Statistics
| Branch: | Revision:

root / cpu-exec.c @ fd4a43e4

History | View | Annotate | Download (43.9 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#ifndef TARGET_SPARC
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        tb_invalidated_flag = 1;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    /* we add the TB in the virtual pc hash table */
148
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149
    spin_unlock(&tb_lock);
150
    return tb;
151
}
152

    
153
static inline TranslationBlock *tb_find_fast(void)
154
{
155
    TranslationBlock *tb;
156
    target_ulong cs_base, pc;
157
    unsigned int flags;
158

    
159
    /* we record a subset of the CPU state. It will
160
       always be the same before a given translated block
161
       is executed. */
162
#if defined(TARGET_I386)
163
    flags = env->hflags;
164
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165
    cs_base = env->segs[R_CS].base;
166
    pc = cs_base + env->eip;
167
#elif defined(TARGET_ARM)
168
    flags = env->thumb | (env->vfp.vec_len << 1)
169
            | (env->vfp.vec_stride << 4);
170
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171
        flags |= (1 << 6);
172
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173
        flags |= (1 << 7);
174
    cs_base = 0;
175
    pc = env->regs[15];
176
#elif defined(TARGET_SPARC)
177
#ifdef TARGET_SPARC64
178
    flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
179
#else
180
    flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
181
#endif
182
    cs_base = env->npc;
183
    pc = env->pc;
184
#elif defined(TARGET_PPC)
185
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
186
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
187
    cs_base = 0;
188
    pc = env->nip;
189
#elif defined(TARGET_MIPS)
190
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
191
    cs_base = 0;
192
    pc = env->PC;
193
#else
194
#error unsupported CPU
195
#endif
196
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
197
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
198
                         tb->flags != flags, 0)) {
199
        tb = tb_find_slow(pc, cs_base, flags);
200
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
201
           doing it in tb_find_slow */
202
        if (tb_invalidated_flag) {
203
            /* as some TB could have been invalidated because
204
               of memory exceptions while generating the code, we
205
               must recompute the hash index here */
206
            T0 = 0;
207
        }
208
    }
209
    return tb;
210
}
211

    
212

    
213
/* main execution loop */
214

    
215
int cpu_exec(CPUState *env1)
216
{
217
    int saved_T0, saved_T1;
218
#if defined(reg_T2)
219
    int saved_T2;
220
#endif
221
    CPUState *saved_env;
222
#if defined(TARGET_I386)
223
#ifdef reg_EAX
224
    int saved_EAX;
225
#endif
226
#ifdef reg_ECX
227
    int saved_ECX;
228
#endif
229
#ifdef reg_EDX
230
    int saved_EDX;
231
#endif
232
#ifdef reg_EBX
233
    int saved_EBX;
234
#endif
235
#ifdef reg_ESP
236
    int saved_ESP;
237
#endif
238
#ifdef reg_EBP
239
    int saved_EBP;
240
#endif
241
#ifdef reg_ESI
242
    int saved_ESI;
243
#endif
244
#ifdef reg_EDI
245
    int saved_EDI;
246
#endif
247
#elif defined(TARGET_SPARC)
248
#if defined(reg_REGWPTR)
249
    uint32_t *saved_regwptr;
250
#endif
251
#endif
252
#ifdef __sparc__
253
    int saved_i7, tmp_T0;
254
#endif
255
    int ret, interrupt_request;
256
    void (*gen_func)(void);
257
    TranslationBlock *tb;
258
    uint8_t *tc_ptr;
259

    
260
#if defined(TARGET_I386)
261
    /* handle exit of HALTED state */
262
    if (env1->hflags & HF_HALTED_MASK) {
263
        /* disable halt condition */
264
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
265
            (env1->eflags & IF_MASK)) {
266
            env1->hflags &= ~HF_HALTED_MASK;
267
        } else {
268
            return EXCP_HALTED;
269
        }
270
    }
271
#elif defined(TARGET_PPC)
272
    if (env1->halted) {
273
        if (env1->msr[MSR_EE] && 
274
            (env1->interrupt_request & 
275
             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
276
            env1->halted = 0;
277
        } else {
278
            return EXCP_HALTED;
279
        }
280
    }
281
#elif defined(TARGET_SPARC)
282
    if (env1->halted) {
283
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
284
            (env1->psret != 0)) {
285
            env1->halted = 0;
286
        } else {
287
            return EXCP_HALTED;
288
        }
289
    }
290
#elif defined(TARGET_ARM)
291
    if (env1->halted) {
292
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
293
           set.  */
294
        if (env1->interrupt_request
295
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
296
            env1->halted = 0;
297
        } else {
298
            return EXCP_HALTED;
299
        }
300
    }
301
#elif defined(TARGET_MIPS)
302
    if (env1->halted) {
303
        if (env1->interrupt_request &
304
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
305
            env1->halted = 0;
306
        } else {
307
            return EXCP_HALTED;
308
        }
309
    }
310
#endif
311

