Statistics
| Branch: | Revision:

root / kvm-all.c @ fdec9918

History | View | Annotate | Download (48.4 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu-barrier.h"
25
#include "qemu-option.h"
26
#include "qemu-config.h"
27
#include "sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/msi.h"
30
#include "gdbstub.h"
31
#include "kvm.h"
32
#include "bswap.h"
33
#include "memory.h"
34
#include "exec-memory.h"
35

    
36
/* This check must be after config-host.h is included */
37
#ifdef CONFIG_EVENTFD
38
#include <sys/eventfd.h>
39
#endif
40

    
41
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
42
#define PAGE_SIZE TARGET_PAGE_SIZE
43

    
44
//#define DEBUG_KVM
45

    
46
#ifdef DEBUG_KVM
47
#define DPRINTF(fmt, ...) \
48
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
49
#else
50
#define DPRINTF(fmt, ...) \
51
    do { } while (0)
52
#endif
53

    
54
#define KVM_MSI_HASHTAB_SIZE    256
55

    
56
typedef struct KVMSlot
57
{
58
    target_phys_addr_t start_addr;
59
    ram_addr_t memory_size;
60
    void *ram;
61
    int slot;
62
    int flags;
63
} KVMSlot;
64

    
65
typedef struct kvm_dirty_log KVMDirtyLog;
66

    
67
struct KVMState
68
{
69
    KVMSlot slots[32];
70
    int fd;
71
    int vmfd;
72
    int coalesced_mmio;
73
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
74
    bool coalesced_flush_in_progress;
75
    int broken_set_mem_region;
76
    int migration_log;
77
    int vcpu_events;
78
    int robust_singlestep;
79
    int debugregs;
80
#ifdef KVM_CAP_SET_GUEST_DEBUG
81
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
82
#endif
83
    int pit_state2;
84
    int xsave, xcrs;
85
    int many_ioeventfds;
86
    /* The man page (and posix) say ioctl numbers are signed int, but
87
     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
88
     * unsigned, and treating them as signed here can break things */
89
    unsigned irqchip_inject_ioctl;
90
#ifdef KVM_CAP_IRQ_ROUTING
91
    struct kvm_irq_routing *irq_routes;
92
    int nr_allocated_irq_routes;
93
    uint32_t *used_gsi_bitmap;
94
    unsigned int gsi_count;
95
    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
96
    bool direct_msi;
97
#endif
98
};
99

    
100
KVMState *kvm_state;
101
bool kvm_kernel_irqchip;
102

    
103
static const KVMCapabilityInfo kvm_required_capabilites[] = {
104
    KVM_CAP_INFO(USER_MEMORY),
105
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
106
    KVM_CAP_LAST_INFO
107
};
108

    
109
static KVMSlot *kvm_alloc_slot(KVMState *s)
110
{
111
    int i;
112

    
113
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
114
        if (s->slots[i].memory_size == 0) {
115
            return &s->slots[i];
116
        }
117
    }
118

    
119
    fprintf(stderr, "%s: no free slot available\n", __func__);
120
    abort();
121
}
122

    
123
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
124
                                         target_phys_addr_t start_addr,
125
                                         target_phys_addr_t end_addr)
126
{
127
    int i;
128

    
129
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
130
        KVMSlot *mem = &s->slots[i];
131

    
132
        if (start_addr == mem->start_addr &&
133
            end_addr == mem->start_addr + mem->memory_size) {
134
            return mem;
135
        }
136
    }
137

    
138
    return NULL;
139
}
140

    
141
/*
142
 * Find overlapping slot with lowest start address
143
 */
144
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
145
                                            target_phys_addr_t start_addr,
146
                                            target_phys_addr_t end_addr)
147
{
148
    KVMSlot *found = NULL;
149
    int i;
150

    
151
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
152
        KVMSlot *mem = &s->slots[i];
153

    
154
        if (mem->memory_size == 0 ||
155
            (found && found->start_addr < mem->start_addr)) {
156
            continue;
157
        }
158

    
159
        if (end_addr > mem->start_addr &&
160
            start_addr < mem->start_addr + mem->memory_size) {
161
            found = mem;
162
        }
163
    }
164

    
165
    return found;
166
}
167

    
168
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
169
                                       target_phys_addr_t *phys_addr)
170
{
171
    int i;
172

    
173
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
174
        KVMSlot *mem = &s->slots[i];
175

    
176
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
177
            *phys_addr = mem->start_addr + (ram - mem->ram);
178
            return 1;
179
        }
180
    }
181

