr];
476
    } else {
477
        return "unknown";
478
    }
479
}
480

    
481
static const char *state2str(uint32_t state)
482
{
483
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
484
}
485

    
486
static const char *addr2str(target_phys_addr_t addr)
487
{
488
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
489
}
490

    
491
static void ehci_trace_usbsts(uint32_t mask, int state)
492
{
493
    /* interrupts */
494
    if (mask & USBSTS_INT) {
495
        trace_usb_ehci_usbsts("INT", state);
496
    }
497
    if (mask & USBSTS_ERRINT) {
498
        trace_usb_ehci_usbsts("ERRINT", state);
499
    }
500
    if (mask & USBSTS_PCD) {
501
        trace_usb_ehci_usbsts("PCD", state);
502
    }
503
    if (mask & USBSTS_FLR) {
504
        trace_usb_ehci_usbsts("FLR", state);
505
    }
506
    if (mask & USBSTS_HSE) {
507
        trace_usb_ehci_usbsts("HSE", state);
508
    }
509
    if (mask & USBSTS_IAA) {
510
        trace_usb_ehci_usbsts("IAA", state);
511
    }
512

    
513
    /* status */
514
    if (mask & USBSTS_HALT) {
515
        trace_usb_ehci_usbsts("HALT", state);
516
    }
517
    if (mask & USBSTS_REC) {
518
        trace_usb_ehci_usbsts("REC", state);
519
    }
520
    if (mask & USBSTS_PSS) {
521
        trace_usb_ehci_usbsts("PSS", state);
522
    }
523
    if (mask & USBSTS_ASS) {
524
        trace_usb_ehci_usbsts("ASS", state);
525
    }
526
}
527

    
528
static inline void ehci_set_usbsts(EHCIState *s, int mask)
529
{
530
    if ((s->usbsts & mask) == mask) {
531
        return;
532
    }
533
    ehci_trace_usbsts(mask, 1);
534
    s->usbsts |= mask;
535
}
536

    
537
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
538
{
539
    if ((s->usbsts & mask) == 0) {
540
        return;
541
    }
542
    ehci_trace_usbsts(mask, 0);
543
    s->usbsts &= ~mask;
544
}
545

    
546
static inline void ehci_set_interrupt(EHCIState *s, int intr)
547
{
548
    int level = 0;
549

    
550
    // TODO honour interrupt threshold requests
551

    
552
    ehci_set_usbsts(s, intr);
553

    
554
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
555
        level = 1;
556
    }
557

    
558
    qemu_set_irq(s->irq, level);
559
}
560

    
561
static inline void ehci_record_interrupt(EHCIState *s, int intr)
562
{
563
    s->usbsts_pending |= intr;
564
}
565

    
566
static inline void ehci_commit_interrupt(EHCIState *s)
567
{
568
    if (!s->usbsts_pending) {
569
        return;
570
    }
571
    ehci_set_interrupt(s, s->usbsts_pending);
572
    s->usbsts_pending = 0;
573
}
574

    
575
static void ehci_set_state(EHCIState *s, int async, int state)
576
{
577
    if (async) {
578
        trace_usb_ehci_state("async", state2str(state));
579
        s->astate = state;
580
    } else {
581
        trace_usb_ehci_state("periodic", state2str(state));
582
        s->pstate = state;
583
    }
584
}
585

    
586
static int ehci_get_state(EHCIState *s, int async)
587
{
588
    return async ? s->astate : s->pstate;
589
}
590

    
591
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
592
{
593
    if (async) {
594
        s->a_fetch_addr = addr;
595
    } else {
596
        s->p_fetch_addr = addr;
597
    }
598
}
599

    
600
static int ehci_get_fetch_addr(EHCIState *s, int async)
601
{
602
    return async ? s->a_fetch_addr : s->p_fetch_addr;
603
}
604

    
605
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
606
{
607
    /* need three here due to argument count limits */
608
    trace_usb_ehci_qh_ptrs(q, addr, qh->next,
609
                           qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
610
    trace_usb_ehci_qh_fields(addr,
611
                             get_field(qh->epchar, QH_EPCHAR_RL),
612
                             get_field(qh->epchar, QH_EPCHAR_MPLEN),
613
                             get_field(qh->epchar, QH_EPCHAR_EPS),
614
                             get_field(qh->epchar, QH_EPCHAR_EP),
615
                             get_field(qh->epchar, QH_EPCHAR_DEVADDR));
616
    trace_usb_ehci_qh_bits(addr,
617
                           (bool)(qh->epchar & QH_EPCHAR_C),
618
                           (bool)(qh->epchar & QH_EPCHAR_H),
619
                           (bool)(qh->epchar & QH_EPCHAR_DTC),
620
                           (bool)(qh->epchar & QH_EPCHAR_I));
621
}
622

    
623
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
624
{
625
    /* need three here due to argument count limits */
626
    trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
627
    trace_usb_ehci_qtd_fields(addr,
628
                              get_field(qtd->token, QTD_TOKEN_TBYTES),
629
                              get_field(qtd->token, QTD_TOKEN_CPAGE),
630
                              get_field(qtd->token, QTD_TOKEN_CERR),
631
                              get_field(qtd->token, QTD_TOKEN_PID));
632
    trace_usb_ehci_qtd_bits(addr,
633
                            (bool)(qtd->token & QTD_TOKEN_IOC),
634
                            (bool)(qtd->token & QTD_TOKEN_ACTIVE),
635
                            (bool)(qtd->token & QTD_TOKEN_HALT),
636
                            (bool)(qtd->token & QTD_TOKEN_BABBLE),
637
                            (bool)(qtd->token & QTD_TOKEN_XACTERR));
638
}
639

    
640
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
641
{
642
    trace_usb_ehci_itd(addr, itd->next,
643
                       get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
644
                       get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
645
                       get_field(itd->bufptr[0], ITD_BUFPTR_EP),
646
                       get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
647
}
648

    
649
/* queue management */
650

    
651
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
652
{
653
    EHCIQueue *q;
654

    
655
    q = qemu_mallocz(sizeof(*q));
656
    q->ehci = ehci;
657
    q->async_schedule = async;
658
    QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
659
    trace_usb_ehci_queue_action(q, "alloc");
660
    return q;
661
}
662

    
663
static void ehci_free_queue(EHCIQueue *q)
664
{
665
    trace_usb_ehci_queue_action(q, "free");
666
    if (q->async == EHCI_ASYNC_INFLIGHT) {
667
        usb_cancel_packet(&q->packet);
668
    }
669
    QTAILQ_REMOVE(&q->ehci->queues, q, next);
670
    qemu_free(q);
671
}
672