    
312
    cpu_single_env = env1; 
313

    
314
    /* first we save global registers */
315
    saved_env = env;
316
    env = env1;
317
    saved_T0 = T0;
318
    saved_T1 = T1;
319
#if defined(reg_T2)
320
    saved_T2 = T2;
321
#endif
322
#ifdef __sparc__
323
    /* we also save i7 because longjmp may not restore it */
324
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
325
#endif
326

    
327
#if defined(TARGET_I386)
328
#ifdef reg_EAX
329
    saved_EAX = EAX;
330
#endif
331
#ifdef reg_ECX
332
    saved_ECX = ECX;
333
#endif
334
#ifdef reg_EDX
335
    saved_EDX = EDX;
336
#endif
337
#ifdef reg_EBX
338
    saved_EBX = EBX;
339
#endif
340
#ifdef reg_ESP
341
    saved_ESP = ESP;
342
#endif
343
#ifdef reg_EBP
344
    saved_EBP = EBP;
345
#endif
346
#ifdef reg_ESI
347
    saved_ESI = ESI;
348
#endif
349
#ifdef reg_EDI
350
    saved_EDI = EDI;
351
#endif
352

    
353
    env_to_regs();
354
    /* put eflags in CPU temporary format */
355
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
356
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
357
    CC_OP = CC_OP_EFLAGS;
358
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
359
#elif defined(TARGET_ARM)
360
#elif defined(TARGET_SPARC)
361
#if defined(reg_REGWPTR)
362
    saved_regwptr = REGWPTR;
363
#endif
364
#elif defined(TARGET_PPC)
365
#elif defined(TARGET_MIPS)
366
#else
367
#error unsupported target CPU
368
#endif
369
    env->exception_index = -1;
370

    
371
    /* prepare setjmp context for exception handling */
372
    for(;;) {
373
        if (setjmp(env->jmp_env) == 0) {
374
            env->current_tb = NULL;
375
            /* if an exception is pending, we execute it here */
376
            if (env->exception_index >= 0) {
377
                if (env->exception_index >= EXCP_INTERRUPT) {
378
                    /* exit request from the cpu execution loop */
379
                    ret = env->exception_index;
380
                    break;
381
                } else if (env->user_mode_only) {
382
                    /* if user mode only, we simulate a fake exception
383
                       which will be hanlded outside the cpu execution
384
                       loop */
385
#if defined(TARGET_I386)
386
                    do_interrupt_user(env->exception_index, 
387
                                      env->exception_is_int, 
388
                                      env->error_code, 
389
                                      env->exception_next_eip);
390
#endif
391
                    ret = env->exception_index;
392
                    break;
393
                } else {
394
#if defined(TARGET_I386)
395
                    /* simulate a real cpu exception. On i386, it can
396
                       trigger new exceptions, but we do not handle
397
                       double or triple faults yet. */
398
                    do_interrupt(env->exception_index, 
399
                                 env->exception_is_int, 
400
                                 env->error_code, 
401
                                 env->exception_next_eip, 0);
402
#elif defined(TARGET_PPC)
403
                    do_interrupt(env);
404
#elif defined(TARGET_MIPS)
405
                    do_interrupt(env);
406
#elif defined(TARGET_SPARC)
407
                    do_interrupt(env->exception_index);
408
#elif defined(TARGET_ARM)
409
                    do_interrupt(env);
410
#endif
411
                }
412
                env->exception_index = -1;
413
            } 
414
#ifdef USE_KQEMU
415
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
416
                int ret;
417
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
418
                ret = kqemu_cpu_exec(env);
419
                /* put eflags in CPU temporary format */
420
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
421
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
422
                CC_OP = CC_OP_EFLAGS;
423
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
424
                if (ret == 1) {
425
                    /* exception */
426
                    longjmp(env->jmp_env, 1);
427
                } else if (ret == 2) {
428
                    /* softmmu execution needed */
429
                } else {
430
                    if (env->interrupt_request != 0) {
431
                        /* hardware interrupt will be executed just after */
432
                    } else {
433
                        /* otherwise, we restart */
434
                        longjmp(env->jmp_env, 1);
435
                    }
436
                }
437
            }
438
#endif
439

