Statistics
| Branch: | Revision:

root / hw / rtl8139.c @ fc4f0754

History | View | Annotate | Download (100.4 kB)

1
/**
2
 * QEMU RTL8139 emulation
3
 *
4
 * Copyright (c) 2006 Igor Kovalenko
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23

24
 * Modifications:
25
 *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26
 *
27
 *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28
 *                                  HW revision ID changes for FreeBSD driver
29
 *
30
 *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31
 *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32
 *                                  Rearranged debugging print statements
33
 *                                  Implemented PCI timer interrupt (disabled by default)
34
 *                                  Implemented Tally Counters, increased VM load/save version
35
 *                                  Implemented IP/TCP/UDP checksum task offloading
36
 *
37
 *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38
 *                                  Fixed MTU=1500 for produced ethernet frames
39
 *
40
 *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41
 *                                  segmentation offloading
42
 *                                  Removed slirp.h dependency
43
 *                                  Added rx/tx buffer reset when enabling rx/tx operation
44
 *
45
 *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46
 *                                  when strictly needed (required for for
47
 *                                  Darwin)
48
 *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49
 */
50

    
51
/* For crc32 */
52
#include <zlib.h>
53

    
54
#include "hw.h"
55
#include "pci.h"
56
#include "qemu-timer.h"
57
#include "net.h"
58
#include "loader.h"
59
#include "sysemu.h"
60
#include "iov.h"
61

    
62
/* debug RTL8139 card */
63
//#define DEBUG_RTL8139 1
64

    
65
#define PCI_FREQUENCY 33000000L
66

    
67
/* debug RTL8139 card C+ mode only */
68
//#define DEBUG_RTL8139CP 1
69

    
70
#define SET_MASKED(input, mask, curr) \
71
    ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
72

    
73
/* arg % size for size which is a power of 2 */
74
#define MOD2(input, size) \
75
    ( ( input ) & ( size - 1 )  )
76

    
77
#define ETHER_ADDR_LEN 6
78
#define ETHER_TYPE_LEN 2
79
#define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
80
#define ETH_P_IP    0x0800      /* Internet Protocol packet */
81
#define ETH_P_8021Q 0x8100      /* 802.1Q VLAN Extended Header  */
82
#define ETH_MTU     1500
83

    
84
#define VLAN_TCI_LEN 2
85
#define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
86

    
87
#if defined (DEBUG_RTL8139)
88
#  define DPRINTF(fmt, ...) \
89
    do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
90
#else
91
static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
92
{
93
    return 0;
94
}
95
#endif
96

    
97
/* Symbolic offsets to registers. */
98
enum RTL8139_registers {
99
    MAC0 = 0,        /* Ethernet hardware address. */
100
    MAR0 = 8,        /* Multicast filter. */
101
    TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
102
                     /* Dump Tally Conter control register(64bit). C+ mode only */
103
    TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
104
    RxBuf = 0x30,
105
    ChipCmd = 0x37,
106
    RxBufPtr = 0x38,
107
    RxBufAddr = 0x3A,
108
    IntrMask = 0x3C,
109
    IntrStatus = 0x3E,
110
    TxConfig = 0x40,
111
    RxConfig = 0x44,
112
    Timer = 0x48,        /* A general-purpose counter. */
113
    RxMissed = 0x4C,    /* 24 bits valid, write clears. */
114
    Cfg9346 = 0x50,
115
    Config0 = 0x51,
116
    Config1 = 0x52,
117
    FlashReg = 0x54,
118
    MediaStatus = 0x58,
119
    Config3 = 0x59,
120
    Config4 = 0x5A,        /* absent on RTL-8139A */
121
    HltClk = 0x5B,
122
    MultiIntr = 0x5C,
123
    PCIRevisionID = 0x5E,
124
    TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
125
    BasicModeCtrl = 0x62,
126
    BasicModeStatus = 0x64,
127
    NWayAdvert = 0x66,
128
    NWayLPAR = 0x68,
129
    NWayExpansion = 0x6A,
130
    /* Undocumented registers, but required for proper operation. */
131
    FIFOTMS = 0x70,        /* FIFO Control and test. */
132
    CSCR = 0x74,        /* Chip Status and Configuration Register. */
133
    PARA78 = 0x78,
134
    PARA7c = 0x7c,        /* Magic transceiver parameter register. */
135
    Config5 = 0xD8,        /* absent on RTL-8139A */
136
    /* C+ mode */
137
    TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
138
    RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
139
    CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
140
    IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
141
    RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
142
    RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
143
    TxThresh    = 0xEC, /* Early Tx threshold */
144
};
145

    
146
enum ClearBitMasks {
147
    MultiIntrClear = 0xF000,
148
    ChipCmdClear = 0xE2,
149
    Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
150
};
151

    
152
enum ChipCmdBits {
153
    CmdReset = 0x10,
154
    CmdRxEnb = 0x08,
155
    CmdTxEnb = 0x04,
156
    RxBufEmpty = 0x01,
157
};
158

    
159
/* C+ mode */
160
enum CplusCmdBits {
161
    CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
162
    CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
163
    CPlusRxEnb    = 0x0002,
164
    CPlusTxEnb    = 0x0001,
165
};
166

    
167
/* Interrupt register bits, using my own meaningful names. */
168
enum IntrStatusBits {
169
    PCIErr = 0x8000,
170
    PCSTimeout = 0x4000,
171
    RxFIFOOver = 0x40,
172
    RxUnderrun = 0x20,
173
    RxOverflow = 0x10,
174
    TxErr = 0x08,
175
    TxOK = 0x04,
176
    RxErr = 0x02,
177
    RxOK = 0x01,
178

    
179
    RxAckBits = RxFIFOOver | RxOverflow | RxOK,
180
};
181

    
182
enum TxStatusBits {
183
    TxHostOwns = 0x2000,
184
    TxUnderrun = 0x4000,
185
    TxStatOK = 0x8000,
186
    TxOutOfWindow = 0x20000000,
187
    TxAborted = 0x40000000,
188
    TxCarrierLost = 0x80000000,
189
};
190
enum RxStatusBits {
191
    RxMulticast = 0x8000,
192
    RxPhysical = 0x4000,
193
    RxBroadcast = 0x2000,
194
    RxBadSymbol = 0x0020,
195
    RxRunt = 0x0010,
196
    RxTooLong = 0x0008,
197
    RxCRCErr = 0x0004,
198
    RxBadAlign = 0x0002,
199
    RxStatusOK = 0x0001,
200
};
201

    
202
/* Bits in RxConfig. */
203
enum rx_mode_bits {
204
    AcceptErr = 0x20,
205
    AcceptRunt = 0x10,
206
    AcceptBroadcast = 0x08,
207
    AcceptMulticast = 0x04,
208
    AcceptMyPhys = 0x02,
209
    AcceptAllPhys = 0x01,
210
};
211

    
212
/* Bits in TxConfig. */
213
enum tx_config_bits {
214

    
215
        /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
216
        TxIFGShift = 24,
217
        TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
218
        TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
219
        TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
220
        TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
221

    
222
    TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
223
    TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
224
    TxClearAbt = (1 << 0),    /* Clear abort (WO) */
225
    TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
226
    TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
227

    
228
    TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
229
};
230

    
231

    
232
/* Transmit Status of All Descriptors (TSAD) Register */
233
enum TSAD_bits {
234
 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
235
 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
236
 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
237
 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
238
 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
239
 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
240
 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
241
 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
242
 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
243
 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
244
 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
245
 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
246
 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
247
 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
248
 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
249
 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
250
};
251

    
252

    
253
/* Bits in Config1 */
254
enum Config1Bits {
255
    Cfg1_PM_Enable = 0x01,
256
    Cfg1_VPD_Enable = 0x02,
257
    Cfg1_PIO = 0x04,
258
    Cfg1_MMIO = 0x08,
259
    LWAKE = 0x10,        /* not on 8139, 8139A */
260
    Cfg1_Driver_Load = 0x20,
261
    Cfg1_LED0 = 0x40,
262
    Cfg1_LED1 = 0x80,
263
    SLEEP = (1 << 1),    /* only on 8139, 8139A */
264
    PWRDN = (1 << 0),    /* only on 8139, 8139A */
265
};
266

    
267
/* Bits in Config3 */
268
enum Config3Bits {
269
    Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
270
    Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
271
    Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
272
    Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
273
    Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
274
    Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
275
    Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
276
    Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
277
};
278

    
279
/* Bits in Config4 */
280
enum Config4Bits {
281
    LWPTN = (1 << 2),    /* not on 8139, 8139A */
282
};
283

    
284
/* Bits in Config5 */
285
enum Config5Bits {
286
    Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
287
    Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
288
    Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
289
    Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
290
    Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
291
    Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
292
    Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
293
};
294

    
295
enum RxConfigBits {
296
    /* rx fifo threshold */
297
    RxCfgFIFOShift = 13,
298
    RxCfgFIFONone = (7 << RxCfgFIFOShift),
299

    
300
    /* Max DMA burst */
301
    RxCfgDMAShift = 8,
302
    RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
303

    
304
    /* rx ring buffer length */
305
    RxCfgRcv8K = 0,
306
    RxCfgRcv16K = (1 << 11),
307
    RxCfgRcv32K = (1 << 12),
308
    RxCfgRcv64K = (1 << 11) | (1 << 12),
309

    
310
    /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
311
    RxNoWrap = (1 << 7),
312
};
313

    
314
/* Twister tuning parameters from RealTek.
315
   Completely undocumented, but required to tune bad links on some boards. */
316
/*
317
enum CSCRBits {
318
    CSCR_LinkOKBit = 0x0400,
319
    CSCR_LinkChangeBit = 0x0800,
320
    CSCR_LinkStatusBits = 0x0f000,
321
    CSCR_LinkDownOffCmd = 0x003c0,
322
    CSCR_LinkDownCmd = 0x0f3c0,
323
*/
324
enum CSCRBits {
325
    CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
326
    CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
327
    CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
328
    CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
329
    CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
330
    CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
331
    CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
332
    CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
333
    CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
334
};
335

    
336
enum Cfg9346Bits {
337
    Cfg9346_Lock = 0x00,
338
    Cfg9346_Unlock = 0xC0,
339
};
340

    
341
typedef enum {
342
    CH_8139 = 0,
343
    CH_8139_K,
344
    CH_8139A,
345
    CH_8139A_G,
346
    CH_8139B,
347
    CH_8130,
348
    CH_8139C,
349
    CH_8100,
350
    CH_8100B_8139D,
351
    CH_8101,
352
} chip_t;
353

    
354
enum chip_flags {
355
    HasHltClk = (1 << 0),
356
    HasLWake = (1 << 1),
357
};
358

    
359
#define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
360
    (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
361
#define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
362

    
363
#define RTL8139_PCI_REVID_8139      0x10
364
#define RTL8139_PCI_REVID_8139CPLUS 0x20
365

    
366
#define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
367

    
368
/* Size is 64 * 16bit words */
369
#define EEPROM_9346_ADDR_BITS 6
370
#define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
371
#define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
372

    
373
enum Chip9346Operation
374
{
375
    Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
376
    Chip9346_op_read = 0x80,          /* 10 AAAAAA */
377
    Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
378
    Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
379
    Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
380
    Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
381
    Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
382
};
383

    
384
enum Chip9346Mode
385
{
386
    Chip9346_none = 0,
387
    Chip9346_enter_command_mode,
388
    Chip9346_read_command,
389
    Chip9346_data_read,      /* from output register */
390
    Chip9346_data_write,     /* to input register, then to contents at specified address */
391
    Chip9346_data_write_all, /* to input register, then filling contents */
392
};
393

    
394
typedef struct EEprom9346
395
{
396
    uint16_t contents[EEPROM_9346_SIZE];
397
    int      mode;
398
    uint32_t tick;
399
    uint8_t  address;
400
    uint16_t input;
401
    uint16_t output;
402

    
403
    uint8_t eecs;
404
    uint8_t eesk;
405
    uint8_t eedi;
406
    uint8_t eedo;
407
} EEprom9346;
408

    
409
typedef struct RTL8139TallyCounters
410
{
411
    /* Tally counters */
412
    uint64_t   TxOk;
413
    uint64_t   RxOk;
414
    uint64_t   TxERR;
415
    uint32_t   RxERR;
416
    uint16_t   MissPkt;
417
    uint16_t   FAE;
418
    uint32_t   Tx1Col;
419
    uint32_t   TxMCol;
420
    uint64_t   RxOkPhy;
421
    uint64_t   RxOkBrd;
422
    uint32_t   RxOkMul;
423
    uint16_t   TxAbt;
424
    uint16_t   TxUndrn;
425
} RTL8139TallyCounters;
426

    
427
/* Clears all tally counters */
428
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
429

    
430
/* Writes tally counters to specified physical memory address */
431
static void RTL8139TallyCounters_physical_memory_write(target_phys_addr_t tc_addr, RTL8139TallyCounters* counters);
432

    
433
typedef struct RTL8139State {
434
    PCIDevice dev;
435
    uint8_t phys[8]; /* mac address */
436
    uint8_t mult[8]; /* multicast mask array */
437

    
438
    uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
439
    uint32_t TxAddr[4];   /* TxAddr0 */
440
    uint32_t RxBuf;       /* Receive buffer */
441
    uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
442
    uint32_t RxBufPtr;
443
    uint32_t RxBufAddr;
444

    
445
    uint16_t IntrStatus;
446
    uint16_t IntrMask;
447

    
448
    uint32_t TxConfig;
449
    uint32_t RxConfig;
450
    uint32_t RxMissed;
451

    
452
    uint16_t CSCR;
453

    
454
    uint8_t  Cfg9346;
455
    uint8_t  Config0;
456
    uint8_t  Config1;
457
    uint8_t  Config3;
458
    uint8_t  Config4;
459
    uint8_t  Config5;
460