    
673
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
674
{
675
    EHCIQueue *q;
676

    
677
    QTAILQ_FOREACH(q, &ehci->queues, next) {
678
        if (addr == q->qhaddr) {
679
            return q;
680
        }
681
    }
682
    return NULL;
683
}
684

    
685
static void ehci_queues_rip_unused(EHCIState *ehci)
686
{
687
    EHCIQueue *q, *tmp;
688

    
689
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
690
        if (q->seen) {
691
            q->seen = 0;
692
            q->ts = ehci->last_run_ns;
693
            continue;
694
        }
695
        if (ehci->last_run_ns < q->ts + 250000000) {
696
            /* allow 0.25 sec idle */
697
            continue;
698
        }
699
        ehci_free_queue(q);
700
    }
701
}
702

    
703
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
704
{
705
    EHCIQueue *q, *tmp;
706

    
707
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
708
        if (q->packet.owner != dev) {
709
            continue;
710
        }
711
        ehci_free_queue(q);
712
    }
713
}
714

    
715
static void ehci_queues_rip_all(EHCIState *ehci)
716
{
717
    EHCIQueue *q, *tmp;
718

    
719
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
720
        ehci_free_queue(q);
721
    }
722
}
723

    
724
/* Attach or detach a device on root hub */
725

    
726
static void ehci_attach(USBPort *port)
727
{
728
    EHCIState *s = port->opaque;
729
    uint32_t *portsc = &s->portsc[port->index];
730

    
731
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
732

    
733
    *portsc |= PORTSC_CONNECT;
734
    *portsc |= PORTSC_CSC;
735

    
736
    /*
737
     *  If a high speed device is attached then we own this port(indicated
738
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
739
     *  and set an interrupt if enabled.
740
     */
741
    if ( !(*portsc & PORTSC_POWNER)) {
742
        ehci_set_interrupt(s, USBSTS_PCD);
743
    }
744
}
745

    
746
static void ehci_detach(USBPort *port)
747
{
748
    EHCIState *s = port->opaque;
749
    uint32_t *portsc = &s->portsc[port->index];
750

    
751
    trace_usb_ehci_port_detach(port->index);
752

    
753
    ehci_queues_rip_device(s, port->dev);
754

    
755
    *portsc &= ~PORTSC_CONNECT;
756
    *portsc |= PORTSC_CSC;
757

    
758
    /*
759
     *  If a high speed device is attached then we own this port(indicated
760
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
761
     *  and set an interrupt if enabled.
762
     */
763
    if ( !(*portsc & PORTSC_POWNER)) {
764
        ehci_set_interrupt(s, USBSTS_PCD);
765
    }
766
}
767

    
768
static void ehci_child_detach(USBPort *port, USBDevice *child)
769
{
770
    EHCIState *s = port->opaque;
771

    
772
    ehci_queues_rip_device(s, child);
773
}
774

    
775
/* 4.1 host controller initialization */
776
static void ehci_reset(void *opaque)
777
{
778
    EHCIState *s = opaque;
779
    int i;
780

    
781
    trace_usb_ehci_reset();
782

    
783
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
784

    
785
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
786
    s->usbsts = USBSTS_HALT;
787

    
788
    s->astate = EST_INACTIVE;
789
    s->pstate = EST_INACTIVE;
790
    s->isoch_pause = -1;
791
    s->attach_poll_counter = 0;
792

    
793
    for(i = 0; i < NB_PORTS; i++) {
794
        s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
795

    
796
        if (s->ports[i].dev) {
797
            usb_attach(&s->ports[i], s->ports[i].dev);
798
        }
799
    }
800
    ehci_queues_rip_all(s);
801
}
802

    
803
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
804
{
805
    EHCIState *s = ptr;
806
    uint32_t val;
807

    
808
    val = s->mmio[addr];
809

    
810
    return val;
811
}
812

    
813
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
814
{
815
    EHCIState *s = ptr;
816
    uint32_t val;
817

    
818
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
819

    
820
    return val;
821
}
822

    
823
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
824
{
825
    EHCIState *s = ptr;
826
    uint32_t val;
827

    
828
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
829
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
830

    
831
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
832
    return val;
833
}
834

    
835
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
836
{
837
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
838
    exit(1);
839
}
840

    
841
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
842
{
843
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
844
    exit(1);
845
}
846

    
847
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
848
{
849
    uint32_t *portsc = &s->portsc[port];
850
    int rwc;
851
    USBDevice *dev = s->ports[port].dev;
852

    
853
    rwc = val & PORTSC_RWC_MASK;
854
    val &= PORTSC_RO_MASK;
855

    
856
    // handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC);
857

    
858
    *portsc &= ~rwc;
859

    
860
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
861
        trace_usb_ehci_port_reset(port, 1);
862
    }
863

    
864
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
865
        trace_usb_ehci_port_reset(port, 0);
866
        if (dev) {
867
            usb_attach(&s->ports[port], dev);
868
            usb_send_msg(dev, USB_MSG_RESET);
869
            *portsc &= ~PORTSC_CSC;
870
        }
871

    
872
        /*  Table 2.16 Set the enable bit(and enable bit change) to indicate
873
         *  to SW that this port has a high speed device attached
874
         *
875
         *  TODO - when to disable?
876
         */
877
        val |= PORTSC_PED;
878
        val |= PORTSC_PEDC;
879
    }
880

    
881
    *portsc &= ~PORTSC_RO_MASK;
882
    *portsc |= val;
883
}
884

    
885
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
886
{
887
    EHCIState *s = ptr;
888
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
889
    uint32_t old = *mmio;
890
    int i;
891

    
892
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
893

    
894
    /* Only aligned reads are allowed on OHCI */
895
    if (addr & 3) {
896
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
897
                TARGET_FMT_plx "\n", addr);
898
        return;
899
    }
900

    
901
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
902
        handle_port_status_write(s, (addr-PORTSC)/4, val);
903
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
904
        return;
905
    }
906

    
907
    if (addr < OPREGBASE) {
908
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
909
                TARGET_FMT_plx "\n", addr);
910
        return;
911
    }
912

    
913

    
914
    /* Do any register specific pre-write processing here.  */
915
    switch(addr) {
916
    case USBCMD:
917
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
918
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
919
            SET_LAST_RUN_CLOCK(s);
920
            ehci_clear_usbsts(s, USBSTS_HALT);
921
        }
922