    
440
            T0 = 0; /* force lookup of first TB */
441
            for(;;) {
442
#ifdef __sparc__
443
                /* g1 can be modified by some libc? functions */ 
444
                tmp_T0 = T0;
445
#endif            
446
                interrupt_request = env->interrupt_request;
447
                if (__builtin_expect(interrupt_request, 0)) {
448
#if defined(TARGET_I386)
449
                    /* if hardware interrupt pending, we execute it */
450
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
451
                        (env->eflags & IF_MASK) && 
452
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
453
                        int intno;
454
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
455
                        intno = cpu_get_pic_interrupt(env);
456
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
457
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
458
                        }
459
                        do_interrupt(intno, 0, 0, 0, 1);
460
                        /* ensure that no TB jump will be modified as
461
                           the program flow was changed */
462
#ifdef __sparc__
463
                        tmp_T0 = 0;
464
#else
465
                        T0 = 0;
466
#endif
467
                    }
468
#elif defined(TARGET_PPC)
469
#if 0
470
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
471
                        cpu_ppc_reset(env);
472
                    }
473
#endif
474
                    if (msr_ee != 0) {
475
                        if ((interrupt_request & CPU_INTERRUPT_HARD)) {
476
                            /* Raise it */
477
                            env->exception_index = EXCP_EXTERNAL;
478
                            env->error_code = 0;
479
                            do_interrupt(env);
480
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
481
#ifdef __sparc__
482
                            tmp_T0 = 0;
483
#else
484
                            T0 = 0;
485
#endif
486
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
487
                            /* Raise it */
488
                            env->exception_index = EXCP_DECR;
489
                            env->error_code = 0;
490
                            do_interrupt(env);
491
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
492
#ifdef __sparc__
493
                            tmp_T0 = 0;
494
#else
495
                            T0 = 0;
496
#endif
497
                        }
498
                    }
499
#elif defined(TARGET_MIPS)
500
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
501
                        (env->CP0_Status & (1 << CP0St_IE)) &&
502
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
503
                        !(env->hflags & MIPS_HFLAG_EXL) &&
504
                        !(env->hflags & MIPS_HFLAG_ERL) &&
505
                        !(env->hflags & MIPS_HFLAG_DM)) {
506
                        /* Raise it */
507
                        env->exception_index = EXCP_EXT_INTERRUPT;
508
                        env->error_code = 0;
509
                        do_interrupt(env);
510
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
511
#ifdef __sparc__
512
                        tmp_T0 = 0;
513
#else
514
                        T0 = 0;
515
#endif
516
                    }
517
#elif defined(TARGET_SPARC)
518
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
519
                        (env->psret != 0)) {
520
                        int pil = env->interrupt_index & 15;
521
                        int type = env->interrupt_index & 0xf0;
522