    
461
    uint8_t  clock_enabled;
462
    uint8_t  bChipCmdState;
463

    
464
    uint16_t MultiIntr;
465

    
466
    uint16_t BasicModeCtrl;
467
    uint16_t BasicModeStatus;
468
    uint16_t NWayAdvert;
469
    uint16_t NWayLPAR;
470
    uint16_t NWayExpansion;
471

    
472
    uint16_t CpCmd;
473
    uint8_t  TxThresh;
474

    
475
    NICState *nic;
476
    NICConf conf;
477
    int rtl8139_mmio_io_addr;
478

    
479
    /* C ring mode */
480
    uint32_t   currTxDesc;
481

    
482
    /* C+ mode */
483
    uint32_t   cplus_enabled;
484

    
485
    uint32_t   currCPlusRxDesc;
486
    uint32_t   currCPlusTxDesc;
487

    
488
    uint32_t   RxRingAddrLO;
489
    uint32_t   RxRingAddrHI;
490

    
491
    EEprom9346 eeprom;
492

    
493
    uint32_t   TCTR;
494
    uint32_t   TimerInt;
495
    int64_t    TCTR_base;
496

    
497
    /* Tally counters */
498
    RTL8139TallyCounters tally_counters;
499

    
500
    /* Non-persistent data */
501
    uint8_t   *cplus_txbuffer;
502
    int        cplus_txbuffer_len;
503
    int        cplus_txbuffer_offset;
504

    
505
    /* PCI interrupt timer */
506
    QEMUTimer *timer;
507
    int64_t TimerExpire;
508

    
509
    /* Support migration to/from old versions */
510
    int rtl8139_mmio_io_addr_dummy;
511
} RTL8139State;
512

    
513
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
514

    
515
static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
516
{
517
    DPRINTF("eeprom command 0x%02x\n", command);
518

    
519
    switch (command & Chip9346_op_mask)
520
    {
521
        case Chip9346_op_read:
522
        {
523
            eeprom->address = command & EEPROM_9346_ADDR_MASK;
524
            eeprom->output = eeprom->contents[eeprom->address];
525
            eeprom->eedo = 0;
526
            eeprom->tick = 0;
527
            eeprom->mode = Chip9346_data_read;
528
            DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
529
                eeprom->address, eeprom->output);
530
        }
531
        break;
532

    
533
        case Chip9346_op_write:
534
        {
535
            eeprom->address = command & EEPROM_9346_ADDR_MASK;
536
            eeprom->input = 0;
537
            eeprom->tick = 0;
538
            eeprom->mode = Chip9346_none; /* Chip9346_data_write */
539
            DPRINTF("eeprom begin write to address 0x%02x\n",
540
                eeprom->address);
541
        }
542
        break;
543
        default:
544
            eeprom->mode = Chip9346_none;
545
            switch (command & Chip9346_op_ext_mask)
546
            {
547
                case Chip9346_op_write_enable:
548
                    DPRINTF("eeprom write enabled\n");
549
                    break;
550
                case Chip9346_op_write_all:
551
                    DPRINTF("eeprom begin write all\n");
552
                    break;
553
                case Chip9346_op_write_disable:
554
                    DPRINTF("eeprom write disabled\n");
555
                    break;
556
            }
557
            break;
558
    }
559
}
560

    
561
static void prom9346_shift_clock(EEprom9346 *eeprom)
562
{
563
    int bit = eeprom->eedi?1:0;
564

    
565
    ++ eeprom->tick;
566

    
567
    DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
568
        eeprom->eedo);
569

    
570
    switch (eeprom->mode)
571
    {
572
        case Chip9346_enter_command_mode:
573
            if (bit)
574
            {
575
                eeprom->mode = Chip9346_read_command;
576
                eeprom->tick = 0;
577
                eeprom->input = 0;
578
                DPRINTF("eeprom: +++ synchronized, begin command read\n");
579
            }
580
            break;
581

    
582
        case Chip9346_read_command:
583
            eeprom->input = (eeprom->input << 1) | (bit & 1);
584
            if (eeprom->tick == 8)
585
            {
586
                prom9346_decode_command(eeprom, eeprom->input & 0xff);
587
            }
588
            break;
589

    
590
        case Chip9346_data_read:
591
            eeprom->eedo = (eeprom->output & 0x8000)?1:0;
592
            eeprom->output <<= 1;
593
            if (eeprom->tick == 16)
594
            {
595
#if 1
596
        // the FreeBSD drivers (rl and re) don't explicitly toggle
597
        // CS between reads (or does setting Cfg9346 to 0 count too?),
598
        // so we need to enter wait-for-command state here
599
                eeprom->mode = Chip9346_enter_command_mode;
600
                eeprom->input = 0;
601
                eeprom->tick = 0;
602

    
603
                DPRINTF("eeprom: +++ end of read, awaiting next command\n");
604
#else
605
        // original behaviour
606
                ++eeprom->address;
607
                eeprom->address &= EEPROM_9346_ADDR_MASK;
608
                eeprom->output = eeprom->contents[eeprom->address];
609
                eeprom->tick = 0;
610

    
611
                DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
612
                    eeprom->address, eeprom->output);
613
#endif
614
            }
615
            break;
616

    
617
        case Chip9346_data_write:
618
            eeprom->input = (eeprom->input << 1) | (bit & 1);
619
            if (eeprom->tick == 16)
620
            {
621
                DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
622
                    eeprom->address, eeprom->input);
623

    
624
                eeprom->contents[eeprom->address] = eeprom->input;
625
                eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
626
                eeprom->tick = 0;
627
                eeprom->input = 0;
628
            }
629
            break;
630

    
631
        case Chip9346_data_write_all:
632
            eeprom->input = (eeprom->input << 1) | (bit & 1);
633
            if (eeprom->tick == 16)
634
            {
635
                int i;
636
                for (i = 0; i < EEPROM_9346_SIZE; i++)
637
                {
638
                    eeprom->contents[i] = eeprom->input;
639
                }
640
                DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
641

    
642
                eeprom->mode = Chip9346_enter_command_mode;
643
                eeprom->tick = 0;
644
                eeprom->input = 0;
645
            }
646
            break;
647

    
648
        default:
649
            break;
650
    }
651
}
652

    
653
static int prom9346_get_wire(RTL8139State *s)
654
{
655
    EEprom9346 *eeprom = &s->eeprom;
656
    if (!eeprom->eecs)
657
        return 0;
658

    
659
    return eeprom->eedo;
660
}
661

    
662
/* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
663
static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
664
{
665
    EEprom9346 *eeprom = &s->eeprom;
666
    uint8_t old_eecs = eeprom->eecs;
667
    uint8_t old_eesk = eeprom->eesk;
668

    
669
    eeprom->eecs = eecs;
670
    eeprom->eesk = eesk;
671
    eeprom->eedi = eedi;
672

    
673
    DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
674
        eeprom->eesk, eeprom->eedi, eeprom->eedo);
675

    
676
    if (!old_eecs && eecs)
677
    {
678
        /* Synchronize start */
679
        eeprom->tick = 0;
680
        eeprom->input = 0;
681
        eeprom->output = 0;
682
        eeprom->mode = Chip9346_enter_command_mode;
683

    
684
        DPRINTF("=== eeprom: begin access, enter command mode\n");
685
    }
686

    
687
    if (!eecs)
688
    {
689
        DPRINTF("=== eeprom: end access\n");
690
        return;
691
    }
692

    
693
    if (!old_eesk && eesk)
694
    {
695
        /* SK front rules */
696
        prom9346_shift_clock(eeprom);
697
    }
698
}
699

    
700
static void rtl8139_update_irq(RTL8139State *s)
701
{
702
    int isr;
703
    isr = (s->IntrStatus & s->IntrMask) & 0xffff;
704

    
705
    DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
706
        s->IntrMask);
707

    
708
    qemu_set_irq(s->dev.irq[0], (isr != 0));
709
}
710

    
711
#define POLYNOMIAL 0x04c11db6
712

    
713
/* From FreeBSD */
714
/* XXX: optimize */
715
static int compute_mcast_idx(const uint8_t *ep)
716
{
717
    uint32_t crc;
718
    int carry, i, j;
719
    uint8_t b;
720

    
721
    crc = 0xffffffff;
722
    for (i = 0; i < 6; i++) {
723
        b = *ep++;
724
        for (j = 0; j < 8; j++) {
725
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
726
            crc <<= 1;
727
            b >>= 1;
728
            if (carry)
729
                crc = ((crc ^ POLYNOMIAL) | carry);
730
        }
731
    }
732
    return (crc >> 26);
733
}
734

    
735
static int rtl8139_RxWrap(RTL8139State *s)
736
{
737
    /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
738
    return (s->RxConfig & (1 << 7));
739
}
740

    
741
static int rtl8139_receiver_enabled(RTL8139State *s)
742
{
743
    return s->bChipCmdState & CmdRxEnb;
744
}
745

    
746
static int rtl8139_transmitter_enabled(RTL8139State *s)
747
{
748
    return s->bChipCmdState & CmdTxEnb;
749
}
750

    
751
static int rtl8139_cp_receiver_enabled(RTL8139State *s)
752
{
753
    return s->CpCmd & CPlusRxEnb;
754
}
755

    
756
static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
757
{
758
    return s->CpCmd & CPlusTxEnb;
759
}
760

    
761
static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
762
{
763
    if (s->RxBufAddr + size > s->RxBufferSize)
764
    {
765
        int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
766

    
767
        /* write packet data */
768
        if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
769
        {
770
            DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
771

    
772
            if (size > wrapped)
773
            {
774
                cpu_physical_memory_write( s->RxBuf + s->RxBufAddr,
775
                                           buf, size-wrapped );
776
            }
777

    
778
            /* reset buffer pointer */
779
            s->RxBufAddr = 0;
780

    
781
            cpu_physical_memory_write( s->RxBuf + s->RxBufAddr,
782
                                       buf + (size-wrapped), wrapped );
783

    
784
            s->RxBufAddr = wrapped;
785

    
786
            return;
787
        }
788
    }
789

    
790
    /* non-wrapping path or overwrapping enabled */
791
    cpu_physical_memory_write( s->RxBuf + s->RxBufAddr, buf, size );
792

    
793
    s->RxBufAddr += size;
794
}
795

    
796
#define MIN_BUF_SIZE 60
797
static inline target_phys_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
798
{
799
#if TARGET_PHYS_ADDR_BITS > 32
800
    return low | ((target_phys_addr_t)high << 32);
801
#else
802
    return low;
803
#endif
804
}
805

    
806
static int rtl8139_can_receive(VLANClientState *nc)
807
{
808
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
809
    int avail;
810

    
811
    /* Receive (drop) packets if card is disabled.  */
812
    if (!s->clock_enabled)
813
      return 1;
814
    if (!rtl8139_receiver_enabled(s))
815
      return 1;
816

    
817
    if (rtl8139_cp_receiver_enabled(s)) {
818
        /* ??? Flow control not implemented in c+ mode.
819
           This is a hack to work around slirp deficiencies anyway.  */
820
        return 1;
821
    } else {
822
        avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
823
                     s->RxBufferSize);
824
        return (avail == 0 || avail >= 1514);
825
    }
826
}
827

    
828
static ssize_t rtl8139_do_receive(VLANClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
829
{
830
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
831
    /* size is the length of the buffer passed to the driver */
832
    int size = size_;
833
    const uint8_t *dot1q_buf = NULL;
834

    
835
    uint32_t packet_header = 0;
836

    
837
    uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
838
    static const uint8_t broadcast_macaddr[6] =
839
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
840

    
841
    DPRINTF(">>> received len=%d\n", size);
842

    
843
    /* test if board clock is stopped */
844
    if (!s->clock_enabled)
845
    {
846
        DPRINTF("stopped ==========================\n");
847
        return -1;
848
    }
849

    
850
    /* first check if receiver is enabled */
851

    
852
    if (!rtl8139_receiver_enabled(s))
853
    {
854
        DPRINTF("receiver disabled ================\n");
855
        return -1;
856
    }
857

    
858
    /* XXX: check this */
859
    if (s->RxConfig & AcceptAllPhys) {
860
        /* promiscuous: receive all */
861
        DPRINTF(">>> packet received in promiscuous mode\n");
862

    
863
    } else {
864
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
865
            /* broadcast address */
866
            if (!(s->RxConfig & AcceptBroadcast))
867
            {
868
                DPRINTF(">>> broadcast packet rejected\n");
869

    
870
                /* update tally counter */
871
                ++s->tally_counters.RxERR;
872

    
873
                return size;
874
            }
875

    
876
            packet_header |= RxBroadcast;
877

    
878
            DPRINTF(">>> broadcast packet received\n");
879

    
880
            /* update tally counter */
881
            ++s->tally_counters.RxOkBrd;
882

    
883
        } else if (buf[0] & 0x01) {
884
            /* multicast */
885
            if (!(s->RxConfig & AcceptMulticast))
886
            {
887
                DPRINTF(">>> multicast packet rejected\n");
888

    
889
                /* update tally counter */
890
                ++s->tally_counters.RxERR;
891

    
892
                return size;
893
            }
894

    
895
            int mcast_idx = compute_mcast_idx(buf);
896

    
897
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
898
            {
899
                DPRINTF(">>> multicast address mismatch\n");
900

    
901
                /* update tally counter */
902
                ++s->tally_counters.RxERR;
903

    
904
                return size;
905
            }
906

    
907
            packet_header |= RxMulticast;
908

    
909
            DPRINTF(">>> multicast packet received\n");
910

    
911
            /* update tally counter */
912
            ++s->tally_counters.RxOkMul;
913

    
914
        } else if (s->phys[0] == buf[0] &&
915
                   s->phys[1] == buf[1] &&
916
                   s->phys[2] == buf[2] &&
917
                   s->phys[3] == buf[3] &&
918
                   s->phys[4] == buf[4] &&
919
                   s->phys[5] == buf[5]) {
920
            /* match */
921
            if (!(s->RxConfig & AcceptMyPhys))
922
            {
923
                DPRINTF(">>> rejecting physical address matching packet\n");
924