    
182
    return 0;
183
}
184

    
185
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
186
{
187
    struct kvm_userspace_memory_region mem;
188

    
189
    mem.slot = slot->slot;
190
    mem.guest_phys_addr = slot->start_addr;
191
    mem.memory_size = slot->memory_size;
192
    mem.userspace_addr = (unsigned long)slot->ram;
193
    mem.flags = slot->flags;
194
    if (s->migration_log) {
195
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
196
    }
197
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
198
}
199

    
200
static void kvm_reset_vcpu(void *opaque)
201
{
202
    CPUArchState *env = opaque;
203

    
204
    kvm_arch_reset_vcpu(env);
205
}
206

    
207
int kvm_init_vcpu(CPUArchState *env)
208
{
209
    KVMState *s = kvm_state;
210
    long mmap_size;
211
    int ret;
212

    
213
    DPRINTF("kvm_init_vcpu\n");
214

    
215
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
216
    if (ret < 0) {
217
        DPRINTF("kvm_create_vcpu failed\n");
218
        goto err;
219
    }
220

    
221
    env->kvm_fd = ret;
222
    env->kvm_state = s;
223
    env->kvm_vcpu_dirty = 1;
224

    
225
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
226
    if (mmap_size < 0) {
227
        ret = mmap_size;
228
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
229
        goto err;
230
    }
231

    
232
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
233
                        env->kvm_fd, 0);
234
    if (env->kvm_run == MAP_FAILED) {
235
        ret = -errno;
236
        DPRINTF("mmap'ing vcpu state failed\n");
237
        goto err;
238
    }
239

    
240
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
241
        s->coalesced_mmio_ring =
242
            (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
243
    }
244

    
245
    ret = kvm_arch_init_vcpu(env);
246
    if (ret == 0) {
247
        qemu_register_reset(kvm_reset_vcpu, env);
248
        kvm_arch_reset_vcpu(env);
249
    }
250
err:
251
    return ret;
252
}
253

    
254
/*
255
 * dirty pages logging control
256
 */
257

    
258
static int kvm_mem_flags(KVMState *s, bool log_dirty)
259
{
260
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
261
}
262

    
263
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
264
{
265
    KVMState *s = kvm_state;
266
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
267
    int old_flags;
268

    
269
    old_flags = mem->flags;
270

    
271
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
272
    mem->flags = flags;
273

    
274
    /* If nothing changed effectively, no need to issue ioctl */
275
    if (s->migration_log) {
276
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
277
    }
278

    
279
    if (flags == old_flags) {
280
        return 0;
281
    }
282

    
283
    return kvm_set_user_memory_region(s, mem);
284
}
285

    
286
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
287
                                      ram_addr_t size, bool log_dirty)
288
{
289
    KVMState *s = kvm_state;
290
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
291

    
292
    if (mem == NULL)  {
293
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
294
                TARGET_FMT_plx "\n", __func__, phys_addr,
295
                (target_phys_addr_t)(phys_addr + size - 1));
296
        return -EINVAL;
297
    }
298
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
299
}
300

    
301
static void kvm_log_start(MemoryListener *listener,
302
                          MemoryRegionSection *section)
303
{
304
    int r;
305

    
306
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
307
                                   section->size, true);
308
    if (r < 0) {
309
        abort();
310
    }
311
}
312

    
313
static void kvm_log_stop(MemoryListener *listener,
314
                          MemoryRegionSection *section)
315
{
316
    int r;
317

    
318
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
319
                                   section->size, false);
320
    if (r < 0) {
321
        abort();
322
    }
323
}
324

    
325
static int kvm_set_migration_log(int enable)
326
{
327
    KVMState *s = kvm_state;
328
    KVMSlot *mem;
329
    int i, err;
330

    
331
    s->migration_log = enable;
332

    
333
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
334
        mem = &s->slots[i];
335

    
336
        if (!mem->memory_size) {
337
            continue;
338
        }
339
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
340
            continue;
341
        }
342
        err = kvm_set_user_memory_region(s, mem);
343
        if (err) {
344
            return err;
345
        }
346
    }
347
    return 0;
348
}
349

    
350
/* get kvm's dirty pages bitmap and update qemu's */
351
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
352
                                         unsigned long *bitmap)
353
{
354
    unsigned int i, j;
355
    unsigned long page_number, c;
356
    target_phys_addr_t addr, addr1;
357
    unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
358
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
359

