Statistics
| Branch: | Revision:

root / cpu-exec.c @ fc9f715d

History | View | Annotate | Download (38.1 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50

    
51
/* exit the current TB from a signal handler. The host registers are
52
   restored in a state compatible with the CPU emulator
53
 */
54
void cpu_resume_from_signal(CPUState *env1, void *puc) 
55
{
56
#if !defined(CONFIG_SOFTMMU)
57
    struct ucontext *uc = puc;
58
#endif
59

    
60
    env = env1;
61

    
62
    /* XXX: restore cpu registers saved in host registers */
63

    
64
#if !defined(CONFIG_SOFTMMU)
65
    if (puc) {
66
        /* XXX: use siglongjmp ? */
67
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
68
    }
69
#endif
70
    longjmp(env->jmp_env, 1);
71
}
72

    
73
/* main execution loop */
74

    
75
int cpu_exec(CPUState *env1)
76
{
77
    int saved_T0, saved_T1, saved_T2;
78
    CPUState *saved_env;
79
#ifdef reg_EAX
80
    int saved_EAX;
81
#endif
82
#ifdef reg_ECX
83
    int saved_ECX;
84
#endif
85
#ifdef reg_EDX
86
    int saved_EDX;
87
#endif
88
#ifdef reg_EBX
89
    int saved_EBX;
90
#endif
91
#ifdef reg_ESP
92
    int saved_ESP;
93
#endif
94
#ifdef reg_EBP
95
    int saved_EBP;
96
#endif
97
#ifdef reg_ESI
98
    int saved_ESI;
99
#endif
100
#ifdef reg_EDI
101
    int saved_EDI;
102
#endif
103
#ifdef __sparc__
104
    int saved_i7, tmp_T0;
105
#endif
106
    int code_gen_size, ret, interrupt_request;
107
    void (*gen_func)(void);
108
    TranslationBlock *tb, **ptb;
109
    target_ulong cs_base, pc;
110
    uint8_t *tc_ptr;
111
    unsigned int flags;
112

    
113
    /* first we save global registers */
114
    saved_env = env;
115
    env = env1;
116
    saved_T0 = T0;
117
    saved_T1 = T1;
118
    saved_T2 = T2;
119
#ifdef __sparc__
120
    /* we also save i7 because longjmp may not restore it */
121
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
122
#endif
123

    
124
#if defined(TARGET_I386)
125
#ifdef reg_EAX
126
    saved_EAX = EAX;
127
#endif
128
#ifdef reg_ECX
129
    saved_ECX = ECX;
130
#endif
131
#ifdef reg_EDX
132
    saved_EDX = EDX;
133
#endif
134
#ifdef reg_EBX
135
    saved_EBX = EBX;
136
#endif
137
#ifdef reg_ESP
138
    saved_ESP = ESP;
139
#endif
140
#ifdef reg_EBP
141
    saved_EBP = EBP;
142
#endif
143
#ifdef reg_ESI
144
    saved_ESI = ESI;
145
#endif
146
#ifdef reg_EDI
147
    saved_EDI = EDI;
148
#endif
149

    
150
    env_to_regs();
151
    /* put eflags in CPU temporary format */
152
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
153
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
154
    CC_OP = CC_OP_EFLAGS;
155
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
156
#elif defined(TARGET_ARM)
157
    {
158
        unsigned int psr;
159
        psr = env->cpsr;
160
        env->CF = (psr >> 29) & 1;
161
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
162
        env->VF = (psr << 3) & 0x80000000;
163
        env->QF = (psr >> 27) & 1;
164
        env->cpsr = psr & ~CACHED_CPSR_BITS;
165
    }
166
#elif defined(TARGET_SPARC)
167
#elif defined(TARGET_PPC)
168
#else
169
#error unsupported target CPU
170
#endif
171
    env->exception_index = -1;
172