    
923
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
924
            qemu_del_timer(s->frame_timer);
925
            // TODO - should finish out some stuff before setting halt
926
            ehci_set_usbsts(s, USBSTS_HALT);
927
        }
928

    
929
        if (val & USBCMD_HCRESET) {
930
            ehci_reset(s);
931
            val &= ~USBCMD_HCRESET;
932
        }
933

    
934
        /* not supporting dynamic frame list size at the moment */
935
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
936
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
937
                    val & USBCMD_FLS);
938
            val &= ~USBCMD_FLS;
939
        }
940
        break;
941

    
942
    case USBSTS:
943
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
944
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
945
        val = s->usbsts;
946
        ehci_set_interrupt(s, 0);
947
        break;
948

    
949
    case USBINTR:
950
        val &= USBINTR_MASK;
951
        break;
952

    
953
    case FRINDEX:
954
        s->sofv = val >> 3;
955
        break;
956

    
957
    case CONFIGFLAG:
958
        val &= 0x1;
959
        if (val) {
960
            for(i = 0; i < NB_PORTS; i++)
961
                s->portsc[i] &= ~PORTSC_POWNER;
962
        }
963
        break;
964

    
965
    case PERIODICLISTBASE:
966
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
967
            fprintf(stderr,
968
              "ehci: PERIODIC list base register set while periodic schedule\n"
969
              "      is enabled and HC is enabled\n");
970
        }
971
        break;
972

    
973
    case ASYNCLISTADDR:
974
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
975
            fprintf(stderr,
976
              "ehci: ASYNC list address register set while async schedule\n"
977
              "      is enabled and HC is enabled\n");
978
        }
979
        break;
980
    }
981

    
982
    *mmio = val;
983
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
984
}
985

    
986

    
987
// TODO : Put in common header file, duplication from usb-ohci.c
988

    
989
/* Get an array of dwords from main memory */
990
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
991
{
992
    int i;
993

    
994
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
995
        cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
996
        *buf = le32_to_cpu(*buf);
997
    }
998

    
999
    return 1;
1000
}
1001

    
1002
/* Put an array of dwords in to main memory */
1003
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
1004
{
1005
    int i;
1006

    
1007
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1008
        uint32_t tmp = cpu_to_le32(*buf);
1009
        cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
1010
    }
1011

    
1012
    return 1;
1013
}
1014

    
1015
// 4.10.2
1016

    
1017
static int ehci_qh_do_overlay(EHCIQueue *q)
1018
{
1019
    int i;
1020
    int dtoggle;
1021
    int ping;
1022
    int eps;
1023
    int reload;
1024

    
1025
    // remember values in fields to preserve in qh after overlay
1026

    
1027
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1028
    ping    = q->qh.token & QTD_TOKEN_PING;
1029

    
1030
    q->qh.current_qtd = q->qtdaddr;
1031
    q->qh.next_qtd    = q->qtd.next;
1032
    q->qh.altnext_qtd = q->qtd.altnext;
1033
    q->qh.token       = q->qtd.token;
1034

    
1035

    
1036
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1037
    if (eps == EHCI_QH_EPS_HIGH) {
1038
        q->qh.token &= ~QTD_TOKEN_PING;
1039
        q->qh.token |= ping;
1040
    }
1041

    
1042
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1043
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1044

    
1045
    for (i = 0; i < 5; i++) {
1046
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1047
    }
1048

    
1049
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1050
        // preserve QH DT bit
1051
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1052
        q->qh.token |= dtoggle;
1053
    }
1054

    
1055
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1056
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1057

    
1058
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1059

    
1060
    return 0;
1061
}
1062

    
1063
static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1064
{
1065
    int bufpos = 0;
1066
    int cpage, offset;
1067
    uint32_t head;
1068
    uint32_t tail;
1069

    
1070

    
1071
    if (!bytes) {
1072
        return 0;
1073
    }
1074

    
1075
    cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1076
    if (cpage > 4) {
1077
        fprintf(stderr, "cpage out of range (%d)\n", cpage);
1078
        return USB_RET_PROCERR;
1079
    }
1080

    
1081
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1082

    
1083
    do {
1084
        /* start and end of this page */
1085
        head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1086
        tail = head + ~QTD_BUFPTR_MASK + 1;
1087
        /* add offset into page */
1088
        head |= offset;
1089

    
1090
        if (bytes <= (tail - head)) {
1091
            tail = head + bytes;
1092
        }
1093

    
1094
        trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1095
        cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1096

    
1097
        bufpos += (tail - head);
1098
        offset += (tail - head);
1099
        bytes -= (tail - head);
1100

    
1101
        if (bytes > 0) {
1102
            cpage++;
1103
            offset = 0;
1104
        }
1105
    } while (bytes > 0);
1106

    
1107
    /* save cpage */
1108
    set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1109

    
1110
    /* save offset into cpage */
1111
    q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1112
    q->qh.bufptr[0] |= offset;
1113

    
1114
    return 0;
1115
}
1116

    
1117
static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1118
{
1119
    EHCIQueue *q = container_of(packet, EHCIQueue, packet);
1120

    
1121
    trace_usb_ehci_queue_action(q, "wakeup");
1122
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1123
    q->async = EHCI_ASYNC_FINISHED;
1124
    q->usb_status = packet->len;
1125
}
1126

    
1127
static void ehci_execute_complete(EHCIQueue *q)
1128
{
1129
    int c_err, reload;
1130

    
1131
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1132
    q->async = EHCI_ASYNC_NONE;
1133

    
1134
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1135
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1136

    
1137
    if (q->usb_status < 0) {
1138
err:
1139
        /* TO-DO: put this is in a function that can be invoked below as well */
1140
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1141
        c_err--;
1142
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1143

    
1144
        switch(q->usb_status) {
1145
        case USB_RET_NODEV:
1146
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1147
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1148
            break;
1149
        case USB_RET_STALL:
1150
            q->qh.token |= QTD_TOKEN_HALT;
1151
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1152
            break;
1153
        case USB_RET_NAK:
1154
            /* 4.10.3 */
1155
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1156
            if ((q->pid == USB_TOKEN_IN) && reload) {
1157
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1158
                nakcnt--;
1159
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1160
            } else if (!reload) {
1161
                return;
1162
            }
1163
            break;
1164
        case USB_RET_BABBLE:
1165
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1166
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1167
            break;
1168
        default:
1169
            /* should not be triggerable */
1170
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1171
            assert(0);
1172
            break;
1173
        }
1174
    } else {
1175
        // DPRINTF("Short packet condition\n");
1176
        // TODO check 4.12 for splits
1177