    
360
    /*
361
     * bitmap-traveling is faster than memory-traveling (for addr...)
362
     * especially when most of the memory is not dirty.
363
     */
364
    for (i = 0; i < len; i++) {
365
        if (bitmap[i] != 0) {
366
            c = leul_to_cpu(bitmap[i]);
367
            do {
368
                j = ffsl(c) - 1;
369
                c &= ~(1ul << j);
370
                page_number = (i * HOST_LONG_BITS + j) * hpratio;
371
                addr1 = page_number * TARGET_PAGE_SIZE;
372
                addr = section->offset_within_region + addr1;
373
                memory_region_set_dirty(section->mr, addr,
374
                                        TARGET_PAGE_SIZE * hpratio);
375
            } while (c != 0);
376
        }
377
    }
378
    return 0;
379
}
380

    
381
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
382

    
383
/**
384
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
385
 * This function updates qemu's dirty bitmap using
386
 * memory_region_set_dirty().  This means all bits are set
387
 * to dirty.
388
 *
389
 * @start_add: start of logged region.
390
 * @end_addr: end of logged region.
391
 */
392
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
393
{
394
    KVMState *s = kvm_state;
395
    unsigned long size, allocated_size = 0;
396
    KVMDirtyLog d;
397
    KVMSlot *mem;
398
    int ret = 0;
399
    target_phys_addr_t start_addr = section->offset_within_address_space;
400
    target_phys_addr_t end_addr = start_addr + section->size;
401

    
402
    d.dirty_bitmap = NULL;
403
    while (start_addr < end_addr) {
404
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
405
        if (mem == NULL) {
406
            break;
407
        }
408

    
409
        /* XXX bad kernel interface alert
410
         * For dirty bitmap, kernel allocates array of size aligned to
411
         * bits-per-long.  But for case when the kernel is 64bits and
412
         * the userspace is 32bits, userspace can't align to the same
413
         * bits-per-long, since sizeof(long) is different between kernel
414
         * and user space.  This way, userspace will provide buffer which
415
         * may be 4 bytes less than the kernel will use, resulting in
416
         * userspace memory corruption (which is not detectable by valgrind
417
         * too, in most cases).
418
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
419
         * a hope that sizeof(long) wont become >8 any time soon.
420
         */
421
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
422
                     /*HOST_LONG_BITS*/ 64) / 8;
423
        if (!d.dirty_bitmap) {
424
            d.dirty_bitmap = g_malloc(size);
425
        } else if (size > allocated_size) {
426
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
427
        }
428
        allocated_size = size;
429
        memset(d.dirty_bitmap, 0, allocated_size);
430

    
431
        d.slot = mem->slot;
432

    
433
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
434
            DPRINTF("ioctl failed %d\n", errno);
435
            ret = -1;
436
            break;
437
        }
438

    
439
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
440
        start_addr = mem->start_addr + mem->memory_size;
441
    }
442
    g_free(d.dirty_bitmap);
443

    
444
    return ret;
445
}
446

    
447
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
448
{
449
    int ret = -ENOSYS;
450
    KVMState *s = kvm_state;
451

    
452
    if (s->coalesced_mmio) {
453
        struct kvm_coalesced_mmio_zone zone;
454

    
455
        zone.addr = start;
456
        zone.size = size;
457
        zone.pad = 0;
458

    
459
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
460
    }
461

    
462
    return ret;
463
}
464

    
465
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
466
{
467
    int ret = -ENOSYS;
468
    KVMState *s = kvm_state;
469

    
470
    if (s->coalesced_mmio) {
471
        struct kvm_coalesced_mmio_zone zone;
472

    
473
        zone.addr = start;
474
        zone.size = size;
475
        zone.pad = 0;
476

    
477
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
478
    }
479

    
480
    return ret;
481
}
482

    
483
int kvm_check_extension(KVMState *s, unsigned int extension)
484
{
485
    int ret;
486

    
487
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
488
    if (ret < 0) {
489
        ret = 0;
490
    }
491

    
492
    return ret;
493
}
494

    
495
static int kvm_check_many_ioeventfds(void)
496
{
497
    /* Userspace can use ioeventfd for io notification.  This requires a host
498
     * that supports eventfd(2) and an I/O thread; since eventfd does not
499
     * support SIGIO it cannot interrupt the vcpu.
500
     *
501
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
502
     * can avoid creating too many ioeventfds.
503
     */
504
#if defined(CONFIG_EVENTFD)
505
    int ioeventfds[7];
506
    int i, ret = 0;
507
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
508
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
509
        if (ioeventfds[i] < 0) {
510
            break;
511
        }
512
        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
513
        if (ret < 0) {
514
            close(ioeventfds[i]);
515
            break;
516
        }
517
    }
518