    
523
                        if (((type == TT_EXTINT) &&
524
                             (pil == 15 || pil > env->psrpil)) ||
525
                            type != TT_EXTINT) {
526
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
527
                            do_interrupt(env->interrupt_index);
528
                            env->interrupt_index = 0;
529
#ifdef __sparc__
530
                            tmp_T0 = 0;
531
#else
532
                            T0 = 0;
533
#endif
534
                        }
535
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
536
                        //do_interrupt(0, 0, 0, 0, 0);
537
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
538
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
539
                        env1->halted = 1;
540
                        return EXCP_HALTED;
541
                    }
542
#elif defined(TARGET_ARM)
543
                    if (interrupt_request & CPU_INTERRUPT_FIQ
544
                        && !(env->uncached_cpsr & CPSR_F)) {
545
                        env->exception_index = EXCP_FIQ;
546
                        do_interrupt(env);
547
                    }
548
                    if (interrupt_request & CPU_INTERRUPT_HARD
549
                        && !(env->uncached_cpsr & CPSR_I)) {
550
                        env->exception_index = EXCP_IRQ;
551
                        do_interrupt(env);
552
                    }
553
#endif
554
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
555
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
556
                        /* ensure that no TB jump will be modified as
557
                           the program flow was changed */
558
#ifdef __sparc__
559
                        tmp_T0 = 0;
560
#else
561
                        T0 = 0;
562
#endif
563
                    }
564
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
565
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
566
                        env->exception_index = EXCP_INTERRUPT;
567
                        cpu_loop_exit();
568
                    }
569
                }
570
#ifdef DEBUG_EXEC
571
                if ((loglevel & CPU_LOG_TB_CPU)) {
572
#if defined(TARGET_I386)
573
                    /* restore flags in standard format */
574
#ifdef reg_EAX
575
                    env->regs[R_EAX] = EAX;
576
#endif
577
#ifdef reg_EBX
578
                    env->regs[R_EBX] = EBX;
579
#endif
580
#ifdef reg_ECX
581
                    env->regs[R_ECX] = ECX;
582
#endif
583
#ifdef reg_EDX
584
                    env->regs[R_EDX] = EDX;
585
#endif
586
#ifdef reg_ESI
587
                    env->regs[R_ESI] = ESI;
588
#endif
589
#ifdef reg_EDI
590
                    env->regs[R_EDI] = EDI;
591
#endif
592
#ifdef reg_EBP
593
                    env->regs[R_EBP] = EBP;
594
#endif
595
#ifdef reg_ESP
596
                    env->regs[R_ESP] = ESP;
597
#endif
598
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
599
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
600
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
601
#elif defined(TARGET_ARM)
602
                    cpu_dump_state(env, logfile, fprintf, 0);
603
#elif defined(TARGET_SPARC)
604
                    REGWPTR = env->regbase + (env->cwp * 16);
605
                    env->regwptr = REGWPTR;
606
                    cpu_dump_state(env, logfile, fprintf, 0);
607
#elif defined(TARGET_PPC)
608
                    cpu_dump_state(env, logfile, fprintf, 0);
609
#elif defined(TARGET_MIPS)
610
                    cpu_dump_state(env, logfile, fprintf, 0);
611
#else
612
#error unsupported target CPU 
613
#endif
614
                }
615
#endif
616
                tb = tb_find_fast();
617
#ifdef DEBUG_EXEC
618
                if ((loglevel & CPU_LOG_EXEC)) {
619
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
620
                            (long)tb->tc_ptr, tb->pc,
621
                            lookup_symbol(tb->pc));
622
                }
623
#endif
624
#ifdef __sparc__
625
                T0 = tmp_T0;
626
#endif            
627
                /* see if we can patch the calling TB. When the TB
628
                   spans two pages, we cannot safely do a direct
629
                   jump. */
630
                {
631
                    if (T0 != 0 &&
632
#if USE_KQEMU
633
                        (env->kqemu_enabled != 2) &&
634
#endif
635
                        tb->page_addr[1] == -1
636
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
637
                    && (tb->cflags & CF_CODE_COPY) == 
638
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
639
#endif
640
                    ) {
641
                    spin_lock(&tb_lock);
642
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
643
#if defined(USE_CODE_COPY)
644
                    /* propagates the FP use info */
645
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
646
                        (tb->cflags & CF_FP_USED);
647
#endif
648
                    spin_unlock(&tb_lock);
649
                }
650
                }
651
                tc_ptr = tb->tc_ptr;
652
                env->current_tb = tb;
653
                /* execute the generated code */
654
                gen_func = (void *)tc_ptr;
655
#if defined(__sparc__)
656
                __asm__ __volatile__("call        %0\n\t"
657
                                     "mov        %%o7,%%i0"
658
                                     : /* no outputs */
659
                                     : "r" (gen_func) 
660
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
661
#elif defined(__arm__)
662
                asm volatile ("mov pc, %0\n\t"
663
                              ".global exec_loop\n\t"
664
                              "exec_loop:\n\t"
665
                              : /* no outputs */
666
                              : "r" (gen_func)
667
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
668
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
669
{
670
    if (!(tb->cflags & CF_CODE_COPY)) {
671
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
672
            save_native_fp_state(env);
673
        }
674
        gen_func();
675
    } else {
676
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
677
            restore_native_fp_state(env);
678
        }
679
        /* we work with native eflags */
680
        CC_SRC = cc_table[CC_OP].compute_all();
681
        CC_OP = CC_OP_EFLAGS;
682
        asm(".globl exec_loop\n"
683
            "\n"
684
            "debug1:\n"
685
            "    pushl %%ebp\n"
686
            "    fs movl %10, %9\n"
687
            "    fs movl %11, %%eax\n"
688
            "    andl $0x400, %%eax\n"
689
            "    fs orl %8, %%eax\n"
690
            "    pushl %%eax\n"
691
            "    popf\n"
692
            "    fs movl %%esp, %12\n"
693
            "    fs movl %0, %%eax\n"
694
            "    fs movl %1, %%ecx\n"
695
            "    fs movl %2, %%edx\n"
696
            "    fs movl %3, %%ebx\n"
697
            "    fs movl %4, %%esp\n"
698
            "    fs movl %5, %%ebp\n"
699
            "    fs movl %6, %%esi\n"
700
            "    fs movl %7, %%edi\n"
701
            "    fs jmp *%9\n"
702
            "exec_loop:\n"
703
            "    fs movl %%esp, %4\n"
704
            "    fs movl %12, %%esp\n"
705
            "    fs movl %%eax, %0\n"
706
            "    fs movl %%ecx, %1\n"
707
            "    fs movl %%edx, %2\n"
708
            "    fs movl %%ebx, %3\n"
709
            "    fs movl %%ebp, %5\n"
710
            "    fs movl %%esi, %6\n"
711
            "    fs movl %%edi, %7\n"
712
            "    pushf\n"
713
            "    popl %%eax\n"
714
            "    movl %%eax, %%ecx\n"
715
            "    andl $0x400, %%ecx\n"
716
            "    shrl $9, %%ecx\n"
717
            "    andl $0x8d5, %%eax\n"
718
            "    fs movl %%eax, %8\n"
719
            "    movl $1, %%eax\n"
720
            "    subl %%ecx, %%eax\n"
721
            "    fs movl %%eax, %11\n"
722
            "    fs movl %9, %%ebx\n" /* get T0 value */
723
            "    popl %%ebp\n"
724
            :
725
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
726
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
727
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
728
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
729
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
730
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
731
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
732
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
733
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
734
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
735
            "a" (gen_func),
736
            "m" (*(uint8_t *)offsetof(CPUState, df)),
737
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
738
            : "%ecx", "%edx"
739
            );
740
    }
741
}
742
#elif defined(__ia64)
743
                struct fptr {
744
                        void *ip;
745
                        void *gp;
746
                } fp;
747