    
1178
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1179
            q->usb_status = USB_RET_BABBLE;
1180
            goto err;
1181
        }
1182

    
1183
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1184
            if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1185
                q->usb_status = USB_RET_PROCERR;
1186
                return;
1187
            }
1188
            q->tbytes -= q->usb_status;
1189
        } else {
1190
            q->tbytes = 0;
1191
        }
1192

    
1193
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1194
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1195
    }
1196

    
1197
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1198
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1199

    
1200
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1201
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1202
    }
1203
}
1204

    
1205
// 4.10.3
1206

    
1207
static int ehci_execute(EHCIQueue *q)
1208
{
1209
    USBPort *port;
1210
    USBDevice *dev;
1211
    int ret;
1212
    int i;
1213
    int endp;
1214
    int devadr;
1215

    
1216
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1217
        fprintf(stderr, "Attempting to execute inactive QH\n");
1218
        return USB_RET_PROCERR;
1219
    }
1220

    
1221
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1222
    if (q->tbytes > BUFF_SIZE) {
1223
        fprintf(stderr, "Request for more bytes than allowed\n");
1224
        return USB_RET_PROCERR;
1225
    }
1226

    
1227
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1228
    switch(q->pid) {
1229
        case 0: q->pid = USB_TOKEN_OUT; break;
1230
        case 1: q->pid = USB_TOKEN_IN; break;
1231
        case 2: q->pid = USB_TOKEN_SETUP; break;
1232
        default: fprintf(stderr, "bad token\n"); break;
1233
    }
1234

    
1235
    if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1236
        (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1237
        return USB_RET_PROCERR;
1238
    }
1239

    
1240
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1241
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1242

    
1243
    ret = USB_RET_NODEV;
1244

    
1245
    // TO-DO: associating device with ehci port
1246
    for(i = 0; i < NB_PORTS; i++) {
1247
        port = &q->ehci->ports[i];
1248
        dev = port->dev;
1249

    
1250
        // TODO sometime we will also need to check if we are the port owner
1251

    
1252
        if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1253
            DPRINTF("Port %d, no exec, not connected(%08X)\n",
1254
                    i, q->ehci->portsc[i]);
1255
            continue;
1256
        }
1257

    
1258
        q->packet.pid = q->pid;
1259
        q->packet.devaddr = devadr;
1260
        q->packet.devep = endp;
1261
        q->packet.data = q->buffer;
1262
        q->packet.len = q->tbytes;
1263

    
1264
        ret = usb_handle_packet(dev, &q->packet);
1265

    
1266
        DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1267
                q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1268
                q->packet.len, q->tbytes, endp, ret);
1269

    
1270
        if (ret != USB_RET_NODEV) {
1271
            break;
1272
        }
1273
    }
1274

    
1275
    if (ret > BUFF_SIZE) {
1276
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1277
        return USB_RET_PROCERR;
1278
    }
1279

    
1280
    return ret;
1281
}
1282

    
1283
/*  4.7.2
1284
 */
1285

    
1286
static int ehci_process_itd(EHCIState *ehci,
1287
                            EHCIitd *itd)
1288
{
1289
    USBPort *port;
1290
    USBDevice *dev;
1291
    int ret;
1292
    uint32_t i, j, len, len1, len2, pid, dir, devaddr, endp;
1293
    uint32_t pg, off, ptr1, ptr2, max, mult;
1294

    
1295
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1296
    devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1297
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1298
    max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1299
    mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1300

    
1301
    for(i = 0; i < 8; i++) {
1302
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1303
            pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1304
            off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1305
            ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1306
            ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1307
            len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1308

    
1309
            if (len > max * mult) {
1310
                len = max * mult;
1311
            }
1312

    
1313
            if (len > BUFF_SIZE) {
1314
                return USB_RET_PROCERR;
1315
            }
1316

    
1317
            if (off + len > 4096) {
1318
                /* transfer crosses page border */
1319
                len2 = off + len - 4096;
1320
                len1 = len - len2;
1321
            } else {
1322
                len1 = len;
1323
                len2 = 0;
1324
            }
1325

    
1326
            if (!dir) {
1327
                pid = USB_TOKEN_OUT;
1328
                trace_usb_ehci_data(0, pg, off, ptr1 + off, len1, 0);
1329
                cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 0);
1330
                if (len2) {
1331
                    trace_usb_ehci_data(0, pg+1, 0, ptr2, len2, len1);
1332
                    cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 0);
1333
                }
1334
            } else {
1335
                pid = USB_TOKEN_IN;
1336
            }
1337

    
1338
            ret = USB_RET_NODEV;
1339

    
1340
            for (j = 0; j < NB_PORTS; j++) {
1341
                port = &ehci->ports[j];
1342
                dev = port->dev;
1343

    
1344
                // TODO sometime we will also need to check if we are the port owner
1345

    
1346
                if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1347
                    continue;
1348
                }
1349

    
1350
                ehci->ipacket.pid = pid;
1351
                ehci->ipacket.devaddr = devaddr;
1352
                ehci->ipacket.devep = endp;
1353
                ehci->ipacket.data = ehci->ibuffer;
1354
                ehci->ipacket.len = len;
1355

    
1356
                ret = usb_handle_packet(dev, &ehci->ipacket);
1357

    
1358
                if (ret != USB_RET_NODEV) {
1359
                    break;
1360
                }
1361
            }
1362

    
1363
#if 0
1364
            /*  In isoch, there is no facility to indicate a NAK so let's
1365
             *  instead just complete a zero-byte transaction.  Setting
1366
             *  DBERR seems too draconian.
1367
             */
1368

1369
            if (ret == USB_RET_NAK) {
1370
                if (ehci->isoch_pause > 0) {
1371
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1372
                    ehci->isoch_pause--;
1373
                    return 0;
1374
                } else if (ehci->isoch_pause == -1) {
1375
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1376
                    // Pause frindex for up to 50 msec waiting for data from
1377
                    // remote
1378
                    ehci->isoch_pause = 50;
1379
                    return 0;
1380
                } else {
1381
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1382
                    ret = 0;
1383
                }
1384
            } else {
1385
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1386
                ehci->isoch_pause = -1;
1387
            }
1388
#else
1389
            if (ret == USB_RET_NAK) {
1390
                ret = 0;
1391
            }
1392
#endif
1393