    
173
    /* prepare setjmp context for exception handling */
174
    for(;;) {
175
        if (setjmp(env->jmp_env) == 0) {
176
            env->current_tb = NULL;
177
            /* if an exception is pending, we execute it here */
178
            if (env->exception_index >= 0) {
179
                if (env->exception_index >= EXCP_INTERRUPT) {
180
                    /* exit request from the cpu execution loop */
181
                    ret = env->exception_index;
182
                    break;
183
                } else if (env->user_mode_only) {
184
                    /* if user mode only, we simulate a fake exception
185
                       which will be hanlded outside the cpu execution
186
                       loop */
187
#if defined(TARGET_I386)
188
                    do_interrupt_user(env->exception_index, 
189
                                      env->exception_is_int, 
190
                                      env->error_code, 
191
                                      env->exception_next_eip);
192
#endif
193
                    ret = env->exception_index;
194
                    break;
195
                } else {
196
#if defined(TARGET_I386)
197
                    /* simulate a real cpu exception. On i386, it can
198
                       trigger new exceptions, but we do not handle
199
                       double or triple faults yet. */
200
                    do_interrupt(env->exception_index, 
201
                                 env->exception_is_int, 
202
                                 env->error_code, 
203
                                 env->exception_next_eip, 0);
204
#elif defined(TARGET_PPC)
205
                    do_interrupt(env);
206
#elif defined(TARGET_SPARC)
207
                    do_interrupt(env->exception_index);
208
#endif
209
                }
210
                env->exception_index = -1;
211
            } 
212
#ifdef USE_KQEMU
213
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
214
                int ret;
215
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
216
                ret = kqemu_cpu_exec(env);
217
                /* put eflags in CPU temporary format */
218
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
219
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
220
                CC_OP = CC_OP_EFLAGS;
221
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
222
                if (ret == 1) {
223
                    /* exception */
224
                    longjmp(env->jmp_env, 1);
225
                } else if (ret == 2) {
226
                    /* softmmu execution needed */
227
                } else {
228
                    if (env->interrupt_request != 0) {
229
                        /* hardware interrupt will be executed just after */
230
                    } else {
231
                        /* otherwise, we restart */
232
                        longjmp(env->jmp_env, 1);
233
                    }
234
                }
235
            }
236
#endif
237

    
238
            T0 = 0; /* force lookup of first TB */
239
            for(;;) {
240
#ifdef __sparc__
241
                /* g1 can be modified by some libc? functions */ 
242
                tmp_T0 = T0;
243
#endif            
244
                interrupt_request = env->interrupt_request;
245
                if (__builtin_expect(interrupt_request, 0)) {
246
#if defined(TARGET_I386)
247
                    /* if hardware interrupt pending, we execute it */
248
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
249
                        (env->eflags & IF_MASK) && 
250
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
251
                        int intno;
252
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
253
                        intno = cpu_get_pic_interrupt(env);
254
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
255
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
256
                        }
257
                        do_interrupt(intno, 0, 0, 0, 1);
258
                        /* ensure that no TB jump will be modified as
259
                           the program flow was changed */
260
#ifdef __sparc__
261
                        tmp_T0 = 0;
262
#else
263
                        T0 = 0;
264
#endif
265
                    }
266
#elif defined(TARGET_PPC)
267
#if 0
268
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
269
                        cpu_ppc_reset(env);
270
                    }
271
#endif
272
                    if (msr_ee != 0) {
273
                    if ((interrupt_request & CPU_INTERRUPT_HARD)) {
274
                            /* Raise it */
275
                            env->exception_index = EXCP_EXTERNAL;
276
                            env->error_code = 0;
277
                            do_interrupt(env);
278
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
279
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
280
                            /* Raise it */
281
                            env->exception_index = EXCP_DECR;
282
                            env->error_code = 0;
283
                            do_interrupt(env);
284
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
285
                        }
286
                    }
287
#elif defined(TARGET_SPARC)
288
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
289
                        (env->psret != 0)) {
290
                        int pil = env->interrupt_index & 15;
291
                        int type = env->interrupt_index & 0xf0;
292