    
925
                /* update tally counter */
926
                ++s->tally_counters.RxERR;
927

    
928
                return size;
929
            }
930

    
931
            packet_header |= RxPhysical;
932

    
933
            DPRINTF(">>> physical address matching packet received\n");
934

    
935
            /* update tally counter */
936
            ++s->tally_counters.RxOkPhy;
937

    
938
        } else {
939

    
940
            DPRINTF(">>> unknown packet\n");
941

    
942
            /* update tally counter */
943
            ++s->tally_counters.RxERR;
944

    
945
            return size;
946
        }
947
    }
948

    
949
    /* if too small buffer, then expand it
950
     * Include some tailroom in case a vlan tag is later removed. */
951
    if (size < MIN_BUF_SIZE + VLAN_HLEN) {
952
        memcpy(buf1, buf, size);
953
        memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
954
        buf = buf1;
955
        if (size < MIN_BUF_SIZE) {
956
            size = MIN_BUF_SIZE;
957
        }
958
    }
959

    
960
    if (rtl8139_cp_receiver_enabled(s))
961
    {
962
        DPRINTF("in C+ Rx mode ================\n");
963

    
964
        /* begin C+ receiver mode */
965

    
966
/* w0 ownership flag */
967
#define CP_RX_OWN (1<<31)
968
/* w0 end of ring flag */
969
#define CP_RX_EOR (1<<30)
970
/* w0 bits 0...12 : buffer size */
971
#define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
972
/* w1 tag available flag */
973
#define CP_RX_TAVA (1<<16)
974
/* w1 bits 0...15 : VLAN tag */
975
#define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
976
/* w2 low  32bit of Rx buffer ptr */
977
/* w3 high 32bit of Rx buffer ptr */
978

    
979
        int descriptor = s->currCPlusRxDesc;
980
        target_phys_addr_t cplus_rx_ring_desc;
981

    
982
        cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
983
        cplus_rx_ring_desc += 16 * descriptor;
984

    
985
        DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
986
            "%08x %08x = "TARGET_FMT_plx"\n", descriptor, s->RxRingAddrHI,
987
            s->RxRingAddrLO, cplus_rx_ring_desc);
988

    
989
        uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
990

    
991
        cpu_physical_memory_read(cplus_rx_ring_desc,    (uint8_t *)&val, 4);
992
        rxdw0 = le32_to_cpu(val);
993
        cpu_physical_memory_read(cplus_rx_ring_desc+4,  (uint8_t *)&val, 4);
994
        rxdw1 = le32_to_cpu(val);
995
        cpu_physical_memory_read(cplus_rx_ring_desc+8,  (uint8_t *)&val, 4);
996
        rxbufLO = le32_to_cpu(val);
997
        cpu_physical_memory_read(cplus_rx_ring_desc+12, (uint8_t *)&val, 4);
998
        rxbufHI = le32_to_cpu(val);
999

    
1000
        DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
1001
            descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
1002

    
1003
        if (!(rxdw0 & CP_RX_OWN))
1004
        {
1005
            DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1006
                descriptor);
1007

    
1008
            s->IntrStatus |= RxOverflow;
1009
            ++s->RxMissed;
1010

    
1011
            /* update tally counter */
1012
            ++s->tally_counters.RxERR;
1013
            ++s->tally_counters.MissPkt;
1014

    
1015
            rtl8139_update_irq(s);
1016
            return size_;
1017
        }
1018

    
1019
        uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1020

    
1021
        /* write VLAN info to descriptor variables. */
1022
        if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1023
                &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1024
            dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1025
            size -= VLAN_HLEN;
1026
            /* if too small buffer, use the tailroom added duing expansion */
1027
            if (size < MIN_BUF_SIZE) {
1028
                size = MIN_BUF_SIZE;
1029
            }
1030

    
1031
            rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1032
            /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1033
            rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1034
                &dot1q_buf[ETHER_TYPE_LEN]);
1035

    
1036
            DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1037
                be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1038
        } else {
1039
            /* reset VLAN tag flag */
1040
            rxdw1 &= ~CP_RX_TAVA;
1041
        }
1042

    
1043
        /* TODO: scatter the packet over available receive ring descriptors space */
1044

    
1045
        if (size+4 > rx_space)
1046
        {
1047
            DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1048
                descriptor, rx_space, size);
1049

    
1050
            s->IntrStatus |= RxOverflow;
1051
            ++s->RxMissed;
1052

    
1053
            /* update tally counter */
1054
            ++s->tally_counters.RxERR;
1055
            ++s->tally_counters.MissPkt;
1056

    
1057
            rtl8139_update_irq(s);
1058
            return size_;
1059
        }
1060

    
1061
        target_phys_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1062

    
1063
        /* receive/copy to target memory */
1064
        if (dot1q_buf) {
1065
            cpu_physical_memory_write(rx_addr, buf, 2 * ETHER_ADDR_LEN);
1066
            cpu_physical_memory_write(rx_addr + 2 * ETHER_ADDR_LEN,
1067
                buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1068
                size - 2 * ETHER_ADDR_LEN);
1069
        } else {
1070
            cpu_physical_memory_write(rx_addr, buf, size);
1071
        }
1072

    
1073
        if (s->CpCmd & CPlusRxChkSum)
1074
        {
1075
            /* do some packet checksumming */
1076
        }
1077

    
1078
        /* write checksum */
1079
        val = cpu_to_le32(crc32(0, buf, size_));
1080
        cpu_physical_memory_write( rx_addr+size, (uint8_t *)&val, 4);
1081

    
1082
/* first segment of received packet flag */
1083
#define CP_RX_STATUS_FS (1<<29)
1084
/* last segment of received packet flag */
1085
#define CP_RX_STATUS_LS (1<<28)
1086
/* multicast packet flag */
1087
#define CP_RX_STATUS_MAR (1<<26)
1088
/* physical-matching packet flag */
1089
#define CP_RX_STATUS_PAM (1<<25)
1090
/* broadcast packet flag */
1091
#define CP_RX_STATUS_BAR (1<<24)
1092
/* runt packet flag */
1093
#define CP_RX_STATUS_RUNT (1<<19)
1094
/* crc error flag */
1095
#define CP_RX_STATUS_CRC (1<<18)
1096
/* IP checksum error flag */
1097
#define CP_RX_STATUS_IPF (1<<15)
1098
/* UDP checksum error flag */
1099
#define CP_RX_STATUS_UDPF (1<<14)
1100
/* TCP checksum error flag */
1101
#define CP_RX_STATUS_TCPF (1<<13)
1102

    
1103
        /* transfer ownership to target */
1104
        rxdw0 &= ~CP_RX_OWN;
1105

    
1106
        /* set first segment bit */
1107
        rxdw0 |= CP_RX_STATUS_FS;
1108

    
1109
        /* set last segment bit */
1110
        rxdw0 |= CP_RX_STATUS_LS;
1111

    
1112
        /* set received packet type flags */
1113
        if (packet_header & RxBroadcast)
1114
            rxdw0 |= CP_RX_STATUS_BAR;
1115
        if (packet_header & RxMulticast)
1116
            rxdw0 |= CP_RX_STATUS_MAR;
1117
        if (packet_header & RxPhysical)
1118
            rxdw0 |= CP_RX_STATUS_PAM;
1119

    
1120
        /* set received size */
1121
        rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1122
        rxdw0 |= (size+4);
1123

    
1124
        /* update ring data */
1125
        val = cpu_to_le32(rxdw0);
1126
        cpu_physical_memory_write(cplus_rx_ring_desc,    (uint8_t *)&val, 4);
1127
        val = cpu_to_le32(rxdw1);
1128
        cpu_physical_memory_write(cplus_rx_ring_desc+4,  (uint8_t *)&val, 4);
1129

    
1130
        /* update tally counter */
1131
        ++s->tally_counters.RxOk;
1132

    
1133
        /* seek to next Rx descriptor */
1134
        if (rxdw0 & CP_RX_EOR)
1135
        {
1136
            s->currCPlusRxDesc = 0;
1137
        }
1138
        else
1139
        {
1140
            ++s->currCPlusRxDesc;
1141
        }
1142

    
1143
        DPRINTF("done C+ Rx mode ----------------\n");
1144

    
1145
    }
1146
    else
1147
    {
1148
        DPRINTF("in ring Rx mode ================\n");
1149

    
1150
        /* begin ring receiver mode */
1151
        int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1152

    
1153
        /* if receiver buffer is empty then avail == 0 */
1154

    
1155
        if (avail != 0 && size + 8 >= avail)
1156
        {
1157
            DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1158
                "read 0x%04x === available 0x%04x need 0x%04x\n",
1159
                s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1160

    
1161
            s->IntrStatus |= RxOverflow;
1162
            ++s->RxMissed;
1163
            rtl8139_update_irq(s);
1164
            return size_;
1165
        }
1166

    
1167
        packet_header |= RxStatusOK;
1168

    
1169
        packet_header |= (((size+4) << 16) & 0xffff0000);
1170

    
1171
        /* write header */
1172
        uint32_t val = cpu_to_le32(packet_header);
1173

    
1174
        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1175

    
1176
        rtl8139_write_buffer(s, buf, size);
1177

    
1178
        /* write checksum */
1179
        val = cpu_to_le32(crc32(0, buf, size));
1180
        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1181

    
1182
        /* correct buffer write pointer */
1183
        s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1184

    
1185
        /* now we can signal we have received something */
1186

    
1187
        DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1188
            s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1189
    }
1190

    
1191
    s->IntrStatus |= RxOK;
1192

    
1193
    if (do_interrupt)
1194
    {
1195
        rtl8139_update_irq(s);
1196
    }
1197

    
1198
    return size_;
1199
}
1200

    
1201
static ssize_t rtl8139_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
1202
{
1203
    return rtl8139_do_receive(nc, buf, size, 1);
1204
}
1205

    
1206
static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1207
{
1208
    s->RxBufferSize = bufferSize;
1209
    s->RxBufPtr  = 0;
1210
    s->RxBufAddr = 0;
1211
}
1212

    
1213
static void rtl8139_reset(DeviceState *d)
1214
{
1215
    RTL8139State *s = container_of(d, RTL8139State, dev.qdev);
1216
    int i;
1217

    
1218
    /* restore MAC address */
1219
    memcpy(s->phys, s->conf.macaddr.a, 6);
1220

    
1221
    /* reset interrupt mask */
1222
    s->IntrStatus = 0;
1223
    s->IntrMask = 0;
1224

    
1225
    rtl8139_update_irq(s);
1226

    
1227
    /* mark all status registers as owned by host */
1228
    for (i = 0; i < 4; ++i)
1229
    {
1230
        s->TxStatus[i] = TxHostOwns;
1231
    }
1232

    
1233
    s->currTxDesc = 0;
1234
    s->currCPlusRxDesc = 0;
1235
    s->currCPlusTxDesc = 0;
1236

    
1237
    s->RxRingAddrLO = 0;
1238
    s->RxRingAddrHI = 0;
1239

    
1240
    s->RxBuf = 0;
1241

    
1242
    rtl8139_reset_rxring(s, 8192);
1243

    
1244
    /* ACK the reset */
1245
    s->TxConfig = 0;
1246

    
1247
#if 0
1248
//    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1249
    s->clock_enabled = 0;
1250
#else
1251
    s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1252
    s->clock_enabled = 1;
1253
#endif
1254

    
1255
    s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1256

    
1257
    /* set initial state data */
1258
    s->Config0 = 0x0; /* No boot ROM */
1259
    s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1260
    s->Config3 = 0x1; /* fast back-to-back compatible */
1261
    s->Config5 = 0x0;
1262

    
1263
    s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1264

    
1265
    s->CpCmd   = 0x0; /* reset C+ mode */
1266
    s->cplus_enabled = 0;
1267

    
1268

    
1269
//    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1270
//    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1271
    s->BasicModeCtrl = 0x1000; // autonegotiation
1272

    
1273
    s->BasicModeStatus  = 0x7809;
1274
    //s->BasicModeStatus |= 0x0040; /* UTP medium */
1275
    s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1276
    s->BasicModeStatus |= 0x0004; /* link is up */
1277

    
1278
    s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1279
    s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1280
    s->NWayExpansion = 0x0001; /* autonegotiation supported */
1281

    
1282
    /* also reset timer and disable timer interrupt */
1283
    s->TCTR = 0;
1284
    s->TimerInt = 0;
1285
    s->TCTR_base = 0;
1286

    
1287
    /* reset tally counters */
1288
    RTL8139TallyCounters_clear(&s->tally_counters);
1289
}
1290

    
1291
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1292
{
1293
    counters->TxOk = 0;
1294
    counters->RxOk = 0;
1295
    counters->TxERR = 0;
1296
    counters->RxERR = 0;
1297
    counters->MissPkt = 0;
1298
    counters->FAE = 0;
1299
    counters->Tx1Col = 0;
1300
    counters->TxMCol = 0;
1301
    counters->RxOkPhy = 0;
1302
    counters->RxOkBrd = 0;
1303
    counters->RxOkMul = 0;
1304
    counters->TxAbt = 0;
1305
    counters->TxUndrn = 0;
1306
}
1307

    
1308
static void RTL8139TallyCounters_physical_memory_write(target_phys_addr_t tc_addr, RTL8139TallyCounters* tally_counters)
1309
{
1310
    uint16_t val16;
1311
    uint32_t val32;
1312
    uint64_t val64;
1313

    
1314
    val64 = cpu_to_le64(tally_counters->TxOk);
1315
    cpu_physical_memory_write(tc_addr + 0,    (uint8_t *)&val64, 8);
1316

    
1317
    val64 = cpu_to_le64(tally_counters->RxOk);
1318
    cpu_physical_memory_write(tc_addr + 8,    (uint8_t *)&val64, 8);
1319