    
748
                fp.ip = tc_ptr;
749
                fp.gp = code_gen_buffer + 2 * (1 << 20);
750
                (*(void (*)(void)) &fp)();
751
#else
752
                gen_func();
753
#endif
754
                env->current_tb = NULL;
755
                /* reset soft MMU for next block (it can currently
756
                   only be set by a memory fault) */
757
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
758
                if (env->hflags & HF_SOFTMMU_MASK) {
759
                    env->hflags &= ~HF_SOFTMMU_MASK;
760
                    /* do not allow linking to another block */
761
                    T0 = 0;
762
                }
763
#endif
764
#if defined(USE_KQEMU)
765
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
766
                if (kqemu_is_ok(env) &&
767
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
768
                    cpu_loop_exit();
769
                }
770
#endif
771
            }
772
        } else {
773
            env_to_regs();
774
        }
775
    } /* for(;;) */
776

    
777

    
778
#if defined(TARGET_I386)
779
#if defined(USE_CODE_COPY)
780
    if (env->native_fp_regs) {
781
        save_native_fp_state(env);
782
    }
783
#endif
784
    /* restore flags in standard format */
785
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
786

    
787
    /* restore global registers */
788
#ifdef reg_EAX
789
    EAX = saved_EAX;
790
#endif
791
#ifdef reg_ECX
792
    ECX = saved_ECX;
793
#endif
794
#ifdef reg_EDX
795
    EDX = saved_EDX;
796
#endif
797
#ifdef reg_EBX
798
    EBX = saved_EBX;
799
#endif
800
#ifdef reg_ESP
801
    ESP = saved_ESP;
802
#endif
803
#ifdef reg_EBP
804
    EBP = saved_EBP;
805
#endif
806
#ifdef reg_ESI
807
    ESI = saved_ESI;
808
#endif
809
#ifdef reg_EDI
810
    EDI = saved_EDI;
811
#endif
812
#elif defined(TARGET_ARM)
813
    /* XXX: Save/restore host fpu exception state?.  */
814
#elif defined(TARGET_SPARC)
815
#if defined(reg_REGWPTR)
816
    REGWPTR = saved_regwptr;
817
#endif
818
#elif defined(TARGET_PPC)
819
#elif defined(TARGET_MIPS)
820
#else
821
#error unsupported target CPU
822
#endif
823
#ifdef __sparc__
824
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
825
#endif
826
    T0 = saved_T0;
827
    T1 = saved_T1;
828
#if defined(reg_T2)
829
    T2 = saved_T2;
830
#endif
831
    env = saved_env;
832
    /* fail safe : never use cpu_single_env outside cpu_exec() */
833
    cpu_single_env = NULL; 
834
    return ret;
835
}
836

    
837
/* must only be called from the generated code as an exception can be
838
   generated */
839
void tb_invalidate_page_range(target_ulong start, target_ulong end)
840
{
841
    /* XXX: cannot enable it yet because it yields to MMU exception
842
       where NIP != read address on PowerPC */
843
#if 0
844
    target_ulong phys_addr;
845
    phys_addr = get_phys_addr_code(env, start);
846
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
847
#endif
848
}
849

    
850
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
851

    
852
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
853
{
854
    CPUX86State *saved_env;
855

    
856
    saved_env = env;
857
    env = s;
858
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
859
        selector &= 0xffff;
860
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
861
                               (selector << 4), 0xffff, 0);
862
    } else {
863
        load_seg(seg_reg, selector);
864
    }
865
    env = saved_env;
866
}
867

    
868
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
869
{
870
    CPUX86State *saved_env;
871

    
872
    saved_env = env;
873
    env = s;
874
    
875
    helper_fsave((target_ulong)ptr, data32);
876

    
877
    env = saved_env;
878
}
879

    
880
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
881
{
882
    CPUX86State *saved_env;
883

    
884
    saved_env = env;
885
    env = s;
886
    
887
    helper_frstor((target_ulong)ptr, data32);
888

    
889
    env = saved_env;
890
}
891

    
892
#endif /* TARGET_I386 */
893

    
894
#if !defined(CONFIG_SOFTMMU)
895

    
896
#if defined(TARGET_I386)
897

    
898
/* 'pc' is the host PC at which the exception was raised. 'address' is
899
   the effective address of the memory exception. 'is_write' is 1 if a
900
   write caused the exception and otherwise 0'. 'old_set' is the
901
   signal set which should be restored */
902
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
903
                                    int is_write, sigset_t *old_set, 
904
                                    void *puc)
905
{
906
    TranslationBlock *tb;
907
    int ret;
908

    
909
    if (cpu_single_env)
910
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
911
#if defined(DEBUG_SIGNAL)
912
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
913
                pc, address, is_write, *(unsigned long *)old_set);
914
#endif
915
    /* XXX: locking issue */
916
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
917
        return 1;
918
    }
919