    
293
                        if (((type == TT_EXTINT) &&
294
                             (pil == 15 || pil > env->psrpil)) ||
295
                            type != TT_EXTINT) {
296
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
297
                            do_interrupt(env->interrupt_index);
298
                            env->interrupt_index = 0;
299
                        }
300
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
301
                        //do_interrupt(0, 0, 0, 0, 0);
302
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
303
                    }
304
#endif
305
                    if (interrupt_request & CPU_INTERRUPT_EXITTB) {
306
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
307
                        /* ensure that no TB jump will be modified as
308
                           the program flow was changed */
309
#ifdef __sparc__
310
                        tmp_T0 = 0;
311
#else
312
                        T0 = 0;
313
#endif
314
                    }
315
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
316
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
317
                        env->exception_index = EXCP_INTERRUPT;
318
                        cpu_loop_exit();
319
                    }
320
                }
321
#ifdef DEBUG_EXEC
322
                if ((loglevel & CPU_LOG_EXEC)) {
323
#if defined(TARGET_I386)
324
                    /* restore flags in standard format */
325
#ifdef reg_EAX
326
                    env->regs[R_EAX] = EAX;
327
#endif
328
#ifdef reg_EBX
329
                    env->regs[R_EBX] = EBX;
330
#endif
331
#ifdef reg_ECX
332
                    env->regs[R_ECX] = ECX;
333
#endif
334
#ifdef reg_EDX
335
                    env->regs[R_EDX] = EDX;
336
#endif
337
#ifdef reg_ESI
338
                    env->regs[R_ESI] = ESI;
339
#endif
340
#ifdef reg_EDI
341
                    env->regs[R_EDI] = EDI;
342
#endif
343
#ifdef reg_EBP
344
                    env->regs[R_EBP] = EBP;
345
#endif
346
#ifdef reg_ESP
347
                    env->regs[R_ESP] = ESP;
348
#endif
349
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
350
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
351
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
352
#elif defined(TARGET_ARM)
353
                    env->cpsr = compute_cpsr();
354
                    cpu_dump_state(env, logfile, fprintf, 0);
355
                    env->cpsr &= ~CACHED_CPSR_BITS;
356
#elif defined(TARGET_SPARC)
357
                    cpu_dump_state (env, logfile, fprintf, 0);
358
#elif defined(TARGET_PPC)
359
                    cpu_dump_state(env, logfile, fprintf, 0);
360
#else
361
#error unsupported target CPU 
362
#endif
363
                }
364
#endif
365
                /* we record a subset of the CPU state. It will
366
                   always be the same before a given translated block
367
                   is executed. */
368
#if defined(TARGET_I386)
369
                flags = env->hflags;
370
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
371
                cs_base = env->segs[R_CS].base;
372
                pc = cs_base + env->eip;
373
#elif defined(TARGET_ARM)
374
                flags = env->thumb | (env->vfp.vec_len << 1)
375
                        | (env->vfp.vec_stride << 4);
376
                cs_base = 0;
377
                pc = env->regs[15];
378
#elif defined(TARGET_SPARC)
379
                flags = 0;
380
                cs_base = env->npc;
381
                pc = env->pc;
382
#elif defined(TARGET_PPC)
383
                flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
384
                    (msr_se << MSR_SE) | (msr_le << MSR_LE);
385
                cs_base = 0;
386
                pc = env->nip;
387
#else
388
#error unsupported CPU
389
#endif
390
                tb = tb_find(&ptb, pc, cs_base, 
391
                             flags);
392
                if (!tb) {
393
                    TranslationBlock **ptb1;
394
                    unsigned int h;
395
                    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
396
                    
397
                    
398
                    spin_lock(&tb_lock);
399

    
400
                    tb_invalidated_flag = 0;
401
                    
402
                    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
403

    
404
                    /* find translated block using physical mappings */
405
                    phys_pc = get_phys_addr_code(env, pc);
406
                    phys_page1 = phys_pc & TARGET_PAGE_MASK;
407
                    phys_page2 = -1;
408
                    h = tb_phys_hash_func(phys_pc);
409
                    ptb1 = &tb_phys_hash[h];
410
                    for(;;) {
411
                        tb = *ptb1;
412
                        if (!tb)
413
                            goto not_found;
414
                        if (tb->pc == pc && 
415
                            tb->page_addr[0] == phys_page1 &&
416
                            tb->cs_base == cs_base && 
417
                            tb->flags == flags) {
418
                            /* check next page if needed */
419
                            if (tb->page_addr[1] != -1) {
420
                                virt_page2 = (pc & TARGET_PAGE_MASK) + 
421
                                    TARGET_PAGE_SIZE;
422
                                phys_page2 = get_phys_addr_code(env, virt_page2);
423
                                if (tb->page_addr[1] == phys_page2)
424
                                    goto found;
425
                            } else {
426
                                goto found;
427
                            }
428
                        }
429
                        ptb1 = &tb->phys_hash_next;
430
                    }
431
                not_found:
432
                    /* if no translated code available, then translate it now */
433
                    tb = tb_alloc(pc);
434
                    if (!tb) {
435
                        /* flush must be done */
436
                        tb_flush(env);
437
                        /* cannot fail at this point */
438
                        tb = tb_alloc(pc);
439
                        /* don't forget to invalidate previous TB info */
440
                        ptb = &tb_hash[tb_hash_func(pc)];
441
                        T0 = 0;
442
                    }
443
                    tc_ptr = code_gen_ptr;
444
                    tb->tc_ptr = tc_ptr;
445
                    tb->cs_base = cs_base;
446
                    tb->flags = flags;
447
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
448
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
449
                    
450
                    /* check next page if needed */
451
                    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
452
                    phys_page2 = -1;
453
                    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
454
                        phys_page2 = get_phys_addr_code(env, virt_page2);
455
                    }
456
                    tb_link_phys(tb, phys_pc, phys_page2);
457