    
1320
    val64 = cpu_to_le64(tally_counters->TxERR);
1321
    cpu_physical_memory_write(tc_addr + 16,    (uint8_t *)&val64, 8);
1322

    
1323
    val32 = cpu_to_le32(tally_counters->RxERR);
1324
    cpu_physical_memory_write(tc_addr + 24,    (uint8_t *)&val32, 4);
1325

    
1326
    val16 = cpu_to_le16(tally_counters->MissPkt);
1327
    cpu_physical_memory_write(tc_addr + 28,    (uint8_t *)&val16, 2);
1328

    
1329
    val16 = cpu_to_le16(tally_counters->FAE);
1330
    cpu_physical_memory_write(tc_addr + 30,    (uint8_t *)&val16, 2);
1331

    
1332
    val32 = cpu_to_le32(tally_counters->Tx1Col);
1333
    cpu_physical_memory_write(tc_addr + 32,    (uint8_t *)&val32, 4);
1334

    
1335
    val32 = cpu_to_le32(tally_counters->TxMCol);
1336
    cpu_physical_memory_write(tc_addr + 36,    (uint8_t *)&val32, 4);
1337

    
1338
    val64 = cpu_to_le64(tally_counters->RxOkPhy);
1339
    cpu_physical_memory_write(tc_addr + 40,    (uint8_t *)&val64, 8);
1340

    
1341
    val64 = cpu_to_le64(tally_counters->RxOkBrd);
1342
    cpu_physical_memory_write(tc_addr + 48,    (uint8_t *)&val64, 8);
1343

    
1344
    val32 = cpu_to_le32(tally_counters->RxOkMul);
1345
    cpu_physical_memory_write(tc_addr + 56,    (uint8_t *)&val32, 4);
1346

    
1347
    val16 = cpu_to_le16(tally_counters->TxAbt);
1348
    cpu_physical_memory_write(tc_addr + 60,    (uint8_t *)&val16, 2);
1349

    
1350
    val16 = cpu_to_le16(tally_counters->TxUndrn);
1351
    cpu_physical_memory_write(tc_addr + 62,    (uint8_t *)&val16, 2);
1352
}
1353

    
1354
/* Loads values of tally counters from VM state file */
1355

    
1356
static const VMStateDescription vmstate_tally_counters = {
1357
    .name = "tally_counters",
1358
    .version_id = 1,
1359
    .minimum_version_id = 1,
1360
    .minimum_version_id_old = 1,
1361
    .fields      = (VMStateField []) {
1362
        VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1363
        VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1364
        VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1365
        VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1366
        VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1367
        VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1368
        VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1369
        VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1370
        VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1371
        VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1372
        VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1373
        VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1374
        VMSTATE_END_OF_LIST()
1375
    }
1376
};
1377

    
1378
static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1379
{
1380
    val &= 0xff;
1381

    
1382
    DPRINTF("ChipCmd write val=0x%08x\n", val);
1383

    
1384
    if (val & CmdReset)
1385
    {
1386
        DPRINTF("ChipCmd reset\n");
1387
        rtl8139_reset(&s->dev.qdev);
1388
    }
1389
    if (val & CmdRxEnb)
1390
    {
1391
        DPRINTF("ChipCmd enable receiver\n");
1392

    
1393
        s->currCPlusRxDesc = 0;
1394
    }
1395
    if (val & CmdTxEnb)
1396
    {
1397
        DPRINTF("ChipCmd enable transmitter\n");
1398

    
1399
        s->currCPlusTxDesc = 0;
1400
    }
1401

    
1402
    /* mask unwritable bits */
1403
    val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1404

    
1405
    /* Deassert reset pin before next read */
1406
    val &= ~CmdReset;
1407

    
1408
    s->bChipCmdState = val;
1409
}
1410

    
1411
static int rtl8139_RxBufferEmpty(RTL8139State *s)
1412
{
1413
    int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1414

    
1415
    if (unread != 0)
1416
    {
1417
        DPRINTF("receiver buffer data available 0x%04x\n", unread);
1418
        return 0;
1419
    }
1420

    
1421
    DPRINTF("receiver buffer is empty\n");
1422

    
1423
    return 1;
1424
}
1425

    
1426
static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1427
{
1428
    uint32_t ret = s->bChipCmdState;
1429

    
1430
    if (rtl8139_RxBufferEmpty(s))
1431
        ret |= RxBufEmpty;
1432

    
1433
    DPRINTF("ChipCmd read val=0x%04x\n", ret);
1434

    
1435
    return ret;
1436
}
1437

    
1438
static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1439
{
1440
    val &= 0xffff;
1441

    
1442
    DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1443

    
1444
    s->cplus_enabled = 1;
1445

    
1446
    /* mask unwritable bits */
1447
    val = SET_MASKED(val, 0xff84, s->CpCmd);
1448

    
1449
    s->CpCmd = val;
1450
}
1451

    
1452
static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1453
{
1454
    uint32_t ret = s->CpCmd;
1455

    
1456
    DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1457

    
1458
    return ret;
1459
}
1460

    
1461
static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1462
{
1463
    DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1464
}
1465

    
1466
static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1467
{
1468
    uint32_t ret = 0;
1469

    
1470
    DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1471

    
1472
    return ret;
1473
}
1474

    
1475
static int rtl8139_config_writable(RTL8139State *s)
1476
{
1477
    if (s->Cfg9346 & Cfg9346_Unlock)
1478
    {
1479
        return 1;
1480
    }
1481

    
1482
    DPRINTF("Configuration registers are write-protected\n");
1483

    
1484
    return 0;
1485
}
1486

    
1487
static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1488
{
1489
    val &= 0xffff;
1490

    
1491
    DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1492

    
1493
    /* mask unwritable bits */
1494
    uint32_t mask = 0x4cff;
1495

    
1496
    if (1 || !rtl8139_config_writable(s))
1497
    {
1498
        /* Speed setting and autonegotiation enable bits are read-only */
1499
        mask |= 0x3000;
1500
        /* Duplex mode setting is read-only */
1501
        mask |= 0x0100;
1502
    }
1503

    
1504
    val = SET_MASKED(val, mask, s->BasicModeCtrl);
1505

    
1506
    s->BasicModeCtrl = val;
1507
}
1508

    
1509
static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1510
{
1511
    uint32_t ret = s->BasicModeCtrl;
1512

    
1513
    DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1514

    
1515
    return ret;
1516
}
1517

    
1518
static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1519
{
1520
    val &= 0xffff;
1521

    
1522
    DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1523

    
1524
    /* mask unwritable bits */
1525
    val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1526

    
1527
    s->BasicModeStatus = val;
1528
}
1529

    
1530
static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1531
{
1532
    uint32_t ret = s->BasicModeStatus;
1533

    
1534
    DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1535

    
1536
    return ret;
1537
}
1538

    
1539
static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1540
{
1541
    val &= 0xff;
1542

    
1543
    DPRINTF("Cfg9346 write val=0x%02x\n", val);
1544

    
1545
    /* mask unwritable bits */
1546
    val = SET_MASKED(val, 0x31, s->Cfg9346);
1547

    
1548
    uint32_t opmode = val & 0xc0;
1549
    uint32_t eeprom_val = val & 0xf;
1550

    
1551
    if (opmode == 0x80) {
1552
        /* eeprom access */
1553
        int eecs = (eeprom_val & 0x08)?1:0;
1554
        int eesk = (eeprom_val & 0x04)?1:0;
1555
        int eedi = (eeprom_val & 0x02)?1:0;
1556
        prom9346_set_wire(s, eecs, eesk, eedi);
1557
    } else if (opmode == 0x40) {
1558
        /* Reset.  */
1559
        val = 0;
1560
        rtl8139_reset(&s->dev.qdev);
1561
    }
1562

    
1563
    s->Cfg9346 = val;
1564
}
1565

    
1566
static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1567
{
1568
    uint32_t ret = s->Cfg9346;
1569

    
1570
    uint32_t opmode = ret & 0xc0;
1571

    
1572
    if (opmode == 0x80)
1573
    {
1574
        /* eeprom access */
1575
        int eedo = prom9346_get_wire(s);
1576
        if (eedo)
1577
        {
1578
            ret |=  0x01;
1579
        }
1580
        else
1581
        {
1582
            ret &= ~0x01;
1583
        }
1584
    }
1585

    
1586
    DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1587

    
1588
    return ret;
1589
}
1590

    
1591
static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1592
{
1593
    val &= 0xff;
1594

    
1595
    DPRINTF("Config0 write val=0x%02x\n", val);
1596

    
1597
    if (!rtl8139_config_writable(s)) {
1598
        return;
1599
    }
1600

    
1601
    /* mask unwritable bits */
1602
    val = SET_MASKED(val, 0xf8, s->Config0);
1603

    
1604
    s->Config0 = val;
1605
}
1606

    
1607
static uint32_t rtl8139_Config0_read(RTL8139State *s)
1608
{
1609
    uint32_t ret = s->Config0;
1610

    
1611
    DPRINTF("Config0 read val=0x%02x\n", ret);
1612

    
1613
    return ret;
1614
}
1615

    
1616
static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1617
{
1618
    val &= 0xff;
1619

    
1620
    DPRINTF("Config1 write val=0x%02x\n", val);
1621

    
1622
    if (!rtl8139_config_writable(s)) {
1623
        return;
1624
    }
1625

    
1626
    /* mask unwritable bits */
1627
    val = SET_MASKED(val, 0xC, s->Config1);
1628

    
1629
    s->Config1 = val;
1630
}
1631

    
1632
static uint32_t rtl8139_Config1_read(RTL8139State *s)
1633
{
1634
    uint32_t ret = s->Config1;
1635

    
1636
    DPRINTF("Config1 read val=0x%02x\n", ret);
1637

    
1638
    return ret;
1639
}
1640

    
1641
static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1642
{
1643
    val &= 0xff;
1644

    
1645
    DPRINTF("Config3 write val=0x%02x\n", val);
1646

    
1647
    if (!rtl8139_config_writable(s)) {
1648
        return;
1649
    }
1650

    
1651
    /* mask unwritable bits */
1652
    val = SET_MASKED(val, 0x8F, s->Config3);
1653

    
1654
    s->Config3 = val;
1655
}
1656

    
1657
static uint32_t rtl8139_Config3_read(RTL8139State *s)
1658
{
1659
    uint32_t ret = s->Config3;
1660

    
1661
    DPRINTF("Config3 read val=0x%02x\n", ret);
1662

    
1663
    return ret;
1664
}
1665

    
1666
static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1667
{
1668
    val &= 0xff;
1669

    
1670
    DPRINTF("Config4 write val=0x%02x\n", val);
1671

    
1672
    if (!rtl8139_config_writable(s)) {
1673
        return;
1674
    }
1675

    
1676
    /* mask unwritable bits */
1677
    val = SET_MASKED(val, 0x0a, s->Config4);
1678

    
1679
    s->Config4 = val;
1680
}
1681

    
1682
static uint32_t rtl8139_Config4_read(RTL8139State *s)
1683
{
1684
    uint32_t ret = s->Config4;
1685

    
1686
    DPRINTF("Config4 read val=0x%02x\n", ret);
1687

    
1688
    return ret;
1689
}
1690

    
1691
static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1692
{
1693
    val &= 0xff;
1694

    
1695
    DPRINTF("Config5 write val=0x%02x\n", val);
1696

    
1697
    /* mask unwritable bits */
1698
    val = SET_MASKED(val, 0x80, s->Config5);
1699

    
1700
    s->Config5 = val;
1701
}
1702

    
1703
static uint32_t rtl8139_Config5_read(RTL8139State *s)
1704
{
1705
    uint32_t ret = s->Config5;
1706

    
1707
    DPRINTF("Config5 read val=0x%02x\n", ret);
1708

    
1709
    return ret;
1710
}
1711

    
1712
static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1713
{
1714
    if (!rtl8139_transmitter_enabled(s))
1715
    {
1716
        DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1717
        return;
1718
    }
1719

    
1720
    DPRINTF("TxConfig write val=0x%08x\n", val);
1721

    
1722
    val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1723

    
1724
    s->TxConfig = val;
1725
}
1726

    
1727
static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1728
{
1729
    DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1730

    
1731
    uint32_t tc = s->TxConfig;
1732
    tc &= 0xFFFFFF00;
1733
    tc |= (val & 0x000000FF);
1734
    rtl8139_TxConfig_write(s, tc);
1735
}
1736

    
1737
static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1738
{
1739
    uint32_t ret = s->TxConfig;
1740

    
1741
    DPRINTF("TxConfig read val=0x%04x\n", ret);
1742

    
1743
    return ret;
1744
}
1745

    
1746
static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1747
{
1748
    DPRINTF("RxConfig write val=0x%08x\n", val);
1749

    
1750
    /* mask unwritable bits */
1751
    val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1752

    
1753
    s->RxConfig = val;
1754

    
1755
    /* reset buffer size and read/write pointers */
1756
    rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1757

    
1758
    DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1759
}
1760

    
1761
static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1762
{
1763
    uint32_t ret = s->RxConfig;
1764

    
1765
    DPRINTF("RxConfig read val=0x%08x\n", ret);
1766

    
1767
    return ret;
1768
}
1769

    
1770
static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1771
    int do_interrupt, const uint8_t *dot1q_buf)
1772
{
1773
    struct iovec *iov = NULL;
1774

    
1775
    if (!size)
1776
    {
1777
        DPRINTF("+++ empty ethernet frame\n");
1778
        return;
1779
    }
1780

    
1781
    if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1782
        iov = (struct iovec[3]) {
1783
            { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1784
            { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1785
            { .iov_base = buf + ETHER_ADDR_LEN * 2,
1786
                .iov_len = size - ETHER_ADDR_LEN * 2 },
1787
        };
1788
    }
1789