    
1394
            if (ret >= 0) {
1395
                if (!dir) {
1396
                    /* OUT */
1397
                    set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1398
                } else {
1399
                    /* IN */
1400
                    if (len1 > ret) {
1401
                        len1 = ret;
1402
                    }
1403
                    if (len2 > ret - len1) {
1404
                        len2 = ret - len1;
1405
                    }
1406
                    if (len1) {
1407
                        trace_usb_ehci_data(1, pg, off, ptr1 + off, len1, 0);
1408
                        cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 1);
1409
                    }
1410
                    if (len2) {
1411
                        trace_usb_ehci_data(1, pg+1, 0, ptr2, len2, len1);
1412
                        cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 1);
1413
                    }
1414
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1415
                }
1416

    
1417
                if (itd->transact[i] & ITD_XACT_IOC) {
1418
                    ehci_record_interrupt(ehci, USBSTS_INT);
1419
                }
1420
            }
1421
            itd->transact[i] &= ~ITD_XACT_ACTIVE;
1422
        }
1423
    }
1424
    return 0;
1425
}
1426

    
1427
/*  This state is the entry point for asynchronous schedule
1428
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1429
 */
1430
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1431
{
1432
    EHCIqh qh;
1433
    int i = 0;
1434
    int again = 0;
1435
    uint32_t entry = ehci->asynclistaddr;
1436

    
1437
    /* set reclamation flag at start event (4.8.6) */
1438
    if (async) {
1439
        ehci_set_usbsts(ehci, USBSTS_REC);
1440
    }
1441

    
1442
    ehci_queues_rip_unused(ehci);
1443

    
1444
    /*  Find the head of the list (4.9.1.1) */
1445
    for(i = 0; i < MAX_QH; i++) {
1446
        get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1447
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1448

    
1449
        if (qh.epchar & QH_EPCHAR_H) {
1450
            if (async) {
1451
                entry |= (NLPTR_TYPE_QH << 1);
1452
            }
1453

    
1454
            ehci_set_fetch_addr(ehci, async, entry);
1455
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1456
            again = 1;
1457
            goto out;
1458
        }
1459

    
1460
        entry = qh.next;
1461
        if (entry == ehci->asynclistaddr) {
1462
            break;
1463
        }
1464
    }
1465

    
1466
    /* no head found for list. */
1467

    
1468
    ehci_set_state(ehci, async, EST_ACTIVE);
1469

    
1470
out:
1471
    return again;
1472
}
1473

    
1474

    
1475
/*  This state is the entry point for periodic schedule processing as
1476
 *  well as being a continuation state for async processing.
1477
 */
1478
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1479
{
1480
    int again = 0;
1481
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1482

    
1483
    if (entry < 0x1000) {
1484
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1485
        ehci_set_state(ehci, async, EST_ACTIVE);
1486
        goto out;
1487
    }
1488

    
1489
    /* section 4.8, only QH in async schedule */
1490
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1491
        fprintf(stderr, "non queue head request in async schedule\n");
1492
        return -1;
1493
    }
1494

    
1495
    switch (NLPTR_TYPE_GET(entry)) {
1496
    case NLPTR_TYPE_QH:
1497
        ehci_set_state(ehci, async, EST_FETCHQH);
1498
        again = 1;
1499
        break;
1500

    
1501
    case NLPTR_TYPE_ITD:
1502
        ehci_set_state(ehci, async, EST_FETCHITD);
1503
        again = 1;
1504
        break;
1505

    
1506
    default:
1507
        // TODO: handle siTD and FSTN types
1508
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1509
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1510
        return -1;
1511
    }
1512

    
1513
out:
1514
    return again;
1515
}
1516

    
1517
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1518
{
1519
    uint32_t entry;
1520
    EHCIQueue *q;
1521
    int reload;
1522

    
1523
    entry = ehci_get_fetch_addr(ehci, async);
1524
    q = ehci_find_queue_by_qh(ehci, entry);
1525
    if (NULL == q) {
1526
        q = ehci_alloc_queue(ehci, async);
1527
    }
1528
    q->qhaddr = entry;
1529
    q->seen++;
1530

    
1531
    if (q->seen > 1) {
1532
        /* we are going in circles -- stop processing */
1533
        ehci_set_state(ehci, async, EST_ACTIVE);
1534
        q = NULL;
1535
        goto out;
1536
    }
1537

    
1538
    get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1539
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1540

    
1541
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1542
        /* I/O still in progress -- skip queue */
1543
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1544
        goto out;
1545
    }
1546
    if (q->async == EHCI_ASYNC_FINISHED) {
1547
        /* I/O finished -- continue processing queue */
1548
        trace_usb_ehci_queue_action(q, "resume");
1549
        ehci_set_state(ehci, async, EST_EXECUTING);
1550
        goto out;
1551
    }
1552

    
1553
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1554

    
1555
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1556
        if (ehci->usbsts & USBSTS_REC) {
1557
            ehci_clear_usbsts(ehci, USBSTS_REC);
1558
        } else {
1559
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1560
                       " - done processing\n", q->qhaddr);
1561
            ehci_set_state(ehci, async, EST_ACTIVE);
1562
            q = NULL;
1563
            goto out;
1564
        }
1565
    }
1566

    
1567
#if EHCI_DEBUG
1568
    if (q->qhaddr != q->qh.next) {
1569
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1570
               q->qhaddr,
1571
               q->qh.epchar & QH_EPCHAR_H,
1572
               q->qh.token & QTD_TOKEN_HALT,
1573
               q->qh.token & QTD_TOKEN_ACTIVE,
1574
               q->qh.next);
1575
    }
1576
#endif
1577

    
1578
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1579
    if (reload) {
1580
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1581
    }
1582

    
1583
    if (q->qh.token & QTD_TOKEN_HALT) {
1584
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1585

    
1586
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1587
        q->qtdaddr = q->qh.current_qtd;
1588
        ehci_set_state(ehci, async, EST_FETCHQTD);
1589

    
1590
    } else {
1591
        /*  EHCI spec version 1.0 Section 4.10.2 */
1592
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1593
    }
1594

    
1595
out:
1596
    return q;
1597
}
1598

    
1599
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1600
{
1601
    uint32_t entry;
1602
    EHCIitd itd;
1603