    
458
                found:
459
                    if (tb_invalidated_flag) {
460
                        /* as some TB could have been invalidated because
461
                           of memory exceptions while generating the code, we
462
                           must recompute the hash index here */
463
                        ptb = &tb_hash[tb_hash_func(pc)];
464
                        while (*ptb != NULL)
465
                            ptb = &(*ptb)->hash_next;
466
                        T0 = 0;
467
                    }
468
                    /* we add the TB in the virtual pc hash table */
469
                    *ptb = tb;
470
                    tb->hash_next = NULL;
471
                    tb_link(tb);
472
                    spin_unlock(&tb_lock);
473
                }
474
#ifdef DEBUG_EXEC
475
                if ((loglevel & CPU_LOG_EXEC)) {
476
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
477
                            (long)tb->tc_ptr, tb->pc,
478
                            lookup_symbol(tb->pc));
479
                }
480
#endif
481
#ifdef __sparc__
482
                T0 = tmp_T0;
483
#endif            
484
                /* see if we can patch the calling TB. */
485
                {
486
                    if (T0 != 0
487
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
488
                    && (tb->cflags & CF_CODE_COPY) == 
489
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
490
#endif
491
                    ) {
492
                    spin_lock(&tb_lock);
493
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
494
#if defined(USE_CODE_COPY)
495
                    /* propagates the FP use info */
496
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
497
                        (tb->cflags & CF_FP_USED);
498
#endif
499
                    spin_unlock(&tb_lock);
500
                }
501
                }
502
                tc_ptr = tb->tc_ptr;
503
                env->current_tb = tb;
504
                /* execute the generated code */
505
                gen_func = (void *)tc_ptr;
506
#if defined(__sparc__)
507
                __asm__ __volatile__("call        %0\n\t"
508
                                     "mov        %%o7,%%i0"
509
                                     : /* no outputs */
510
                                     : "r" (gen_func) 
511
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
512
#elif defined(__arm__)
513
                asm volatile ("mov pc, %0\n\t"
514
                              ".global exec_loop\n\t"
515
                              "exec_loop:\n\t"
516
                              : /* no outputs */
517
                              : "r" (gen_func)
518
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
519
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
520
{
521
    if (!(tb->cflags & CF_CODE_COPY)) {
522
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
523
            save_native_fp_state(env);
524
        }
525
        gen_func();
526
    } else {
527
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
528
            restore_native_fp_state(env);
529
        }
530
        /* we work with native eflags */
531
        CC_SRC = cc_table[CC_OP].compute_all();
532
        CC_OP = CC_OP_EFLAGS;
533
        asm(".globl exec_loop\n"
534
            "\n"
535
            "debug1:\n"
536
            "    pushl %%ebp\n"
537
            "    fs movl %10, %9\n"
538
            "    fs movl %11, %%eax\n"
539
            "    andl $0x400, %%eax\n"
540
            "    fs orl %8, %%eax\n"
541
            "    pushl %%eax\n"
542
            "    popf\n"
543
            "    fs movl %%esp, %12\n"
544
            "    fs movl %0, %%eax\n"
545
            "    fs movl %1, %%ecx\n"
546
            "    fs movl %2, %%edx\n"
547
            "    fs movl %3, %%ebx\n"
548
            "    fs movl %4, %%esp\n"
549
            "    fs movl %5, %%ebp\n"
550
            "    fs movl %6, %%esi\n"
551
            "    fs movl %7, %%edi\n"
552
            "    fs jmp *%9\n"
553
            "exec_loop:\n"
554
            "    fs movl %%esp, %4\n"
555
            "    fs movl %12, %%esp\n"
556
            "    fs movl %%eax, %0\n"
557
            "    fs movl %%ecx, %1\n"
558
            "    fs movl %%edx, %2\n"
559
            "    fs movl %%ebx, %3\n"
560
            "    fs movl %%ebp, %5\n"
561
            "    fs movl %%esi, %6\n"
562
            "    fs movl %%edi, %7\n"
563
            "    pushf\n"
564
            "    popl %%eax\n"
565
            "    movl %%eax, %%ecx\n"
566
            "    andl $0x400, %%ecx\n"
567
            "    shrl $9, %%ecx\n"
568
            "    andl $0x8d5, %%eax\n"
569
            "    fs movl %%eax, %8\n"
570
            "    movl $1, %%eax\n"
571
            "    subl %%ecx, %%eax\n"
572
            "    fs movl %%eax, %11\n"
573
            "    fs movl %9, %%ebx\n" /* get T0 value */
574
            "    popl %%ebp\n"
575
            :
576
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
577
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
578
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
579
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
580
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
581
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
582
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
583
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
584
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
585
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
586
            "a" (gen_func),
587
            "m" (*(uint8_t *)offsetof(CPUState, df)),
588
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
589
            : "%ecx", "%edx"
590
            );
591
    }
592
}
593
#elif defined(__ia64)
594
                struct fptr {
595
                        void *ip;
596
                        void *gp;
597
                } fp;
598