    
920
    /* see if it is an MMU fault */
921
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
922
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
923
    if (ret < 0)
924
        return 0; /* not an MMU fault */
925
    if (ret == 0)
926
        return 1; /* the MMU fault was handled without causing real CPU fault */
927
    /* now we have a real cpu fault */
928
    tb = tb_find_pc(pc);
929
    if (tb) {
930
        /* the PC is inside the translated code. It means that we have
931
           a virtual CPU fault */
932
        cpu_restore_state(tb, env, pc, puc);
933
    }
934
    if (ret == 1) {
935
#if 0
936
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
937
               env->eip, env->cr[2], env->error_code);
938
#endif
939
        /* we restore the process signal mask as the sigreturn should
940
           do it (XXX: use sigsetjmp) */
941
        sigprocmask(SIG_SETMASK, old_set, NULL);
942
        raise_exception_err(env->exception_index, env->error_code);
943
    } else {
944
        /* activate soft MMU for this block */
945
        env->hflags |= HF_SOFTMMU_MASK;
946
        cpu_resume_from_signal(env, puc);
947
    }
948
    /* never comes here */
949
    return 1;
950
}
951

    
952
#elif defined(TARGET_ARM)
953
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
954
                                    int is_write, sigset_t *old_set,
955
                                    void *puc)
956
{
957
    TranslationBlock *tb;
958
    int ret;
959

    
960
    if (cpu_single_env)
961
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
962
#if defined(DEBUG_SIGNAL)
963
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
964
           pc, address, is_write, *(unsigned long *)old_set);
965
#endif
966
    /* XXX: locking issue */
967
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
968
        return 1;
969
    }
970
    /* see if it is an MMU fault */
971
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
972
    if (ret < 0)
973
        return 0; /* not an MMU fault */
974
    if (ret == 0)
975
        return 1; /* the MMU fault was handled without causing real CPU fault */
976
    /* now we have a real cpu fault */
977
    tb = tb_find_pc(pc);
978
    if (tb) {
979
        /* the PC is inside the translated code. It means that we have
980
           a virtual CPU fault */
981
        cpu_restore_state(tb, env, pc, puc);
982
    }
983
    /* we restore the process signal mask as the sigreturn should
984
       do it (XXX: use sigsetjmp) */
985
    sigprocmask(SIG_SETMASK, old_set, NULL);
986
    cpu_loop_exit();
987
}
988
#elif defined(TARGET_SPARC)
989
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
990
                                    int is_write, sigset_t *old_set,
991
                                    void *puc)
992
{
993
    TranslationBlock *tb;
994
    int ret;
995

    
996
    if (cpu_single_env)
997
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
998
#if defined(DEBUG_SIGNAL)
999
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1000
           pc, address, is_write, *(unsigned long *)old_set);
1001
#endif
1002
    /* XXX: locking issue */
1003
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1004
        return 1;
1005
    }
1006
    /* see if it is an MMU fault */
1007
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1008
    if (ret < 0)
1009
        return 0; /* not an MMU fault */
1010
    if (ret == 0)
1011
        return 1; /* the MMU fault was handled without causing real CPU fault */
1012
    /* now we have a real cpu fault */
1013
    tb = tb_find_pc(pc);
1014
    if (tb) {
1015
        /* the PC is inside the translated code. It means that we have
1016
           a virtual CPU fault */
1017
        cpu_restore_state(tb, env, pc, puc);
1018
    }
1019
    /* we restore the process signal mask as the sigreturn should
1020
       do it (XXX: use sigsetjmp) */
1021
    sigprocmask(SIG_SETMASK, old_set, NULL);
1022
    cpu_loop_exit();
1023
}
1024
#elif defined (TARGET_PPC)
1025
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1026
                                    int is_write, sigset_t *old_set,
1027
                                    void *puc)
1028
{
1029
    TranslationBlock *tb;
1030
    int ret;
1031
    
1032
    if (cpu_single_env)
1033
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1034
#if defined(DEBUG_SIGNAL)
1035
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1036
           pc, address, is_write, *(unsigned long *)old_set);
1037
#endif
1038
    /* XXX: locking issue */
1039
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1040
        return 1;
1041
    }
1042

    
1043
    /* see if it is an MMU fault */
1044
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1045
    if (ret < 0)
1046
        return 0; /* not an MMU fault */
1047
    if (ret == 0)
1048
        return 1; /* the MMU fault was handled without causing real CPU fault */
1049

    
1050
    /* now we have a real cpu fault */
1051
    tb = tb_find_pc(pc);
1052
    if (tb) {
1053
        /* the PC is inside the translated code. It means that we have
1054
           a virtual CPU fault */
1055
        cpu_restore_state(tb, env, pc, puc);
1056
    }
1057
    if (ret == 1) {
1058
#if 0
1059
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1060
               env->nip, env->error_code, tb);
1061
#endif
1062
    /* we restore the process signal mask as the sigreturn should
1063
       do it (XXX: use sigsetjmp) */
1064
        sigprocmask(SIG_SETMASK, old_set, NULL);
1065
        do_raise_exception_err(env->exception_index, env->error_code);
1066
    } else {
1067
        /* activate soft MMU for this block */
1068
        cpu_resume_from_signal(env, puc);
1069
    }
1070
    /* never comes here */
1071
    return 1;
1072
}
1073