    
1790
    if (TxLoopBack == (s->TxConfig & TxLoopBack))
1791
    {
1792
        size_t buf2_size;
1793
        uint8_t *buf2;
1794

    
1795
        if (iov) {
1796
            buf2_size = iov_size(iov, 3);
1797
            buf2 = qemu_malloc(buf2_size);
1798
            iov_to_buf(iov, 3, buf2, 0, buf2_size);
1799
            buf = buf2;
1800
        }
1801

    
1802
        DPRINTF("+++ transmit loopback mode\n");
1803
        rtl8139_do_receive(&s->nic->nc, buf, size, do_interrupt);
1804

    
1805
        if (iov) {
1806
            qemu_free(buf2);
1807
        }
1808
    }
1809
    else
1810
    {
1811
        if (iov) {
1812
            qemu_sendv_packet(&s->nic->nc, iov, 3);
1813
        } else {
1814
            qemu_send_packet(&s->nic->nc, buf, size);
1815
        }
1816
    }
1817
}
1818

    
1819
static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1820
{
1821
    if (!rtl8139_transmitter_enabled(s))
1822
    {
1823
        DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1824
            "disabled\n", descriptor);
1825
        return 0;
1826
    }
1827

    
1828
    if (s->TxStatus[descriptor] & TxHostOwns)
1829
    {
1830
        DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1831
            "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1832
        return 0;
1833
    }
1834

    
1835
    DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1836

    
1837
    int txsize = s->TxStatus[descriptor] & 0x1fff;
1838
    uint8_t txbuffer[0x2000];
1839

    
1840
    DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1841
        txsize, s->TxAddr[descriptor]);
1842

    
1843
    cpu_physical_memory_read(s->TxAddr[descriptor], txbuffer, txsize);
1844

    
1845
    /* Mark descriptor as transferred */
1846
    s->TxStatus[descriptor] |= TxHostOwns;
1847
    s->TxStatus[descriptor] |= TxStatOK;
1848

    
1849
    rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1850

    
1851
    DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1852
        descriptor);
1853

    
1854
    /* update interrupt */
1855
    s->IntrStatus |= TxOK;
1856
    rtl8139_update_irq(s);
1857

    
1858
    return 1;
1859
}
1860

    
1861
/* structures and macros for task offloading */
1862
typedef struct ip_header
1863
{
1864
    uint8_t  ip_ver_len;    /* version and header length */
1865
    uint8_t  ip_tos;        /* type of service */
1866
    uint16_t ip_len;        /* total length */
1867
    uint16_t ip_id;         /* identification */
1868
    uint16_t ip_off;        /* fragment offset field */
1869
    uint8_t  ip_ttl;        /* time to live */
1870
    uint8_t  ip_p;          /* protocol */
1871
    uint16_t ip_sum;        /* checksum */
1872
    uint32_t ip_src,ip_dst; /* source and dest address */
1873
} ip_header;
1874

    
1875
#define IP_HEADER_VERSION_4 4
1876
#define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1877
#define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1878

    
1879
typedef struct tcp_header
1880
{
1881
    uint16_t th_sport;                /* source port */
1882
    uint16_t th_dport;                /* destination port */
1883
    uint32_t th_seq;                        /* sequence number */
1884
    uint32_t th_ack;                        /* acknowledgement number */
1885
    uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1886
    uint16_t th_win;                        /* window */
1887
    uint16_t th_sum;                        /* checksum */
1888
    uint16_t th_urp;                        /* urgent pointer */
1889
} tcp_header;
1890

    
1891
typedef struct udp_header
1892
{
1893
    uint16_t uh_sport; /* source port */
1894
    uint16_t uh_dport; /* destination port */
1895
    uint16_t uh_ulen;  /* udp length */
1896
    uint16_t uh_sum;   /* udp checksum */
1897
} udp_header;
1898

    
1899
typedef struct ip_pseudo_header
1900
{
1901
    uint32_t ip_src;
1902
    uint32_t ip_dst;
1903
    uint8_t  zeros;
1904
    uint8_t  ip_proto;
1905
    uint16_t ip_payload;
1906
} ip_pseudo_header;
1907

    
1908
#define IP_PROTO_TCP 6
1909
#define IP_PROTO_UDP 17
1910

    
1911
#define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1912
#define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1913
#define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1914

    
1915
#define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1916

    
1917
#define TCP_FLAG_FIN  0x01
1918
#define TCP_FLAG_PUSH 0x08
1919

    
1920
/* produces ones' complement sum of data */
1921
static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1922
{
1923
    uint32_t result = 0;
1924

    
1925
    for (; len > 1; data+=2, len-=2)
1926
    {
1927
        result += *(uint16_t*)data;
1928
    }
1929

    
1930
    /* add the remainder byte */
1931
    if (len)
1932
    {
1933
        uint8_t odd[2] = {*data, 0};
1934
        result += *(uint16_t*)odd;
1935
    }
1936

    
1937
    while (result>>16)
1938
        result = (result & 0xffff) + (result >> 16);
1939

    
1940
    return result;
1941
}
1942

    
1943
static uint16_t ip_checksum(void *data, size_t len)
1944
{
1945
    return ~ones_complement_sum((uint8_t*)data, len);
1946
}
1947

    
1948
static int rtl8139_cplus_transmit_one(RTL8139State *s)
1949
{
1950
    if (!rtl8139_transmitter_enabled(s))
1951
    {
1952
        DPRINTF("+++ C+ mode: transmitter disabled\n");
1953
        return 0;
1954
    }
1955

    
1956
    if (!rtl8139_cp_transmitter_enabled(s))
1957
    {
1958
        DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1959
        return 0 ;
1960
    }
1961

    
1962
    int descriptor = s->currCPlusTxDesc;
1963

    
1964
    target_phys_addr_t cplus_tx_ring_desc =
1965
        rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1966

    
1967
    /* Normal priority ring */
1968
    cplus_tx_ring_desc += 16 * descriptor;
1969

    
1970
    DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1971
        "%08x0x%08x = 0x"TARGET_FMT_plx"\n", descriptor, s->TxAddr[1],
1972
        s->TxAddr[0], cplus_tx_ring_desc);
1973

    
1974
    uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1975

    
1976
    cpu_physical_memory_read(cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1977
    txdw0 = le32_to_cpu(val);
1978
    cpu_physical_memory_read(cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1979
    txdw1 = le32_to_cpu(val);
1980
    cpu_physical_memory_read(cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1981
    txbufLO = le32_to_cpu(val);
1982
    cpu_physical_memory_read(cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1983
    txbufHI = le32_to_cpu(val);
1984

    
1985
    DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1986
        txdw0, txdw1, txbufLO, txbufHI);
1987

    
1988
/* w0 ownership flag */
1989
#define CP_TX_OWN (1<<31)
1990
/* w0 end of ring flag */
1991
#define CP_TX_EOR (1<<30)
1992
/* first segment of received packet flag */
1993
#define CP_TX_FS (1<<29)
1994
/* last segment of received packet flag */
1995
#define CP_TX_LS (1<<28)
1996
/* large send packet flag */
1997
#define CP_TX_LGSEN (1<<27)
1998
/* large send MSS mask, bits 16...25 */
1999
#define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
2000

    
2001
/* IP checksum offload flag */
2002
#define CP_TX_IPCS (1<<18)
2003
/* UDP checksum offload flag */
2004
#define CP_TX_UDPCS (1<<17)
2005
/* TCP checksum offload flag */
2006
#define CP_TX_TCPCS (1<<16)
2007

    
2008
/* w0 bits 0...15 : buffer size */
2009
#define CP_TX_BUFFER_SIZE (1<<16)
2010
#define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
2011
/* w1 add tag flag */
2012
#define CP_TX_TAGC (1<<17)
2013
/* w1 bits 0...15 : VLAN tag (big endian) */
2014
#define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2015
/* w2 low  32bit of Rx buffer ptr */
2016
/* w3 high 32bit of Rx buffer ptr */
2017

    
2018
/* set after transmission */
2019
/* FIFO underrun flag */
2020
#define CP_TX_STATUS_UNF (1<<25)
2021
/* transmit error summary flag, valid if set any of three below */
2022
#define CP_TX_STATUS_TES (1<<23)
2023
/* out-of-window collision flag */
2024
#define CP_TX_STATUS_OWC (1<<22)
2025
/* link failure flag */
2026
#define CP_TX_STATUS_LNKF (1<<21)
2027
/* excessive collisions flag */
2028
#define CP_TX_STATUS_EXC (1<<20)
2029

    
2030
    if (!(txdw0 & CP_TX_OWN))
2031
    {
2032
        DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2033
        return 0 ;
2034
    }
2035

    
2036
    DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2037

    
2038
    if (txdw0 & CP_TX_FS)
2039
    {
2040
        DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2041
            "descriptor\n", descriptor);
2042

    
2043
        /* reset internal buffer offset */
2044
        s->cplus_txbuffer_offset = 0;
2045
    }
2046

    
2047
    int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2048
    target_phys_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2049

    
2050
    /* make sure we have enough space to assemble the packet */
2051
    if (!s->cplus_txbuffer)
2052
    {
2053
        s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2054
        s->cplus_txbuffer = qemu_malloc(s->cplus_txbuffer_len);
2055
        s->cplus_txbuffer_offset = 0;
2056

    
2057
        DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2058
            s->cplus_txbuffer_len);
2059
    }
2060

    
2061
    while (s->cplus_txbuffer && s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2062
    {
2063
        s->cplus_txbuffer_len += CP_TX_BUFFER_SIZE;
2064
        s->cplus_txbuffer = qemu_realloc(s->cplus_txbuffer, s->cplus_txbuffer_len);
2065

    
2066
        DPRINTF("+++ C+ mode transmission buffer space changed to %d\n",
2067
            s->cplus_txbuffer_len);
2068
    }
2069

    
2070
    if (!s->cplus_txbuffer)
2071
    {
2072
        /* out of memory */
2073

    
2074
        DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2075
            s->cplus_txbuffer_len);
2076

    
2077
        /* update tally counter */
2078
        ++s->tally_counters.TxERR;
2079
        ++s->tally_counters.TxAbt;
2080

    
2081
        return 0;
2082
    }
2083

    
2084
    /* append more data to the packet */
2085

    
2086
    DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2087
        TARGET_FMT_plx" to offset %d\n", txsize, tx_addr,
2088
        s->cplus_txbuffer_offset);
2089

    
2090
    cpu_physical_memory_read(tx_addr, s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2091
    s->cplus_txbuffer_offset += txsize;
2092

    
2093
    /* seek to next Rx descriptor */
2094
    if (txdw0 & CP_TX_EOR)
2095
    {
2096
        s->currCPlusTxDesc = 0;
2097
    }
2098
    else
2099
    {
2100
        ++s->currCPlusTxDesc;
2101
        if (s->currCPlusTxDesc >= 64)
2102
            s->currCPlusTxDesc = 0;
2103
    }
2104

    
2105
    /* transfer ownership to target */
2106
    txdw0 &= ~CP_RX_OWN;
2107

    
2108
    /* reset error indicator bits */
2109
    txdw0 &= ~CP_TX_STATUS_UNF;
2110
    txdw0 &= ~CP_TX_STATUS_TES;
2111
    txdw0 &= ~CP_TX_STATUS_OWC;
2112
    txdw0 &= ~CP_TX_STATUS_LNKF;
2113
    txdw0 &= ~CP_TX_STATUS_EXC;
2114

    
2115
    /* update ring data */
2116
    val = cpu_to_le32(txdw0);
2117
    cpu_physical_memory_write(cplus_tx_ring_desc,    (uint8_t *)&val, 4);
2118

    
2119
    /* Now decide if descriptor being processed is holding the last segment of packet */
2120
    if (txdw0 & CP_TX_LS)
2121
    {
2122
        uint8_t dot1q_buffer_space[VLAN_HLEN];
2123
        uint16_t *dot1q_buffer;
2124

    
2125
        DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2126
            descriptor);
2127

    
2128
        /* can transfer fully assembled packet */
2129

    
2130
        uint8_t *saved_buffer  = s->cplus_txbuffer;
2131
        int      saved_size    = s->cplus_txbuffer_offset;
2132
        int      saved_buffer_len = s->cplus_txbuffer_len;
2133

    
2134
        /* create vlan tag */
2135
        if (txdw1 & CP_TX_TAGC) {
2136
            /* the vlan tag is in BE byte order in the descriptor
2137
             * BE + le_to_cpu() + ~swap()~ = cpu */
2138
            DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2139
                bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2140

    
2141
            dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2142
            dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2143
            /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2144
            dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2145
        } else {
2146
            dot1q_buffer = NULL;
2147
        }
2148

    
2149
        /* reset the card space to protect from recursive call */
2150
        s->cplus_txbuffer = NULL;
2151
        s->cplus_txbuffer_offset = 0;
2152
        s->cplus_txbuffer_len = 0;
2153

    
2154
        if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2155
        {
2156
            DPRINTF("+++ C+ mode offloaded task checksum\n");
2157

    
2158
            /* ip packet header */
2159
            ip_header *ip = NULL;
2160
            int hlen = 0;
2161
            uint8_t  ip_protocol = 0;
2162
            uint16_t ip_data_len = 0;
2163

    
2164
            uint8_t *eth_payload_data = NULL;
2165
            size_t   eth_payload_len  = 0;
2166

    
2167
            int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2168
            if (proto == ETH_P_IP)
2169
            {
2170
                DPRINTF("+++ C+ mode has IP packet\n");
2171

    
2172
                /* not aligned */
2173
                eth_payload_data = saved_buffer + ETH_HLEN;
2174
                eth_payload_len  = saved_size   - ETH_HLEN;
2175