    
599
                fp.ip = tc_ptr;
600
                fp.gp = code_gen_buffer + 2 * (1 << 20);
601
                (*(void (*)(void)) &fp)();
602
#else
603
                gen_func();
604
#endif
605
                env->current_tb = NULL;
606
                /* reset soft MMU for next block (it can currently
607
                   only be set by a memory fault) */
608
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
609
                if (env->hflags & HF_SOFTMMU_MASK) {
610
                    env->hflags &= ~HF_SOFTMMU_MASK;
611
                    /* do not allow linking to another block */
612
                    T0 = 0;
613
                }
614
#endif
615
            }
616
        } else {
617
            env_to_regs();
618
        }
619
    } /* for(;;) */
620

    
621

    
622
#if defined(TARGET_I386)
623
#if defined(USE_CODE_COPY)
624
    if (env->native_fp_regs) {
625
        save_native_fp_state(env);
626
    }
627
#endif
628
    /* restore flags in standard format */
629
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
630

    
631
    /* restore global registers */
632
#ifdef reg_EAX
633
    EAX = saved_EAX;
634
#endif
635
#ifdef reg_ECX
636
    ECX = saved_ECX;
637
#endif
638
#ifdef reg_EDX
639
    EDX = saved_EDX;
640
#endif
641
#ifdef reg_EBX
642
    EBX = saved_EBX;
643
#endif
644
#ifdef reg_ESP
645
    ESP = saved_ESP;
646
#endif
647
#ifdef reg_EBP
648
    EBP = saved_EBP;
649
#endif
650
#ifdef reg_ESI
651
    ESI = saved_ESI;
652
#endif
653
#ifdef reg_EDI
654
    EDI = saved_EDI;
655
#endif
656
#elif defined(TARGET_ARM)
657
    env->cpsr = compute_cpsr();
658
    /* XXX: Save/restore host fpu exception state?.  */
659
#elif defined(TARGET_SPARC)
660
#elif defined(TARGET_PPC)
661
#else
662
#error unsupported target CPU
663
#endif
664
#ifdef __sparc__
665
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
666
#endif
667
    T0 = saved_T0;
668
    T1 = saved_T1;
669
    T2 = saved_T2;
670
    env = saved_env;
671
    return ret;
672
}
673

    
674
/* must only be called from the generated code as an exception can be
675
   generated */
676
void tb_invalidate_page_range(target_ulong start, target_ulong end)
677
{
678
    /* XXX: cannot enable it yet because it yields to MMU exception
679
       where NIP != read address on PowerPC */
680
#if 0
681
    target_ulong phys_addr;
682
    phys_addr = get_phys_addr_code(env, start);
683
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
684
#endif
685
}
686

    
687
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
688

    
689
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
690
{
691
    CPUX86State *saved_env;
692

    
693
    saved_env = env;
694
    env = s;
695
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
696
        selector &= 0xffff;
697
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
698
                               (selector << 4), 0xffff, 0);
699
    } else {
700
        load_seg(seg_reg, selector);
701
    }
702
    env = saved_env;
703
}
704

    
705
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
706
{
707
    CPUX86State *saved_env;
708

    
709
    saved_env = env;
710
    env = s;
711
    
712
    helper_fsave((target_ulong)ptr, data32);
713

    
714
    env = saved_env;
715
}
716

    
717
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
718
{
719
    CPUX86State *saved_env;
720

    
721
    saved_env = env;
722
    env = s;
723
    
724
    helper_frstor((target_ulong)ptr, data32);
725

    
726
    env = saved_env;
727
}
728

    
729
#endif /* TARGET_I386 */
730

    
731
#if !defined(CONFIG_SOFTMMU)
732

    
733
#if defined(TARGET_I386)
734

    
735
/* 'pc' is the host PC at which the exception was raised. 'address' is
736
   the effective address of the memory exception. 'is_write' is 1 if a
737
   write caused the exception and otherwise 0'. 'old_set' is the
738
   signal set which should be restored */
739
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
740
                                    int is_write, sigset_t *old_set, 
741
                                    void *puc)
742
{
743
    TranslationBlock *tb;
744
    int ret;
745