    
1074
#elif defined (TARGET_MIPS)
1075
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1076
                                    int is_write, sigset_t *old_set,
1077
                                    void *puc)
1078
{
1079
    TranslationBlock *tb;
1080
    int ret;
1081
    
1082
    if (cpu_single_env)
1083
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1084
#if defined(DEBUG_SIGNAL)
1085
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1086
           pc, address, is_write, *(unsigned long *)old_set);
1087
#endif
1088
    /* XXX: locking issue */
1089
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1090
        return 1;
1091
    }
1092

    
1093
    /* see if it is an MMU fault */
1094
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1095
    if (ret < 0)
1096
        return 0; /* not an MMU fault */
1097
    if (ret == 0)
1098
        return 1; /* the MMU fault was handled without causing real CPU fault */
1099

    
1100
    /* now we have a real cpu fault */
1101
    tb = tb_find_pc(pc);
1102
    if (tb) {
1103
        /* the PC is inside the translated code. It means that we have
1104
           a virtual CPU fault */
1105
        cpu_restore_state(tb, env, pc, puc);
1106
    }
1107
    if (ret == 1) {
1108
#if 0
1109
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1110
               env->nip, env->error_code, tb);
1111
#endif
1112
    /* we restore the process signal mask as the sigreturn should
1113
       do it (XXX: use sigsetjmp) */
1114
        sigprocmask(SIG_SETMASK, old_set, NULL);
1115
        do_raise_exception_err(env->exception_index, env->error_code);
1116
    } else {
1117
        /* activate soft MMU for this block */
1118
        cpu_resume_from_signal(env, puc);
1119
    }
1120
    /* never comes here */
1121
    return 1;
1122
}
1123

    
1124
#else
1125
#error unsupported target CPU
1126
#endif
1127

    
1128
#if defined(__i386__)
1129

    
1130
#if defined(USE_CODE_COPY)
1131
static void cpu_send_trap(unsigned long pc, int trap, 
1132
                          struct ucontext *uc)
1133
{
1134
    TranslationBlock *tb;
1135

    
1136
    if (cpu_single_env)
1137
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1138
    /* now we have a real cpu fault */
1139
    tb = tb_find_pc(pc);
1140
    if (tb) {
1141
        /* the PC is inside the translated code. It means that we have
1142
           a virtual CPU fault */
1143
        cpu_restore_state(tb, env, pc, uc);
1144
    }
1145
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1146
    raise_exception_err(trap, env->error_code);
1147
}
1148
#endif
1149

    
1150
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1151
                       void *puc)
1152
{
1153
    struct ucontext *uc = puc;
1154
    unsigned long pc;
1155
    int trapno;
1156

    
1157
#ifndef REG_EIP
1158
/* for glibc 2.1 */
1159
#define REG_EIP    EIP
1160
#define REG_ERR    ERR
1161
#define REG_TRAPNO TRAPNO
1162
#endif
1163
    pc = uc->uc_mcontext.gregs[REG_EIP];
1164
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1165
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1166
    if (trapno == 0x00 || trapno == 0x05) {
1167
        /* send division by zero or bound exception */
1168
        cpu_send_trap(pc, trapno, uc);
1169
        return 1;
1170
    } else
1171
#endif
1172
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1173
                                 trapno == 0xe ? 
1174
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1175
                                 &uc->uc_sigmask, puc);
1176
}
1177

    
1178
#elif defined(__x86_64__)
1179

    
1180
int cpu_signal_handler(int host_signum, struct siginfo *info,
1181
                       void *puc)
1182
{
1183
    struct ucontext *uc = puc;
1184
    unsigned long pc;
1185

    
1186
    pc = uc->uc_mcontext.gregs[REG_RIP];
1187
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1188
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1189
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1190
                             &uc->uc_sigmask, puc);
1191
}
1192

    
1193
#elif defined(__powerpc__)
1194

    
1195
/***********************************************************************
1196
 * signal context platform-specific definitions
1197
 * From Wine
1198
 */
1199
#ifdef linux
1200
/* All Registers access - only for local access */
1201
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1202
/* Gpr Registers access  */
1203
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1204
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1205
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1206
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1207
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1208
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1209
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1210
/* Float Registers access  */
1211
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1212
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1213
/* Exception Registers access */
1214
# define DAR_sig(context)                        REG_sig(dar, context)
1215
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1216
# define TRAP_sig(context)                        REG_sig(trap, context)
1217
#endif /* linux */
1218

    
1219
#ifdef __APPLE__
1220
# include <sys/ucontext.h>
1221
typedef struct ucontext SIGCONTEXT;
1222
/* All Registers access - only for local access */
1223
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1224
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1225
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1226
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1227
/* Gpr Registers access */
1228
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1229
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1230
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1231
# define CTR_sig(context)                        REG_sig(ctr, context)
1232
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1233
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1234
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1235
/* Float Registers access */
1236
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1237
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1238
/* Exception Registers access */
1239
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1240
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1241
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1242
#endif /* __APPLE__ */
1243

    
1244
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1245
                       void *puc)
1246
{
1247
    struct ucontext *uc = puc;
1248
    unsigned long pc;
1249
    int is_write;
1250