    
1604
    assert(!async);
1605
    entry = ehci_get_fetch_addr(ehci, async);
1606

    
1607
    get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1608
               sizeof(EHCIitd) >> 2);
1609
    ehci_trace_itd(ehci, entry, &itd);
1610

    
1611
    if (ehci_process_itd(ehci, &itd) != 0) {
1612
        return -1;
1613
    }
1614

    
1615
    put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1616
                sizeof(EHCIitd) >> 2);
1617
    ehci_set_fetch_addr(ehci, async, itd.next);
1618
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1619

    
1620
    return 1;
1621
}
1622

    
1623
/* Section 4.10.2 - paragraph 3 */
1624
static int ehci_state_advqueue(EHCIQueue *q, int async)
1625
{
1626
#if 0
1627
    /* TO-DO: 4.10.2 - paragraph 2
1628
     * if I-bit is set to 1 and QH is not active
1629
     * go to horizontal QH
1630
     */
1631
    if (I-bit set) {
1632
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1633
        goto out;
1634
    }
1635
#endif
1636

    
1637
    /*
1638
     * want data and alt-next qTD is valid
1639
     */
1640
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1641
        (q->qh.altnext_qtd > 0x1000) &&
1642
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1643
        q->qtdaddr = q->qh.altnext_qtd;
1644
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1645

    
1646
    /*
1647
     *  next qTD is valid
1648
     */
1649
    } else if ((q->qh.next_qtd > 0x1000) &&
1650
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1651
        q->qtdaddr = q->qh.next_qtd;
1652
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1653

    
1654
    /*
1655
     *  no valid qTD, try next QH
1656
     */
1657
    } else {
1658
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1659
    }
1660

    
1661
    return 1;
1662
}
1663

    
1664
/* Section 4.10.2 - paragraph 4 */
1665
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1666
{
1667
    int again = 0;
1668

    
1669
    get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1670
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1671

    
1672
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1673
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1674
        again = 1;
1675
    } else {
1676
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1677
        again = 1;
1678
    }
1679

    
1680
    return again;
1681
}
1682

    
1683
static int ehci_state_horizqh(EHCIQueue *q, int async)
1684
{
1685
    int again = 0;
1686

    
1687
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1688
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1689
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1690
        again = 1;
1691
    } else {
1692
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1693
    }
1694

    
1695
    return again;
1696
}
1697

    
1698
/*
1699
 *  Write the qh back to guest physical memory.  This step isn't
1700
 *  in the EHCI spec but we need to do it since we don't share
1701
 *  physical memory with our guest VM.
1702
 *
1703
 *  The first three dwords are read-only for the EHCI, so skip them
1704
 *  when writing back the qh.
1705
 */
1706
static void ehci_flush_qh(EHCIQueue *q)
1707
{
1708
    uint32_t *qh = (uint32_t *) &q->qh;
1709
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1710
    uint32_t addr = NLPTR_GET(q->qhaddr);
1711

    
1712
    put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1713
}
1714

    
1715
static int ehci_state_execute(EHCIQueue *q, int async)
1716
{
1717
    int again = 0;
1718
    int reload, nakcnt;
1719
    int smask;
1720

    
1721
    if (ehci_qh_do_overlay(q) != 0) {
1722
        return -1;
1723
    }
1724

    
1725
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1726

    
1727
    if (!smask) {
1728
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1729
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1730
        if (reload && !nakcnt) {
1731
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1732
            again = 1;
1733
            goto out;
1734
        }
1735
    }
1736

    
1737
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1738
    // TODO write back ptr to async list when done or out of time
1739
    // TODO Windows does not seem to ever set the MULT field
1740

    
1741
    if (!async) {
1742
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1743
        if (!transactCtr) {
1744
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1745
            again = 1;
1746
            goto out;
1747
        }
1748
    }
1749

    
1750
    if (async) {
1751
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1752
    }
1753

    
1754
    q->usb_status = ehci_execute(q);
1755
    if (q->usb_status == USB_RET_PROCERR) {
1756
        again = -1;
1757
        goto out;
1758
    }
1759
    if (q->usb_status == USB_RET_ASYNC) {
1760
        ehci_flush_qh(q);
1761
        trace_usb_ehci_queue_action(q, "suspend");
1762
        q->async = EHCI_ASYNC_INFLIGHT;
1763
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1764
        again = 1;
1765
        goto out;
1766
    }
1767

    
1768
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1769
    again = 1;
1770

    
1771
out:
1772
    return again;
1773
}
1774

    
1775
static int ehci_state_executing(EHCIQueue *q, int async)
1776
{
1777
    int again = 0;
1778
    int reload, nakcnt;
1779

    
1780
    ehci_execute_complete(q);
1781
    if (q->usb_status == USB_RET_ASYNC) {
1782
        goto out;
1783
    }
1784
    if (q->usb_status == USB_RET_PROCERR) {
1785
        again = -1;
1786
        goto out;
1787
    }
1788

    
1789
    // 4.10.3
1790
    if (!async) {
1791
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1792
        transactCtr--;
1793
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1794
        // 4.10.3, bottom of page 82, should exit this state when transaction
1795
        // counter decrements to 0
1796
    }
1797

    
1798
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1799
    if (reload) {
1800
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1801
        if (q->usb_status == USB_RET_NAK) {
1802
            if (nakcnt) {
1803
                nakcnt--;
1804
            }
1805
        } else {
1806
            nakcnt = reload;
1807
        }
1808
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1809
    }
1810

    
1811
    /* 4.10.5 */
1812
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1813
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1814
    } else {
1815
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1816
    }
1817

    
1818
    again = 1;
1819

    
1820
out:
1821
    ehci_flush_qh(q);
1822
    return again;
1823
}
1824

    
1825

    
1826
static int ehci_state_writeback(EHCIQueue *q, int async)
1827
{
1828
    int again = 0;
1829

    
1830
    /*  Write back the QTD from the QH area */
1831
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1832
    put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1833
                sizeof(EHCIqtd) >> 2);
1834

    
1835
    /*
1836
     * EHCI specs say go horizontal here.
1837
     *
1838
     * We can also advance the queue here for performance reasons.  We
1839
     * need to take care to only take that shortcut in case we've
1840
     * processed the qtd just written back without errors, i.e. halt
1841
     * bit is clear.
1842
     */
1843
    if (q->qh.token & QTD_TOKEN_HALT) {
1844
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1845
        again = 1;
1846
    } else {
1847
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1848
        again = 1;
1849
    }
1850
    return again;
1851
}
1852