    
746
    if (cpu_single_env)
747
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
748
#if defined(DEBUG_SIGNAL)
749
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
750
                pc, address, is_write, *(unsigned long *)old_set);
751
#endif
752
    /* XXX: locking issue */
753
    if (is_write && page_unprotect(address, pc, puc)) {
754
        return 1;
755
    }
756

    
757
    /* see if it is an MMU fault */
758
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
759
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
760
    if (ret < 0)
761
        return 0; /* not an MMU fault */
762
    if (ret == 0)
763
        return 1; /* the MMU fault was handled without causing real CPU fault */
764
    /* now we have a real cpu fault */
765
    tb = tb_find_pc(pc);
766
    if (tb) {
767
        /* the PC is inside the translated code. It means that we have
768
           a virtual CPU fault */
769
        cpu_restore_state(tb, env, pc, puc);
770
    }
771
    if (ret == 1) {
772
#if 0
773
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
774
               env->eip, env->cr[2], env->error_code);
775
#endif
776
        /* we restore the process signal mask as the sigreturn should
777
           do it (XXX: use sigsetjmp) */
778
        sigprocmask(SIG_SETMASK, old_set, NULL);
779
        raise_exception_err(EXCP0E_PAGE, env->error_code);
780
    } else {
781
        /* activate soft MMU for this block */
782
        env->hflags |= HF_SOFTMMU_MASK;
783
        cpu_resume_from_signal(env, puc);
784
    }
785
    /* never comes here */
786
    return 1;
787
}
788

    
789
#elif defined(TARGET_ARM)
790
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
791
                                    int is_write, sigset_t *old_set,
792
                                    void *puc)
793
{
794
    TranslationBlock *tb;
795
    int ret;
796

    
797
    if (cpu_single_env)
798
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
799
#if defined(DEBUG_SIGNAL)
800
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
801
           pc, address, is_write, *(unsigned long *)old_set);
802
#endif
803
    /* XXX: locking issue */
804
    if (is_write && page_unprotect(address, pc, puc)) {
805
        return 1;
806
    }
807
    /* see if it is an MMU fault */
808
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
809
    if (ret < 0)
810
        return 0; /* not an MMU fault */
811
    if (ret == 0)
812
        return 1; /* the MMU fault was handled without causing real CPU fault */
813
    /* now we have a real cpu fault */
814
    tb = tb_find_pc(pc);
815
    if (tb) {
816
        /* the PC is inside the translated code. It means that we have
817
           a virtual CPU fault */
818
        cpu_restore_state(tb, env, pc, puc);
819
    }
820
    /* we restore the process signal mask as the sigreturn should
821
       do it (XXX: use sigsetjmp) */
822
    sigprocmask(SIG_SETMASK, old_set, NULL);
823
    cpu_loop_exit();
824
}
825
#elif defined(TARGET_SPARC)
826
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
827
                                    int is_write, sigset_t *old_set,
828
                                    void *puc)
829
{
830
    TranslationBlock *tb;
831
    int ret;
832

    
833
    if (cpu_single_env)
834
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
835
#if defined(DEBUG_SIGNAL)
836
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
837
           pc, address, is_write, *(unsigned long *)old_set);
838
#endif
839
    /* XXX: locking issue */
840
    if (is_write && page_unprotect(address, pc, puc)) {
841
        return 1;
842
    }
843
    /* see if it is an MMU fault */
844
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
845
    if (ret < 0)
846
        return 0; /* not an MMU fault */
847
    if (ret == 0)
848
        return 1; /* the MMU fault was handled without causing real CPU fault */
849
    /* now we have a real cpu fault */
850
    tb = tb_find_pc(pc);
851
    if (tb) {
852
        /* the PC is inside the translated code. It means that we have
853
           a virtual CPU fault */
854
        cpu_restore_state(tb, env, pc, puc);
855
    }
856
    /* we restore the process signal mask as the sigreturn should
857
       do it (XXX: use sigsetjmp) */
858
    sigprocmask(SIG_SETMASK, old_set, NULL);
859
    cpu_loop_exit();
860
}
861
#elif defined (TARGET_PPC)
862
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
863
                                    int is_write, sigset_t *old_set,
864
                                    void *puc)
865
{
866
    TranslationBlock *tb;
867
    int ret;
868
    
869
    if (cpu_single_env)
870
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
871
#if defined(DEBUG_SIGNAL)
872
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
873
           pc, address, is_write, *(unsigned long *)old_set);
874
#endif
875
    /* XXX: locking issue */
876
    if (is_write && page_unprotect(address, pc, puc)) {
877
        return 1;
878
    }
879