    
1251
    pc = IAR_sig(uc);
1252
    is_write = 0;
1253
#if 0
1254
    /* ppc 4xx case */
1255
    if (DSISR_sig(uc) & 0x00800000)
1256
        is_write = 1;
1257
#else
1258
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1259
        is_write = 1;
1260
#endif
1261
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1262
                             is_write, &uc->uc_sigmask, puc);
1263
}
1264

    
1265
#elif defined(__alpha__)
1266

    
1267
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1268
                           void *puc)
1269
{
1270
    struct ucontext *uc = puc;
1271
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1272
    uint32_t insn = *pc;
1273
    int is_write = 0;
1274

    
1275
    /* XXX: need kernel patch to get write flag faster */
1276
    switch (insn >> 26) {
1277
    case 0x0d: // stw
1278
    case 0x0e: // stb
1279
    case 0x0f: // stq_u
1280
    case 0x24: // stf
1281
    case 0x25: // stg
1282
    case 0x26: // sts
1283
    case 0x27: // stt
1284
    case 0x2c: // stl
1285
    case 0x2d: // stq
1286
    case 0x2e: // stl_c
1287
    case 0x2f: // stq_c
1288
        is_write = 1;
1289
    }
1290

    
1291
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1292
                             is_write, &uc->uc_sigmask, puc);
1293
}
1294
#elif defined(__sparc__)
1295

    
1296
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1297
                       void *puc)
1298
{
1299
    uint32_t *regs = (uint32_t *)(info + 1);
1300
    void *sigmask = (regs + 20);
1301
    unsigned long pc;
1302
    int is_write;
1303
    uint32_t insn;
1304
    
1305
    /* XXX: is there a standard glibc define ? */
1306
    pc = regs[1];
1307
    /* XXX: need kernel patch to get write flag faster */
1308
    is_write = 0;
1309
    insn = *(uint32_t *)pc;
1310
    if ((insn >> 30) == 3) {
1311
      switch((insn >> 19) & 0x3f) {
1312
      case 0x05: // stb
1313
      case 0x06: // sth
1314
      case 0x04: // st
1315
      case 0x07: // std
1316
      case 0x24: // stf
1317
      case 0x27: // stdf
1318
      case 0x25: // stfsr
1319
        is_write = 1;
1320
        break;
1321
      }
1322
    }
1323
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1324
                             is_write, sigmask, NULL);
1325
}
1326

    
1327
#elif defined(__arm__)
1328

    
1329
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1330
                       void *puc)
1331
{
1332
    struct ucontext *uc = puc;
1333
    unsigned long pc;
1334
    int is_write;
1335
    
1336
    pc = uc->uc_mcontext.gregs[R15];
1337
    /* XXX: compute is_write */
1338
    is_write = 0;
1339
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1340
                             is_write,
1341
                             &uc->uc_sigmask);
1342
}
1343

    
1344
#elif defined(__mc68000)
1345

    
1346
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1347
                       void *puc)
1348
{
1349
    struct ucontext *uc = puc;
1350
    unsigned long pc;
1351
    int is_write;
1352
    
1353
    pc = uc->uc_mcontext.gregs[16];
1354
    /* XXX: compute is_write */
1355
    is_write = 0;
1356
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1357
                             is_write,
1358
                             &uc->uc_sigmask, puc);
1359
}
1360

    
1361
#elif defined(__ia64)
1362

    
1363
#ifndef __ISR_VALID
1364
  /* This ought to be in <bits/siginfo.h>... */
1365
# define __ISR_VALID        1
1366
#endif
1367

    
1368
int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1369
{
1370
    struct ucontext *uc = puc;
1371
    unsigned long ip;
1372
    int is_write = 0;
1373

    
1374
    ip = uc->uc_mcontext.sc_ip;
1375
    switch (host_signum) {
1376
      case SIGILL:
1377
      case SIGFPE:
1378
      case SIGSEGV:
1379
      case SIGBUS:
1380
      case SIGTRAP:
1381
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1382
              /* ISR.W (write-access) is bit 33:  */
1383
              is_write = (info->si_isr >> 33) & 1;
1384
          break;
1385

    
1386
      default:
1387
          break;
1388
    }
1389
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1390
                             is_write,
1391
                             &uc->uc_sigmask, puc);
1392
}
1393

    
1394
#elif defined(__s390__)
1395

    
1396
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1397
                       void *puc)
1398
{
1399
    struct ucontext *uc = puc;
1400
    unsigned long pc;
1401
    int is_write;
1402
    
1403
    pc = uc->uc_mcontext.psw.addr;
1404
    /* XXX: compute is_write */
1405
    is_write = 0;
1406
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1407
                             is_write,
1408
                             &uc->uc_sigmask, puc);
1409
}
1410

    
1411
#else
1412

    
1413
#error host CPU specific signal handler needed
1414

    
1415
#endif
1416

    
1417
#endif /* !defined(CONFIG_SOFTMMU) */