    
2176
                ip = (ip_header*)eth_payload_data;
2177

    
2178
                if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2179
                    DPRINTF("+++ C+ mode packet has bad IP version %d "
2180
                        "expected %d\n", IP_HEADER_VERSION(ip),
2181
                        IP_HEADER_VERSION_4);
2182
                    ip = NULL;
2183
                } else {
2184
                    hlen = IP_HEADER_LENGTH(ip);
2185
                    ip_protocol = ip->ip_p;
2186
                    ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2187
                }
2188
            }
2189

    
2190
            if (ip)
2191
            {
2192
                if (txdw0 & CP_TX_IPCS)
2193
                {
2194
                    DPRINTF("+++ C+ mode need IP checksum\n");
2195

    
2196
                    if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2197
                        /* bad packet header len */
2198
                        /* or packet too short */
2199
                    }
2200
                    else
2201
                    {
2202
                        ip->ip_sum = 0;
2203
                        ip->ip_sum = ip_checksum(ip, hlen);
2204
                        DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2205
                            hlen, ip->ip_sum);
2206
                    }
2207
                }
2208

    
2209
                if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2210
                {
2211
                    int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2212

    
2213
                    DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2214
                        "frame data %d specified MSS=%d\n", ETH_MTU,
2215
                        ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2216

    
2217
                    int tcp_send_offset = 0;
2218
                    int send_count = 0;
2219

    
2220
                    /* maximum IP header length is 60 bytes */
2221
                    uint8_t saved_ip_header[60];
2222

    
2223
                    /* save IP header template; data area is used in tcp checksum calculation */
2224
                    memcpy(saved_ip_header, eth_payload_data, hlen);
2225

    
2226
                    /* a placeholder for checksum calculation routine in tcp case */
2227
                    uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2228
                    //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2229

    
2230
                    /* pointer to TCP header */
2231
                    tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2232

    
2233
                    int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2234

    
2235
                    /* ETH_MTU = ip header len + tcp header len + payload */
2236
                    int tcp_data_len = ip_data_len - tcp_hlen;
2237
                    int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2238

    
2239
                    DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2240
                        "data len %d TCP chunk size %d\n", ip_data_len,
2241
                        tcp_hlen, tcp_data_len, tcp_chunk_size);
2242

    
2243
                    /* note the cycle below overwrites IP header data,
2244
                       but restores it from saved_ip_header before sending packet */
2245

    
2246
                    int is_last_frame = 0;
2247

    
2248
                    for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2249
                    {
2250
                        uint16_t chunk_size = tcp_chunk_size;
2251

    
2252
                        /* check if this is the last frame */
2253
                        if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2254
                        {
2255
                            is_last_frame = 1;
2256
                            chunk_size = tcp_data_len - tcp_send_offset;
2257
                        }
2258

    
2259
                        DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2260
                            be32_to_cpu(p_tcp_hdr->th_seq));
2261

    
2262
                        /* add 4 TCP pseudoheader fields */
2263
                        /* copy IP source and destination fields */
2264
                        memcpy(data_to_checksum, saved_ip_header + 12, 8);
2265

    
2266
                        DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2267
                            "packet with %d bytes data\n", tcp_hlen +
2268
                            chunk_size);
2269

    
2270
                        if (tcp_send_offset)
2271
                        {
2272
                            memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2273
                        }
2274

    
2275
                        /* keep PUSH and FIN flags only for the last frame */
2276
                        if (!is_last_frame)
2277
                        {
2278
                            TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2279
                        }
2280

    
2281
                        /* recalculate TCP checksum */
2282
                        ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2283
                        p_tcpip_hdr->zeros      = 0;
2284
                        p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2285
                        p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2286

    
2287
                        p_tcp_hdr->th_sum = 0;
2288

    
2289
                        int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2290
                        DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2291
                            tcp_checksum);
2292

    
2293
                        p_tcp_hdr->th_sum = tcp_checksum;
2294

    
2295
                        /* restore IP header */
2296
                        memcpy(eth_payload_data, saved_ip_header, hlen);
2297

    
2298
                        /* set IP data length and recalculate IP checksum */
2299
                        ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2300

    
2301
                        /* increment IP id for subsequent frames */
2302
                        ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2303

    
2304
                        ip->ip_sum = 0;
2305
                        ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2306
                        DPRINTF("+++ C+ mode TSO IP header len=%d "
2307
                            "checksum=%04x\n", hlen, ip->ip_sum);
2308

    
2309
                        int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2310
                        DPRINTF("+++ C+ mode TSO transferring packet size "
2311
                            "%d\n", tso_send_size);
2312
                        rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2313
                            0, (uint8_t *) dot1q_buffer);
2314

    
2315
                        /* add transferred count to TCP sequence number */
2316
                        p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2317
                        ++send_count;
2318
                    }
2319

    
2320
                    /* Stop sending this frame */
2321
                    saved_size = 0;
2322
                }
2323
                else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2324
                {
2325
                    DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2326

    
2327
                    /* maximum IP header length is 60 bytes */
2328
                    uint8_t saved_ip_header[60];
2329
                    memcpy(saved_ip_header, eth_payload_data, hlen);
2330

    
2331
                    uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2332
                    //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2333

    
2334
                    /* add 4 TCP pseudoheader fields */
2335
                    /* copy IP source and destination fields */
2336
                    memcpy(data_to_checksum, saved_ip_header + 12, 8);
2337

    
2338
                    if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2339
                    {
2340
                        DPRINTF("+++ C+ mode calculating TCP checksum for "
2341
                            "packet with %d bytes data\n", ip_data_len);
2342

    
2343
                        ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2344
                        p_tcpip_hdr->zeros      = 0;
2345
                        p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2346
                        p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2347

    
2348
                        tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2349

    
2350
                        p_tcp_hdr->th_sum = 0;
2351

    
2352
                        int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2353
                        DPRINTF("+++ C+ mode TCP checksum %04x\n",
2354
                            tcp_checksum);
2355

    
2356
                        p_tcp_hdr->th_sum = tcp_checksum;
2357
                    }
2358
                    else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2359
                    {
2360
                        DPRINTF("+++ C+ mode calculating UDP checksum for "
2361
                            "packet with %d bytes data\n", ip_data_len);
2362

    
2363
                        ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2364
                        p_udpip_hdr->zeros      = 0;
2365
                        p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2366
                        p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2367

    
2368
                        udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2369

    
2370
                        p_udp_hdr->uh_sum = 0;
2371

    
2372
                        int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2373
                        DPRINTF("+++ C+ mode UDP checksum %04x\n",
2374
                            udp_checksum);
2375

    
2376
                        p_udp_hdr->uh_sum = udp_checksum;
2377
                    }
2378

    
2379
                    /* restore IP header */
2380
                    memcpy(eth_payload_data, saved_ip_header, hlen);
2381
                }
2382
            }
2383
        }
2384

    
2385
        /* update tally counter */
2386
        ++s->tally_counters.TxOk;
2387

    
2388
        DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2389

    
2390
        rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2391
            (uint8_t *) dot1q_buffer);
2392

    
2393
        /* restore card space if there was no recursion and reset offset */
2394
        if (!s->cplus_txbuffer)
2395
        {
2396
            s->cplus_txbuffer        = saved_buffer;
2397
            s->cplus_txbuffer_len    = saved_buffer_len;
2398
            s->cplus_txbuffer_offset = 0;
2399
        }
2400
        else
2401
        {
2402
            qemu_free(saved_buffer);
2403
        }
2404
    }
2405
    else
2406
    {
2407
        DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2408
    }
2409

    
2410
    return 1;
2411
}
2412

    
2413
static void rtl8139_cplus_transmit(RTL8139State *s)
2414
{
2415
    int txcount = 0;
2416

    
2417
    while (rtl8139_cplus_transmit_one(s))
2418
    {
2419
        ++txcount;
2420
    }
2421

    
2422
    /* Mark transfer completed */
2423
    if (!txcount)
2424
    {
2425
        DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2426
            s->currCPlusTxDesc);
2427
    }
2428
    else
2429
    {
2430
        /* update interrupt status */
2431
        s->IntrStatus |= TxOK;
2432
        rtl8139_update_irq(s);
2433
    }
2434
}
2435

    
2436
static void rtl8139_transmit(RTL8139State *s)
2437
{
2438
    int descriptor = s->currTxDesc, txcount = 0;
2439

    
2440
    /*while*/
2441
    if (rtl8139_transmit_one(s, descriptor))
2442
    {
2443
        ++s->currTxDesc;
2444
        s->currTxDesc %= 4;
2445
        ++txcount;
2446
    }
2447

    
2448
    /* Mark transfer completed */
2449
    if (!txcount)
2450
    {
2451
        DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2452
            s->currTxDesc);
2453
    }
2454
}
2455

    
2456
static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2457
{
2458

    
2459
    int descriptor = txRegOffset/4;
2460

    
2461
    /* handle C+ transmit mode register configuration */
2462

    
2463
    if (s->cplus_enabled)
2464
    {
2465
        DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2466
            "descriptor=%d\n", txRegOffset, val, descriptor);
2467

    
2468
        /* handle Dump Tally Counters command */
2469
        s->TxStatus[descriptor] = val;
2470

    
2471
        if (descriptor == 0 && (val & 0x8))
2472
        {
2473
            target_phys_addr_t tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2474

    
2475
            /* dump tally counters to specified memory location */
2476
            RTL8139TallyCounters_physical_memory_write( tc_addr, &s->tally_counters);
2477

    
2478
            /* mark dump completed */
2479
            s->TxStatus[0] &= ~0x8;
2480
        }
2481

    
2482
        return;
2483
    }
2484

    
2485
    DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2486
        txRegOffset, val, descriptor);
2487

    
2488
    /* mask only reserved bits */
2489
    val &= ~0xff00c000; /* these bits are reset on write */
2490
    val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2491

    
2492
    s->TxStatus[descriptor] = val;
2493

    
2494
    /* attempt to start transmission */
2495
    rtl8139_transmit(s);
2496
}
2497

    
2498
static uint32_t rtl8139_TxStatus_read(RTL8139State *s, uint32_t txRegOffset)
2499
{
2500
    uint32_t ret = s->TxStatus[txRegOffset/4];
2501

    
2502
    DPRINTF("TxStatus read offset=0x%x val=0x%08x\n", txRegOffset, ret);
2503

    
2504
    return ret;
2505
}
2506

    
2507
static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2508
{
2509
    uint16_t ret = 0;
2510

    
2511
    /* Simulate TSAD, it is read only anyway */
2512

    
2513
    ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2514
         |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2515
         |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2516
         |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2517

    
2518
         |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2519
         |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2520
         |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2521
         |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2522

    
2523
         |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2524
         |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2525
         |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2526
         |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2527

    
2528
         |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2529
         |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2530
         |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2531
         |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2532

    
2533

    
2534
    DPRINTF("TSAD read val=0x%04x\n", ret);
2535

    
2536
    return ret;
2537
}
2538

    
2539
static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2540
{
2541
    uint16_t ret = s->CSCR;
2542

    
2543
    DPRINTF("CSCR read val=0x%04x\n", ret);
2544

    
2545
    return ret;
2546
}
2547

    
2548
static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2549
{
2550
    DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2551

    
2552
    s->TxAddr[txAddrOffset/4] = val;
2553
}
2554

    
2555
static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2556
{
2557
    uint32_t ret = s->TxAddr[txAddrOffset/4];
2558

    
2559
    DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2560

    
2561
    return ret;
2562
}
2563

    
2564
static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2565
{
2566
    DPRINTF("RxBufPtr write val=0x%04x\n", val);
2567

    
2568
    /* this value is off by 16 */
2569
    s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2570

    
2571
    DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2572
        s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2573
}
2574

    
2575
static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2576
{
2577
    /* this value is off by 16 */
2578
    uint32_t ret = s->RxBufPtr - 0x10;
2579

    
2580
    DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2581

    
2582
    return ret;
2583
}
2584

    
2585
static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2586
{
2587
    /* this value is NOT off by 16 */
2588
    uint32_t ret = s->RxBufAddr;
2589

    
2590
    DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2591

    
2592
    return ret;
2593
}
2594

    
2595
static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2596
{
2597
    DPRINTF("RxBuf write val=0x%08x\n", val);
2598

    
2599
    s->RxBuf = val;
2600

    
2601
    /* may need to reset rxring here */
2602
}
2603

    
2604
static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2605
{
2606
    uint32_t ret = s->RxBuf;
2607

    
2608
    DPRINTF("RxBuf read val=0x%08x\n", ret);
2609

    
2610
    return ret;
2611
}
2612

    
2613
static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2614
{
2615
    DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2616

    
2617
    /* mask unwritable bits */
2618
    val = SET_MASKED(val, 0x1e00, s->IntrMask);
2619

    
2620
    s->IntrMask = val;
2621

    
2622
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2623
    rtl8139_update_irq(s);
2624

    
2625
}
2626

    
2627
static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2628
{
2629
    uint32_t ret = s->IntrMask;
2630

    
2631
    DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2632

    
2633
    return ret;
2634
}
2635

    
2636
static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2637
{
2638
    DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2639

    
2640
#if 0
2641

2642
    /* writing to ISR has no effect */
2643

2644
    return;
2645

2646
#else
2647
    uint16_t newStatus = s->IntrStatus & ~val;
2648

    
2649
    /* mask unwritable bits */
2650
    newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2651

    
2652
    /* writing 1 to interrupt status register bit clears it */
2653
    s->IntrStatus = 0;
2654
    rtl8139_update_irq(s);
2655

    
2656
    s->IntrStatus = newStatus;
2657
    /*
2658
     * Computing if we miss an interrupt here is not that correct but
2659
     * considered that we should have had already an interrupt
2660
     * and probably emulated is slower is better to assume this resetting was
2661
     * done before testing on previous rtl8139_update_irq lead to IRQ loosing
2662
     */
2663
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2664
    rtl8139_update_irq(s);
2665

    
2666
#endif
2667
}
2668

    
2669
static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2670
{
2671
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2672