    
880
    /* see if it is an MMU fault */
881
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
882
    if (ret < 0)
883
        return 0; /* not an MMU fault */
884
    if (ret == 0)
885
        return 1; /* the MMU fault was handled without causing real CPU fault */
886

    
887
    /* now we have a real cpu fault */
888
    tb = tb_find_pc(pc);
889
    if (tb) {
890
        /* the PC is inside the translated code. It means that we have
891
           a virtual CPU fault */
892
        cpu_restore_state(tb, env, pc, puc);
893
    }
894
    if (ret == 1) {
895
#if 0
896
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
897
               env->nip, env->error_code, tb);
898
#endif
899
    /* we restore the process signal mask as the sigreturn should
900
       do it (XXX: use sigsetjmp) */
901
        sigprocmask(SIG_SETMASK, old_set, NULL);
902
        do_raise_exception_err(env->exception_index, env->error_code);
903
    } else {
904
        /* activate soft MMU for this block */
905
        cpu_resume_from_signal(env, puc);
906
    }
907
    /* never comes here */
908
    return 1;
909
}
910
#else
911
#error unsupported target CPU
912
#endif
913

    
914
#if defined(__i386__)
915

    
916
#if defined(USE_CODE_COPY)
917
static void cpu_send_trap(unsigned long pc, int trap, 
918
                          struct ucontext *uc)
919
{
920
    TranslationBlock *tb;
921

    
922
    if (cpu_single_env)
923
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
924
    /* now we have a real cpu fault */
925
    tb = tb_find_pc(pc);
926
    if (tb) {
927
        /* the PC is inside the translated code. It means that we have
928
           a virtual CPU fault */
929
        cpu_restore_state(tb, env, pc, uc);
930
    }
931
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
932
    raise_exception_err(trap, env->error_code);
933
}
934
#endif
935

    
936
int cpu_signal_handler(int host_signum, struct siginfo *info, 
937
                       void *puc)
938
{
939
    struct ucontext *uc = puc;
940
    unsigned long pc;
941
    int trapno;
942

    
943
#ifndef REG_EIP
944
/* for glibc 2.1 */
945
#define REG_EIP    EIP
946
#define REG_ERR    ERR
947
#define REG_TRAPNO TRAPNO
948
#endif
949
    pc = uc->uc_mcontext.gregs[REG_EIP];
950
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
951
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
952
    if (trapno == 0x00 || trapno == 0x05) {
953
        /* send division by zero or bound exception */
954
        cpu_send_trap(pc, trapno, uc);
955
        return 1;
956
    } else
957
#endif
958
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
959
                                 trapno == 0xe ? 
960
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
961
                                 &uc->uc_sigmask, puc);
962
}
963

    
964
#elif defined(__x86_64__)
965

    
966
int cpu_signal_handler(int host_signum, struct siginfo *info,
967
                       void *puc)
968
{
969
    struct ucontext *uc = puc;
970
    unsigned long pc;
971

    
972
    pc = uc->uc_mcontext.gregs[REG_RIP];
973
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
974
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
975
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
976
                             &uc->uc_sigmask, puc);
977
}
978

    
979
#elif defined(__powerpc__)
980

    
981
/***********************************************************************
982
 * signal context platform-specific definitions
983
 * From Wine
984
 */
985
#ifdef linux
986
/* All Registers access - only for local access */
987
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
988
/* Gpr Registers access  */
989
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
990
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
991
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
992
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
993
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
994
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
995
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
996
/* Float Registers access  */
997
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
998
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
999
/* Exception Registers access */
1000
# define DAR_sig(context)                        REG_sig(dar, context)
1001
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1002
# define TRAP_sig(context)                        REG_sig(trap, context)
1003
#endif /* linux */
1004

    
1005
#ifdef __APPLE__
1006
# include <sys/ucontext.h>
1007
typedef struct ucontext SIGCONTEXT;
1008
/* All Registers access - only for local access */
1009
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1010
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1011
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1012
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1013
/* Gpr Registers access */
1014
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1015
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1016
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1017
# define CTR_sig(context)                        REG_sig(ctr, context)
1018
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1019
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1020
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1021
/* Float Registers access */
1022
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1023
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1024
/* Exception Registers access */
1025
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1026
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1027
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1028
#endif /* __APPLE__ */
1029

    
1030
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1031
                       void *puc)
1032
{
1033
    struct ucontext *uc = puc;
1034
    unsigned long pc;
1035
    int is_write;
1036