    
1853
/*
1854
 * This is the state machine that is common to both async and periodic
1855
 */
1856

    
1857
static void ehci_advance_state(EHCIState *ehci,
1858
                               int async)
1859
{
1860
    EHCIQueue *q = NULL;
1861
    int again;
1862
    int iter = 0;
1863

    
1864
    do {
1865
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1866
            iter++;
1867
            /* if we are roaming a lot of QH without executing a qTD
1868
             * something is wrong with the linked list. TO-DO: why is
1869
             * this hack needed?
1870
             */
1871
            assert(iter < MAX_ITERATIONS);
1872
#if 0
1873
            if (iter > MAX_ITERATIONS) {
1874
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1875
                ehci_set_state(ehci, async, EST_ACTIVE);
1876
                break;
1877
            }
1878
#endif
1879
        }
1880
        switch(ehci_get_state(ehci, async)) {
1881
        case EST_WAITLISTHEAD:
1882
            again = ehci_state_waitlisthead(ehci, async);
1883
            break;
1884

    
1885
        case EST_FETCHENTRY:
1886
            again = ehci_state_fetchentry(ehci, async);
1887
            break;
1888

    
1889
        case EST_FETCHQH:
1890
            q = ehci_state_fetchqh(ehci, async);
1891
            again = q ? 1 : 0;
1892
            break;
1893

    
1894
        case EST_FETCHITD:
1895
            again = ehci_state_fetchitd(ehci, async);
1896
            break;
1897

    
1898
        case EST_ADVANCEQUEUE:
1899
            again = ehci_state_advqueue(q, async);
1900
            break;
1901

    
1902
        case EST_FETCHQTD:
1903
            again = ehci_state_fetchqtd(q, async);
1904
            break;
1905

    
1906
        case EST_HORIZONTALQH:
1907
            again = ehci_state_horizqh(q, async);
1908
            break;
1909

    
1910
        case EST_EXECUTE:
1911
            iter = 0;
1912
            again = ehci_state_execute(q, async);
1913
            break;
1914

    
1915
        case EST_EXECUTING:
1916
            assert(q != NULL);
1917
            again = ehci_state_executing(q, async);
1918
            break;
1919

    
1920
        case EST_WRITEBACK:
1921
            again = ehci_state_writeback(q, async);
1922
            break;
1923

    
1924
        default:
1925
            fprintf(stderr, "Bad state!\n");
1926
            again = -1;
1927
            assert(0);
1928
            break;
1929
        }
1930

    
1931
        if (again < 0) {
1932
            fprintf(stderr, "processing error - resetting ehci HC\n");
1933
            ehci_reset(ehci);
1934
            again = 0;
1935
            assert(0);
1936
        }
1937
    }
1938
    while (again);
1939

    
1940
    ehci_commit_interrupt(ehci);
1941
}
1942

    
1943
static void ehci_advance_async_state(EHCIState *ehci)
1944
{
1945
    int async = 1;
1946

    
1947
    switch(ehci_get_state(ehci, async)) {
1948
    case EST_INACTIVE:
1949
        if (!(ehci->usbcmd & USBCMD_ASE)) {
1950
            break;
1951
        }
1952
        ehci_set_usbsts(ehci, USBSTS_ASS);
1953
        ehci_set_state(ehci, async, EST_ACTIVE);
1954
        // No break, fall through to ACTIVE
1955

    
1956
    case EST_ACTIVE:
1957
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
1958
            ehci_clear_usbsts(ehci, USBSTS_ASS);
1959
            ehci_set_state(ehci, async, EST_INACTIVE);
1960
            break;
1961
        }
1962

    
1963
        /* If the doorbell is set, the guest wants to make a change to the
1964
         * schedule. The host controller needs to release cached data.
1965
         * (section 4.8.2)
1966
         */
1967
        if (ehci->usbcmd & USBCMD_IAAD) {
1968
            DPRINTF("ASYNC: doorbell request acknowledged\n");
1969
            ehci->usbcmd &= ~USBCMD_IAAD;
1970
            ehci_set_interrupt(ehci, USBSTS_IAA);
1971
            break;
1972
        }
1973

    
1974
        /* make sure guest has acknowledged */
1975
        /* TO-DO: is this really needed? */
1976
        if (ehci->usbsts & USBSTS_IAA) {
1977
            DPRINTF("IAA status bit still set.\n");
1978
            break;
1979
        }
1980

    
1981
        /* check that address register has been set */
1982
        if (ehci->asynclistaddr == 0) {
1983
            break;
1984
        }
1985

    
1986
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
1987
        ehci_advance_state(ehci, async);
1988
        break;
1989

    
1990
    default:
1991
        /* this should only be due to a developer mistake */
1992
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
1993
                "Resetting to active\n", ehci->astate);
1994
        assert(0);
1995
    }
1996
}
1997

    
1998
static void ehci_advance_periodic_state(EHCIState *ehci)
1999
{
2000
    uint32_t entry;
2001
    uint32_t list;
2002
    int async = 0;
2003

    
2004
    // 4.6
2005

    
2006
    switch(ehci_get_state(ehci, async)) {
2007
    case EST_INACTIVE:
2008
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2009
            ehci_set_usbsts(ehci, USBSTS_PSS);
2010
            ehci_set_state(ehci, async, EST_ACTIVE);
2011
            // No break, fall through to ACTIVE
2012
        } else
2013
            break;
2014

    
2015
    case EST_ACTIVE:
2016
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2017
            ehci_clear_usbsts(ehci, USBSTS_PSS);
2018
            ehci_set_state(ehci, async, EST_INACTIVE);
2019
            break;
2020
        }
2021

    
2022
        list = ehci->periodiclistbase & 0xfffff000;
2023
        /* check that register has been set */
2024
        if (list == 0) {
2025
            break;
2026
        }
2027
        list |= ((ehci->frindex & 0x1ff8) >> 1);
2028

    
2029
        cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
2030
        entry = le32_to_cpu(entry);
2031

    
2032
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2033
                ehci->frindex / 8, list, entry);
2034
        ehci_set_fetch_addr(ehci, async,entry);
2035
        ehci_set_state(ehci, async, EST_FETCHENTRY);
2036
        ehci_advance_state(ehci, async);
2037
        break;
2038

    
2039
    default:
2040
        /* this should only be due to a developer mistake */
2041
        fprintf(stderr, "ehci: Bad periodic state %d. "
2042
                "Resetting to active\n", ehci->pstate);
2043
        assert(0);
2044
    }
2045
}
2046