    
2673
    uint32_t ret = s->IntrStatus;
2674

    
2675
    DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2676

    
2677
#if 0
2678

2679
    /* reading ISR clears all interrupts */
2680
    s->IntrStatus = 0;
2681

2682
    rtl8139_update_irq(s);
2683

2684
#endif
2685

    
2686
    return ret;
2687
}
2688

    
2689
static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2690
{
2691
    DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2692

    
2693
    /* mask unwritable bits */
2694
    val = SET_MASKED(val, 0xf000, s->MultiIntr);
2695

    
2696
    s->MultiIntr = val;
2697
}
2698

    
2699
static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2700
{
2701
    uint32_t ret = s->MultiIntr;
2702

    
2703
    DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2704

    
2705
    return ret;
2706
}
2707

    
2708
static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2709
{
2710
    RTL8139State *s = opaque;
2711

    
2712
    addr &= 0xff;
2713

    
2714
    switch (addr)
2715
    {
2716
        case MAC0 ... MAC0+5:
2717
            s->phys[addr - MAC0] = val;
2718
            break;
2719
        case MAC0+6 ... MAC0+7:
2720
            /* reserved */
2721
            break;
2722
        case MAR0 ... MAR0+7:
2723
            s->mult[addr - MAR0] = val;
2724
            break;
2725
        case ChipCmd:
2726
            rtl8139_ChipCmd_write(s, val);
2727
            break;
2728
        case Cfg9346:
2729
            rtl8139_Cfg9346_write(s, val);
2730
            break;
2731
        case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2732
            rtl8139_TxConfig_writeb(s, val);
2733
            break;
2734
        case Config0:
2735
            rtl8139_Config0_write(s, val);
2736
            break;
2737
        case Config1:
2738
            rtl8139_Config1_write(s, val);
2739
            break;
2740
        case Config3:
2741
            rtl8139_Config3_write(s, val);
2742
            break;
2743
        case Config4:
2744
            rtl8139_Config4_write(s, val);
2745
            break;
2746
        case Config5:
2747
            rtl8139_Config5_write(s, val);
2748
            break;
2749
        case MediaStatus:
2750
            /* ignore */
2751
            DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2752
                val);
2753
            break;
2754

    
2755
        case HltClk:
2756
            DPRINTF("HltClk write val=0x%08x\n", val);
2757
            if (val == 'R')
2758
            {
2759
                s->clock_enabled = 1;
2760
            }
2761
            else if (val == 'H')
2762
            {
2763
                s->clock_enabled = 0;
2764
            }
2765
            break;
2766

    
2767
        case TxThresh:
2768
            DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2769
            s->TxThresh = val;
2770
            break;
2771

    
2772
        case TxPoll:
2773
            DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2774
            if (val & (1 << 7))
2775
            {
2776
                DPRINTF("C+ TxPoll high priority transmission (not "
2777
                    "implemented)\n");
2778
                //rtl8139_cplus_transmit(s);
2779
            }
2780
            if (val & (1 << 6))
2781
            {
2782
                DPRINTF("C+ TxPoll normal priority transmission\n");
2783
                rtl8139_cplus_transmit(s);
2784
            }
2785

    
2786
            break;
2787

    
2788
        default:
2789
            DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2790
                val);
2791
            break;
2792
    }
2793
}
2794

    
2795
static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2796
{
2797
    RTL8139State *s = opaque;
2798

    
2799
    addr &= 0xfe;
2800

    
2801
    switch (addr)
2802
    {
2803
        case IntrMask:
2804
            rtl8139_IntrMask_write(s, val);
2805
            break;
2806

    
2807
        case IntrStatus:
2808
            rtl8139_IntrStatus_write(s, val);
2809
            break;
2810

    
2811
        case MultiIntr:
2812
            rtl8139_MultiIntr_write(s, val);
2813
            break;
2814

    
2815
        case RxBufPtr:
2816
            rtl8139_RxBufPtr_write(s, val);
2817
            break;
2818

    
2819
        case BasicModeCtrl:
2820
            rtl8139_BasicModeCtrl_write(s, val);
2821
            break;
2822
        case BasicModeStatus:
2823
            rtl8139_BasicModeStatus_write(s, val);
2824
            break;
2825
        case NWayAdvert:
2826
            DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2827
            s->NWayAdvert = val;
2828
            break;
2829
        case NWayLPAR:
2830
            DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2831
            break;
2832
        case NWayExpansion:
2833
            DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2834
            s->NWayExpansion = val;
2835
            break;
2836

    
2837
        case CpCmd:
2838
            rtl8139_CpCmd_write(s, val);
2839
            break;
2840

    
2841
        case IntrMitigate:
2842
            rtl8139_IntrMitigate_write(s, val);
2843
            break;
2844

    
2845
        default:
2846
            DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2847
                addr, val);
2848

    
2849
            rtl8139_io_writeb(opaque, addr, val & 0xff);
2850
            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2851
            break;
2852
    }
2853
}
2854

    
2855
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2856
{
2857
    int64_t pci_time, next_time;
2858
    uint32_t low_pci;
2859

    
2860
    DPRINTF("entered rtl8139_set_next_tctr_time\n");
2861

    
2862
    if (s->TimerExpire && current_time >= s->TimerExpire) {
2863
        s->IntrStatus |= PCSTimeout;
2864
        rtl8139_update_irq(s);
2865
    }
2866

    
2867
    /* Set QEMU timer only if needed that is
2868
     * - TimerInt <> 0 (we have a timer)
2869
     * - mask = 1 (we want an interrupt timer)
2870
     * - irq = 0  (irq is not already active)
2871
     * If any of above change we need to compute timer again
2872
     * Also we must check if timer is passed without QEMU timer
2873
     */
2874
    s->TimerExpire = 0;
2875
    if (!s->TimerInt) {
2876
        return;
2877
    }
2878

    
2879
    pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2880
                                get_ticks_per_sec());
2881
    low_pci = pci_time & 0xffffffff;
2882
    pci_time = pci_time - low_pci + s->TimerInt;
2883
    if (low_pci >= s->TimerInt) {
2884
        pci_time += 0x100000000LL;
2885
    }
2886
    next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2887
                                                PCI_FREQUENCY);
2888
    s->TimerExpire = next_time;
2889

    
2890
    if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2891
        qemu_mod_timer(s->timer, next_time);
2892
    }
2893
}
2894

    
2895
static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2896
{
2897
    RTL8139State *s = opaque;
2898

    
2899
    addr &= 0xfc;
2900

    
2901
    switch (addr)
2902
    {
2903
        case RxMissed:
2904
            DPRINTF("RxMissed clearing on write\n");
2905
            s->RxMissed = 0;
2906
            break;
2907

    
2908
        case TxConfig:
2909
            rtl8139_TxConfig_write(s, val);
2910
            break;
2911

    
2912
        case RxConfig:
2913
            rtl8139_RxConfig_write(s, val);
2914
            break;
2915

    
2916
        case TxStatus0 ... TxStatus0+4*4-1:
2917
            rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2918
            break;
2919

    
2920
        case TxAddr0 ... TxAddr0+4*4-1:
2921
            rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2922
            break;
2923

    
2924
        case RxBuf:
2925
            rtl8139_RxBuf_write(s, val);
2926
            break;
2927

    
2928
        case RxRingAddrLO:
2929
            DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2930
            s->RxRingAddrLO = val;
2931
            break;
2932

    
2933
        case RxRingAddrHI:
2934
            DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2935
            s->RxRingAddrHI = val;
2936
            break;
2937

    
2938
        case Timer:
2939
            DPRINTF("TCTR Timer reset on write\n");
2940
            s->TCTR_base = qemu_get_clock_ns(vm_clock);
2941
            rtl8139_set_next_tctr_time(s, s->TCTR_base);
2942
            break;
2943

    
2944
        case FlashReg:
2945
            DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2946
            if (s->TimerInt != val) {
2947
                s->TimerInt = val;
2948
                rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2949
            }
2950
            break;
2951

    
2952
        default:
2953
            DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2954
                addr, val);
2955
            rtl8139_io_writeb(opaque, addr, val & 0xff);
2956
            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2957
            rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2958
            rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2959
            break;
2960
    }
2961
}
2962

    
2963
static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2964
{
2965
    RTL8139State *s = opaque;
2966
    int ret;
2967

    
2968
    addr &= 0xff;
2969

    
2970
    switch (addr)
2971
    {
2972
        case MAC0 ... MAC0+5:
2973
            ret = s->phys[addr - MAC0];
2974
            break;
2975
        case MAC0+6 ... MAC0+7:
2976
            ret = 0;
2977
            break;
2978
        case MAR0 ... MAR0+7:
2979
            ret = s->mult[addr - MAR0];
2980
            break;
2981
        case ChipCmd:
2982
            ret = rtl8139_ChipCmd_read(s);
2983
            break;
2984
        case Cfg9346:
2985
            ret = rtl8139_Cfg9346_read(s);
2986
            break;
2987
        case Config0:
2988
            ret = rtl8139_Config0_read(s);
2989
            break;
2990
        case Config1:
2991
            ret = rtl8139_Config1_read(s);
2992
            break;
2993
        case Config3:
2994
            ret = rtl8139_Config3_read(s);
2995
            break;
2996
        case Config4:
2997
            ret = rtl8139_Config4_read(s);
2998
            break;
2999
        case Config5:
3000
            ret = rtl8139_Config5_read(s);
3001
            break;
3002

    
3003
        case MediaStatus:
3004
            ret = 0xd0;
3005
            DPRINTF("MediaStatus read 0x%x\n", ret);
3006
            break;
3007

    
3008
        case HltClk:
3009
            ret = s->clock_enabled;
3010
            DPRINTF("HltClk read 0x%x\n", ret);
3011
            break;
3012

    
3013
        case PCIRevisionID:
3014
            ret = RTL8139_PCI_REVID;
3015
            DPRINTF("PCI Revision ID read 0x%x\n", ret);
3016
            break;
3017

    
3018
        case TxThresh:
3019
            ret = s->TxThresh;
3020
            DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3021
            break;
3022

    
3023
        case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3024
            ret = s->TxConfig >> 24;
3025
            DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3026
            break;
3027

    
3028
        default:
3029
            DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3030
            ret = 0;
3031
            break;
3032
    }
3033

    
3034
    return ret;
3035
}
3036

    
3037
static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3038
{
3039
    RTL8139State *s = opaque;
3040
    uint32_t ret;
3041

    
3042
    addr &= 0xfe; /* mask lower bit */
3043

    
3044
    switch (addr)
3045
    {
3046
        case IntrMask:
3047
            ret = rtl8139_IntrMask_read(s);
3048
            break;
3049

    
3050
        case IntrStatus:
3051
            ret = rtl8139_IntrStatus_read(s);
3052
            break;
3053

    
3054
        case MultiIntr:
3055
            ret = rtl8139_MultiIntr_read(s);
3056
            break;
3057

    
3058
        case RxBufPtr:
3059
            ret = rtl8139_RxBufPtr_read(s);
3060
            break;
3061

    
3062
        case RxBufAddr:
3063
            ret = rtl8139_RxBufAddr_read(s);
3064
            break;
3065

    
3066
        case BasicModeCtrl:
3067
            ret = rtl8139_BasicModeCtrl_read(s);
3068
            break;
3069
        case BasicModeStatus:
3070
            ret = rtl8139_BasicModeStatus_read(s);
3071
            break;
3072
        case NWayAdvert:
3073
            ret = s->NWayAdvert;
3074
            DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3075
            break;
3076
        case NWayLPAR:
3077
            ret = s->NWayLPAR;
3078
            DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3079
            break;
3080
        case NWayExpansion:
3081
            ret = s->NWayExpansion;
3082
            DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3083
            break;
3084

    
3085
        case CpCmd:
3086
            ret = rtl8139_CpCmd_read(s);
3087
            break;
3088

    
3089
        case IntrMitigate:
3090
            ret = rtl8139_IntrMitigate_read(s);
3091
            break;
3092

    
3093
        case TxSummary:
3094
            ret = rtl8139_TSAD_read(s);
3095
            break;
3096

    
3097
        case CSCR:
3098
            ret = rtl8139_CSCR_read(s);
3099
            break;
3100

    
3101
        default:
3102
            DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3103

    
3104
            ret  = rtl8139_io_readb(opaque, addr);
3105
            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3106

    
3107
            DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3108
            break;
3109
    }
3110

    
3111
    return ret;
3112
}
3113

    
3114
static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3115
{
3116
    RTL8139State *s = opaque;
3117
    uint32_t ret;
3118

    
3119
    addr &= 0xfc; /* also mask low 2 bits */
3120

    
3121
    switch (addr)
3122
    {
3123
        case RxMissed:
3124
            ret = s->RxMissed;
3125

    
3126
            DPRINTF("RxMissed read val=0x%08x\n", ret);
3127
            break;
3128

    
3129
        case TxConfig:
3130
            ret = rtl8139_TxConfig_read(s);
3131
            break;
3132

    
3133
        case RxConfig:
3134
            ret = rtl8139_RxConfig_read(s);
3135
            break;
3136

    
3137
        case TxStatus0 ... TxStatus0+4*4-1:
3138
            ret = rtl8139_TxStatus_read(s, addr-TxStatus0);
3139
            break;
3140

    
3141
        case TxAddr0 ... TxAddr0+4*4-1:
3142
            ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3143
            break;
3144

    
3145
        case RxBuf:
3146
            ret = rtl8139_RxBuf_read(s);
3147
            break;
3148

    
3149
        case RxRingAddrLO:
3150
            ret = s->RxRingAddrLO;
3151
            DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3152
            break;
3153

    
3154
        case RxRingAddrHI:
3155
            ret = s->RxRingAddrHI;
3156
            DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3157
            break;
3158

    
3159
        case Timer:
3160
            ret = muldiv64(qemu_get_clock_ns(vm_clock) - s->TCTR_base,
3161
                           PCI_FREQUENCY, get_ticks_per_sec());
3162
            DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3163
            break;
3164