    
1037
    pc = IAR_sig(uc);
1038
    is_write = 0;
1039
#if 0
1040
    /* ppc 4xx case */
1041
    if (DSISR_sig(uc) & 0x00800000)
1042
        is_write = 1;
1043
#else
1044
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1045
        is_write = 1;
1046
#endif
1047
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1048
                             is_write, &uc->uc_sigmask, puc);
1049
}
1050

    
1051
#elif defined(__alpha__)
1052

    
1053
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1054
                           void *puc)
1055
{
1056
    struct ucontext *uc = puc;
1057
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1058
    uint32_t insn = *pc;
1059
    int is_write = 0;
1060

    
1061
    /* XXX: need kernel patch to get write flag faster */
1062
    switch (insn >> 26) {
1063
    case 0x0d: // stw
1064
    case 0x0e: // stb
1065
    case 0x0f: // stq_u
1066
    case 0x24: // stf
1067
    case 0x25: // stg
1068
    case 0x26: // sts
1069
    case 0x27: // stt
1070
    case 0x2c: // stl
1071
    case 0x2d: // stq
1072
    case 0x2e: // stl_c
1073
    case 0x2f: // stq_c
1074
        is_write = 1;
1075
    }
1076

    
1077
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1078
                             is_write, &uc->uc_sigmask, puc);
1079
}
1080
#elif defined(__sparc__)
1081

    
1082
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1083
                       void *puc)
1084
{
1085
    uint32_t *regs = (uint32_t *)(info + 1);
1086
    void *sigmask = (regs + 20);
1087
    unsigned long pc;
1088
    int is_write;
1089
    uint32_t insn;
1090
    
1091
    /* XXX: is there a standard glibc define ? */
1092
    pc = regs[1];
1093
    /* XXX: need kernel patch to get write flag faster */
1094
    is_write = 0;
1095
    insn = *(uint32_t *)pc;
1096
    if ((insn >> 30) == 3) {
1097
      switch((insn >> 19) & 0x3f) {
1098
      case 0x05: // stb
1099
      case 0x06: // sth
1100
      case 0x04: // st
1101
      case 0x07: // std
1102
      case 0x24: // stf
1103
      case 0x27: // stdf
1104
      case 0x25: // stfsr
1105
        is_write = 1;
1106
        break;
1107
      }
1108
    }
1109
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1110
                             is_write, sigmask, NULL);
1111
}
1112

    
1113
#elif defined(__arm__)
1114

    
1115
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1116
                       void *puc)
1117
{
1118
    struct ucontext *uc = puc;
1119
    unsigned long pc;
1120
    int is_write;
1121
    
1122
    pc = uc->uc_mcontext.gregs[R15];
1123
    /* XXX: compute is_write */
1124
    is_write = 0;
1125
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1126
                             is_write,
1127
                             &uc->uc_sigmask);
1128
}
1129

    
1130
#elif defined(__mc68000)
1131

    
1132
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1133
                       void *puc)
1134
{
1135
    struct ucontext *uc = puc;
1136
    unsigned long pc;
1137
    int is_write;
1138
    
1139
    pc = uc->uc_mcontext.gregs[16];
1140
    /* XXX: compute is_write */
1141
    is_write = 0;
1142
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1143
                             is_write,
1144
                             &uc->uc_sigmask, puc);
1145
}
1146

    
1147
#elif defined(__ia64)
1148

    
1149
#ifndef __ISR_VALID
1150
  /* This ought to be in <bits/siginfo.h>... */
1151
# define __ISR_VALID        1
1152
# define si_flags        _sifields._sigfault._si_pad0
1153
#endif
1154

    
1155
int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1156
{
1157
    struct ucontext *uc = puc;
1158
    unsigned long ip;
1159
    int is_write = 0;
1160

    
1161
    ip = uc->uc_mcontext.sc_ip;
1162
    switch (host_signum) {
1163
      case SIGILL:
1164
      case SIGFPE:
1165
      case SIGSEGV:
1166
      case SIGBUS:
1167
      case SIGTRAP:
1168
          if (info->si_code && (info->si_flags & __ISR_VALID))
1169
              /* ISR.W (write-access) is bit 33:  */
1170
              is_write = (info->si_isr >> 33) & 1;
1171
          break;
1172

    
1173
      default:
1174
          break;
1175
    }
1176
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1177
                             is_write,
1178
                             &uc->uc_sigmask, puc);
1179
}
1180

    
1181
#else
1182

    
1183
#error host CPU specific signal handler needed
1184

    
1185
#endif
1186

    
1187
#endif /* !defined(CONFIG_SOFTMMU) */