    
2047
static void ehci_frame_timer(void *opaque)
2048
{
2049
    EHCIState *ehci = opaque;
2050
    int64_t expire_time, t_now;
2051
    uint64_t ns_elapsed;
2052
    int frames;
2053
    int i;
2054
    int skipped_frames = 0;
2055

    
2056
    t_now = qemu_get_clock_ns(vm_clock);
2057
    expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2058

    
2059
    ns_elapsed = t_now - ehci->last_run_ns;
2060
    frames = ns_elapsed / FRAME_TIMER_NS;
2061

    
2062
    for (i = 0; i < frames; i++) {
2063
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2064
            if (ehci->isoch_pause <= 0) {
2065
                ehci->frindex += 8;
2066
            }
2067

    
2068
            if (ehci->frindex > 0x00001fff) {
2069
                ehci->frindex = 0;
2070
                ehci_set_interrupt(ehci, USBSTS_FLR);
2071
            }
2072

    
2073
            ehci->sofv = (ehci->frindex - 1) >> 3;
2074
            ehci->sofv &= 0x000003ff;
2075
        }
2076

    
2077
        if (frames - i > ehci->maxframes) {
2078
            skipped_frames++;
2079
        } else {
2080
            ehci_advance_periodic_state(ehci);
2081
        }
2082

    
2083
        ehci->last_run_ns += FRAME_TIMER_NS;
2084
    }
2085

    
2086
#if 0
2087
    if (skipped_frames) {
2088
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2089
    }
2090
#endif
2091

    
2092
    /*  Async is not inside loop since it executes everything it can once
2093
     *  called
2094
     */
2095
    ehci_advance_async_state(ehci);
2096

    
2097
    qemu_mod_timer(ehci->frame_timer, expire_time);
2098
}
2099

    
2100
static CPUReadMemoryFunc *ehci_readfn[3]={
2101
    ehci_mem_readb,
2102
    ehci_mem_readw,
2103
    ehci_mem_readl
2104
};
2105

    
2106
static CPUWriteMemoryFunc *ehci_writefn[3]={
2107
    ehci_mem_writeb,
2108
    ehci_mem_writew,
2109
    ehci_mem_writel
2110
};
2111

    
2112
static void ehci_map(PCIDevice *pci_dev, int region_num,
2113
                     pcibus_t addr, pcibus_t size, int type)
2114
{
2115
    EHCIState *s =(EHCIState *)pci_dev;
2116

    
2117
    DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2118
            region_num, addr, size, s->mem);
2119
    s->mem_base = addr;
2120
    cpu_register_physical_memory(addr, size, s->mem);
2121
}
2122

    
2123
static int usb_ehci_initfn(PCIDevice *dev);
2124

    
2125
static USBPortOps ehci_port_ops = {
2126
    .attach = ehci_attach,
2127
    .detach = ehci_detach,
2128
    .child_detach = ehci_child_detach,
2129
    .complete = ehci_async_complete_packet,
2130
};
2131

    
2132
static USBBusOps ehci_bus_ops = {
2133
};
2134

    
2135
static PCIDeviceInfo ehci_info = {
2136
    .qdev.name    = "usb-ehci",
2137
    .qdev.size    = sizeof(EHCIState),
2138
    .init         = usb_ehci_initfn,
2139
    .vendor_id    = PCI_VENDOR_ID_INTEL,
2140
    .device_id    = PCI_DEVICE_ID_INTEL_82801D,
2141
    .revision     = 0x10,
2142
    .class_id     = PCI_CLASS_SERIAL_USB,
2143
    .qdev.props   = (Property[]) {
2144
        DEFINE_PROP_UINT32("freq",      EHCIState, freq, FRAME_TIMER_FREQ),
2145
        DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2146
        DEFINE_PROP_END_OF_LIST(),
2147
    },
2148
};
2149

    
2150
static int usb_ehci_initfn(PCIDevice *dev)
2151
{
2152
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2153
    uint8_t *pci_conf = s->dev.config;
2154
    int i;
2155

    
2156
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2157

    
2158
    /* capabilities pointer */
2159
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2160
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2161

    
2162
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2163
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2164
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2165

    
2166
    // pci_conf[0x50] = 0x01; // power management caps
2167

    
2168
    pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2169
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2170
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2171

    
2172
    pci_conf[0x64] = 0x00;
2173
    pci_conf[0x65] = 0x00;
2174
    pci_conf[0x66] = 0x00;
2175
    pci_conf[0x67] = 0x00;
2176
    pci_conf[0x68] = 0x01;
2177
    pci_conf[0x69] = 0x00;
2178
    pci_conf[0x6a] = 0x00;
2179
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2180
    pci_conf[0x6c] = 0x00;
2181
    pci_conf[0x6d] = 0x00;
2182
    pci_conf[0x6e] = 0x00;
2183
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2184

    
2185
    // 2.2 host controller interface version
2186
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2187
    s->mmio[0x01] = 0x00;
2188
    s->mmio[0x02] = 0x00;
2189
    s->mmio[0x03] = 0x01;        // HC version
2190
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2191
    s->mmio[0x05] = 0x00;        // No companion ports at present
2192
    s->mmio[0x06] = 0x00;
2193
    s->mmio[0x07] = 0x00;
2194
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2195
    s->mmio[0x09] = 0x68;        // EECP
2196
    s->mmio[0x0a] = 0x00;
2197
    s->mmio[0x0b] = 0x00;
2198

    
2199
    s->irq = s->dev.irq[3];
2200

    
2201
    usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2202
    for(i = 0; i < NB_PORTS; i++) {
2203
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2204
                          USB_SPEED_MASK_HIGH);
2205
        s->ports[i].dev = 0;
2206
    }
2207

    
2208
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2209
    QTAILQ_INIT(&s->queues);
2210

    
2211
    qemu_register_reset(ehci_reset, s);
2212

    
2213
    s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2214
                                    DEVICE_LITTLE_ENDIAN);
2215

    
2216
    pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2217
                                                            ehci_map);
2218

    
2219
    fprintf(stderr, "*** EHCI support is under development ***\n");
2220

    
2221
    return 0;
2222
}
2223

    
2224
static void ehci_register(void)
2225
{
2226
    pci_qdev_register(&ehci_info);
2227
}
2228
device_init(ehci_register);
2229

    
2230
/*
2231
 * vim: expandtab ts=4
2232
 */