    
3165
        case FlashReg:
3166
            ret = s->TimerInt;
3167
            DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3168
            break;
3169

    
3170
        default:
3171
            DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3172

    
3173
            ret  = rtl8139_io_readb(opaque, addr);
3174
            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3175
            ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3176
            ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3177

    
3178
            DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3179
            break;
3180
    }
3181

    
3182
    return ret;
3183
}
3184

    
3185
/* */
3186

    
3187
static void rtl8139_ioport_writeb(void *opaque, uint32_t addr, uint32_t val)
3188
{
3189
    rtl8139_io_writeb(opaque, addr & 0xFF, val);
3190
}
3191

    
3192
static void rtl8139_ioport_writew(void *opaque, uint32_t addr, uint32_t val)
3193
{
3194
    rtl8139_io_writew(opaque, addr & 0xFF, val);
3195
}
3196

    
3197
static void rtl8139_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
3198
{
3199
    rtl8139_io_writel(opaque, addr & 0xFF, val);
3200
}
3201

    
3202
static uint32_t rtl8139_ioport_readb(void *opaque, uint32_t addr)
3203
{
3204
    return rtl8139_io_readb(opaque, addr & 0xFF);
3205
}
3206

    
3207
static uint32_t rtl8139_ioport_readw(void *opaque, uint32_t addr)
3208
{
3209
    return rtl8139_io_readw(opaque, addr & 0xFF);
3210
}
3211

    
3212
static uint32_t rtl8139_ioport_readl(void *opaque, uint32_t addr)
3213
{
3214
    return rtl8139_io_readl(opaque, addr & 0xFF);
3215
}
3216

    
3217
/* */
3218

    
3219
static void rtl8139_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3220
{
3221
    rtl8139_io_writeb(opaque, addr & 0xFF, val);
3222
}
3223

    
3224
static void rtl8139_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3225
{
3226
    rtl8139_io_writew(opaque, addr & 0xFF, val);
3227
}
3228

    
3229
static void rtl8139_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3230
{
3231
    rtl8139_io_writel(opaque, addr & 0xFF, val);
3232
}
3233

    
3234
static uint32_t rtl8139_mmio_readb(void *opaque, target_phys_addr_t addr)
3235
{
3236
    return rtl8139_io_readb(opaque, addr & 0xFF);
3237
}
3238

    
3239
static uint32_t rtl8139_mmio_readw(void *opaque, target_phys_addr_t addr)
3240
{
3241
    uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3242
    return val;
3243
}
3244

    
3245
static uint32_t rtl8139_mmio_readl(void *opaque, target_phys_addr_t addr)
3246
{
3247
    uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3248
    return val;
3249
}
3250

    
3251
static int rtl8139_post_load(void *opaque, int version_id)
3252
{
3253
    RTL8139State* s = opaque;
3254
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3255
    if (version_id < 4) {
3256
        s->cplus_enabled = s->CpCmd != 0;
3257
    }
3258

    
3259
    return 0;
3260
}
3261

    
3262
static bool rtl8139_hotplug_ready_needed(void *opaque)
3263
{
3264
    return qdev_machine_modified();
3265
}
3266

    
3267
static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3268
    .name = "rtl8139/hotplug_ready",
3269
    .version_id = 1,
3270
    .minimum_version_id = 1,
3271
    .minimum_version_id_old = 1,
3272
    .fields      = (VMStateField []) {
3273
        VMSTATE_END_OF_LIST()
3274
    }
3275
};
3276

    
3277
static void rtl8139_pre_save(void *opaque)
3278
{
3279
    RTL8139State* s = opaque;
3280
    int64_t current_time = qemu_get_clock_ns(vm_clock);
3281

    
3282
    /* set IntrStatus correctly */
3283
    rtl8139_set_next_tctr_time(s, current_time);
3284
    s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3285
                       get_ticks_per_sec());
3286
    s->rtl8139_mmio_io_addr_dummy = s->rtl8139_mmio_io_addr;
3287
}
3288

    
3289
static const VMStateDescription vmstate_rtl8139 = {
3290
    .name = "rtl8139",
3291
    .version_id = 4,
3292
    .minimum_version_id = 3,
3293
    .minimum_version_id_old = 3,
3294
    .post_load = rtl8139_post_load,
3295
    .pre_save  = rtl8139_pre_save,
3296
    .fields      = (VMStateField []) {
3297
        VMSTATE_PCI_DEVICE(dev, RTL8139State),
3298
        VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3299
        VMSTATE_BUFFER(mult, RTL8139State),
3300
        VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3301
        VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3302

    
3303
        VMSTATE_UINT32(RxBuf, RTL8139State),
3304
        VMSTATE_UINT32(RxBufferSize, RTL8139State),
3305
        VMSTATE_UINT32(RxBufPtr, RTL8139State),
3306
        VMSTATE_UINT32(RxBufAddr, RTL8139State),
3307

    
3308
        VMSTATE_UINT16(IntrStatus, RTL8139State),
3309
        VMSTATE_UINT16(IntrMask, RTL8139State),
3310

    
3311
        VMSTATE_UINT32(TxConfig, RTL8139State),
3312
        VMSTATE_UINT32(RxConfig, RTL8139State),
3313
        VMSTATE_UINT32(RxMissed, RTL8139State),
3314
        VMSTATE_UINT16(CSCR, RTL8139State),
3315

    
3316
        VMSTATE_UINT8(Cfg9346, RTL8139State),
3317
        VMSTATE_UINT8(Config0, RTL8139State),
3318
        VMSTATE_UINT8(Config1, RTL8139State),
3319
        VMSTATE_UINT8(Config3, RTL8139State),
3320
        VMSTATE_UINT8(Config4, RTL8139State),
3321
        VMSTATE_UINT8(Config5, RTL8139State),
3322

    
3323
        VMSTATE_UINT8(clock_enabled, RTL8139State),
3324
        VMSTATE_UINT8(bChipCmdState, RTL8139State),
3325

    
3326
        VMSTATE_UINT16(MultiIntr, RTL8139State),
3327

    
3328
        VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3329
        VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3330
        VMSTATE_UINT16(NWayAdvert, RTL8139State),
3331
        VMSTATE_UINT16(NWayLPAR, RTL8139State),
3332
        VMSTATE_UINT16(NWayExpansion, RTL8139State),
3333

    
3334
        VMSTATE_UINT16(CpCmd, RTL8139State),
3335
        VMSTATE_UINT8(TxThresh, RTL8139State),
3336

    
3337
        VMSTATE_UNUSED(4),
3338
        VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3339
        VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3340

    
3341
        VMSTATE_UINT32(currTxDesc, RTL8139State),
3342
        VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3343
        VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3344
        VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3345
        VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3346

    
3347
        VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3348
        VMSTATE_INT32(eeprom.mode, RTL8139State),
3349
        VMSTATE_UINT32(eeprom.tick, RTL8139State),
3350
        VMSTATE_UINT8(eeprom.address, RTL8139State),
3351
        VMSTATE_UINT16(eeprom.input, RTL8139State),
3352
        VMSTATE_UINT16(eeprom.output, RTL8139State),
3353

    
3354
        VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3355
        VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3356
        VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3357
        VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3358

    
3359
        VMSTATE_UINT32(TCTR, RTL8139State),
3360
        VMSTATE_UINT32(TimerInt, RTL8139State),
3361
        VMSTATE_INT64(TCTR_base, RTL8139State),
3362

    
3363
        VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3364
                       vmstate_tally_counters, RTL8139TallyCounters),
3365

    
3366
        VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3367
        VMSTATE_END_OF_LIST()
3368
    },
3369
    .subsections = (VMStateSubsection []) {
3370
        {
3371
            .vmsd = &vmstate_rtl8139_hotplug_ready,
3372
            .needed = rtl8139_hotplug_ready_needed,
3373
        }, {
3374
            /* empty */
3375
        }
3376
    }
3377
};
3378

    
3379
/***********************************************************/
3380
/* PCI RTL8139 definitions */
3381

    
3382
static void rtl8139_ioport_map(PCIDevice *pci_dev, int region_num,
3383
                       pcibus_t addr, pcibus_t size, int type)
3384
{
3385
    RTL8139State *s = DO_UPCAST(RTL8139State, dev, pci_dev);
3386

    
3387
    register_ioport_write(addr, 0x100, 1, rtl8139_ioport_writeb, s);
3388
    register_ioport_read( addr, 0x100, 1, rtl8139_ioport_readb,  s);
3389

    
3390
    register_ioport_write(addr, 0x100, 2, rtl8139_ioport_writew, s);
3391
    register_ioport_read( addr, 0x100, 2, rtl8139_ioport_readw,  s);
3392

    
3393
    register_ioport_write(addr, 0x100, 4, rtl8139_ioport_writel, s);
3394
    register_ioport_read( addr, 0x100, 4, rtl8139_ioport_readl,  s);
3395
}
3396

    
3397
static CPUReadMemoryFunc * const rtl8139_mmio_read[3] = {
3398
    rtl8139_mmio_readb,
3399
    rtl8139_mmio_readw,
3400
    rtl8139_mmio_readl,
3401
};
3402

    
3403
static CPUWriteMemoryFunc * const rtl8139_mmio_write[3] = {
3404
    rtl8139_mmio_writeb,
3405
    rtl8139_mmio_writew,
3406
    rtl8139_mmio_writel,
3407
};
3408

    
3409
static void rtl8139_timer(void *opaque)
3410
{
3411
    RTL8139State *s = opaque;
3412

    
3413
    if (!s->clock_enabled)
3414
    {
3415
        DPRINTF(">>> timer: clock is not running\n");
3416
        return;
3417
    }
3418

    
3419
    s->IntrStatus |= PCSTimeout;
3420
    rtl8139_update_irq(s);
3421
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3422
}
3423

    
3424
static void rtl8139_cleanup(VLANClientState *nc)
3425
{
3426
    RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
3427

    
3428
    s->nic = NULL;
3429
}
3430

    
3431
static int pci_rtl8139_uninit(PCIDevice *dev)
3432
{
3433
    RTL8139State *s = DO_UPCAST(RTL8139State, dev, dev);
3434

    
3435
    cpu_unregister_io_memory(s->rtl8139_mmio_io_addr);
3436
    if (s->cplus_txbuffer) {
3437
        qemu_free(s->cplus_txbuffer);
3438
        s->cplus_txbuffer = NULL;
3439
    }
3440
    qemu_del_timer(s->timer);
3441
    qemu_free_timer(s->timer);
3442
    qemu_del_vlan_client(&s->nic->nc);
3443
    return 0;
3444
}
3445

    
3446
static NetClientInfo net_rtl8139_info = {
3447
    .type = NET_CLIENT_TYPE_NIC,
3448
    .size = sizeof(NICState),
3449
    .can_receive = rtl8139_can_receive,
3450
    .receive = rtl8139_receive,
3451
    .cleanup = rtl8139_cleanup,
3452
};
3453

    
3454
static int pci_rtl8139_init(PCIDevice *dev)
3455
{
3456
    RTL8139State * s = DO_UPCAST(RTL8139State, dev, dev);
3457
    uint8_t *pci_conf;
3458

    
3459
    pci_conf = s->dev.config;
3460
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
3461
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8139);
3462
    pci_conf[PCI_REVISION_ID] = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3463
    pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
3464
    pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin 0 */
3465
    /* TODO: start of capability list, but no capability
3466
     * list bit in status register, and offset 0xdc seems unused. */
3467
    pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3468

    
3469
    /* I/O handler for memory-mapped I/O */
3470
    s->rtl8139_mmio_io_addr =
3471
        cpu_register_io_memory(rtl8139_mmio_read, rtl8139_mmio_write, s,
3472
                               DEVICE_LITTLE_ENDIAN);
3473

    
3474
    pci_register_bar(&s->dev, 0, 0x100,
3475
                           PCI_BASE_ADDRESS_SPACE_IO,  rtl8139_ioport_map);
3476

    
3477
    pci_register_bar_simple(&s->dev, 1, 0x100, 0, s->rtl8139_mmio_io_addr);
3478

    
3479
    qemu_macaddr_default_if_unset(&s->conf.macaddr);
3480

    
3481
    /* prepare eeprom */
3482
    s->eeprom.contents[0] = 0x8129;
3483
#if 1
3484
    /* PCI vendor and device ID should be mirrored here */
3485
    s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3486
    s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3487
#endif
3488
    s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3489
    s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3490
    s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3491

    
3492
    s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3493
                          dev->qdev.info->name, dev->qdev.id, s);
3494
    qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
3495

    
3496
    s->cplus_txbuffer = NULL;
3497
    s->cplus_txbuffer_len = 0;
3498
    s->cplus_txbuffer_offset = 0;
3499

    
3500
    s->TimerExpire = 0;
3501
    s->timer = qemu_new_timer_ns(vm_clock, rtl8139_timer, s);
3502
    rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3503

    
3504
    add_boot_device_path(s->conf.bootindex, &dev->qdev, "/ethernet-phy@0");
3505

    
3506
    return 0;
3507
}
3508

    
3509
static PCIDeviceInfo rtl8139_info = {
3510
    .qdev.name  = "rtl8139",
3511
    .qdev.size  = sizeof(RTL8139State),
3512
    .qdev.reset = rtl8139_reset,
3513
    .qdev.vmsd  = &vmstate_rtl8139,
3514
    .init       = pci_rtl8139_init,
3515
    .exit       = pci_rtl8139_uninit,
3516
    .romfile    = "pxe-rtl8139.rom",
3517
    .qdev.props = (Property[]) {
3518
        DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3519
        DEFINE_PROP_END_OF_LIST(),
3520
    }
3521
};
3522

    
3523
static void rtl8139_register_devices(void)
3524
{
3525
    pci_qdev_register(&rtl8139_info);
3526
}
3527

    
3528
device_init(rtl8139_register_devices)