    
519
    /* Decide whether many devices are supported or not */
520
    ret = i == ARRAY_SIZE(ioeventfds);
521

    
522
    while (i-- > 0) {
523
        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
524
        close(ioeventfds[i]);
525
    }
526
    return ret;
527
#else
528
    return 0;
529
#endif
530
}
531

    
532
static const KVMCapabilityInfo *
533
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
534
{
535
    while (list->name) {
536
        if (!kvm_check_extension(s, list->value)) {
537
            return list;
538
        }
539
        list++;
540
    }
541
    return NULL;
542
}
543

    
544
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
545
{
546
    KVMState *s = kvm_state;
547
    KVMSlot *mem, old;
548
    int err;
549
    MemoryRegion *mr = section->mr;
550
    bool log_dirty = memory_region_is_logging(mr);
551
    target_phys_addr_t start_addr = section->offset_within_address_space;
552
    ram_addr_t size = section->size;
553
    void *ram = NULL;
554
    unsigned delta;
555

    
556
    /* kvm works in page size chunks, but the function may be called
557
       with sub-page size and unaligned start address. */
558
    delta = TARGET_PAGE_ALIGN(size) - size;
559
    if (delta > size) {
560
        return;
561
    }
562
    start_addr += delta;
563
    size -= delta;
564
    size &= TARGET_PAGE_MASK;
565
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
566
        return;
567
    }
568

    
569
    if (!memory_region_is_ram(mr)) {
570
        return;
571
    }
572

    
573
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
574

    
575
    while (1) {
576
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
577
        if (!mem) {
578
            break;
579
        }
580

    
581
        if (add && start_addr >= mem->start_addr &&
582
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
583
            (ram - start_addr == mem->ram - mem->start_addr)) {
584
            /* The new slot fits into the existing one and comes with
585
             * identical parameters - update flags and done. */
586
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
587
            return;
588
        }
589

    
590
        old = *mem;
591

    
592
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
593
            kvm_physical_sync_dirty_bitmap(section);
594
        }
595

    
596
        /* unregister the overlapping slot */
597
        mem->memory_size = 0;
598
        err = kvm_set_user_memory_region(s, mem);
599
        if (err) {
600
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
601
                    __func__, strerror(-err));
602
            abort();
603
        }
604

    
605
        /* Workaround for older KVM versions: we can't join slots, even not by
606
         * unregistering the previous ones and then registering the larger
607
         * slot. We have to maintain the existing fragmentation. Sigh.
608
         *
609
         * This workaround assumes that the new slot starts at the same
610
         * address as the first existing one. If not or if some overlapping
611
         * slot comes around later, we will fail (not seen in practice so far)
612
         * - and actually require a recent KVM version. */
613
        if (s->broken_set_mem_region &&
614
            old.start_addr == start_addr && old.memory_size < size && add) {
615
            mem = kvm_alloc_slot(s);
616
            mem->memory_size = old.memory_size;
617
            mem->start_addr = old.start_addr;
618
            mem->ram = old.ram;
619
            mem->flags = kvm_mem_flags(s, log_dirty);
620

    
621
            err = kvm_set_user_memory_region(s, mem);
622
            if (err) {
623
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
624
                        strerror(-err));
625
                abort();
626
            }
627

    
628
            start_addr += old.memory_size;
629
            ram += old.memory_size;
630
            size -= old.memory_size;
631
            continue;
632
        }
633

    
634
        /* register prefix slot */
635
        if (old.start_addr < start_addr) {
636
            mem = kvm_alloc_slot(s);
637
            mem->memory_size = start_addr - old.start_addr;
638
            mem->start_addr = old.start_addr;
639
            mem->ram = old.ram;
640
            mem->flags =  kvm_mem_flags(s, log_dirty);
641

    
642
            err = kvm_set_user_memory_region(s, mem);
643
            if (err) {
644
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
645
                        __func__, strerror(-err));
646
#ifdef TARGET_PPC
647
                fprintf(stderr, "%s: This is probably because your kernel's " \
648
                                "PAGE_SIZE is too big. Please try to use 4k " \
649
                                "PAGE_SIZE!\n", __func__);
650
#endif
651
                abort();
652
            }
653
        }
654

    
655
        /* register suffix slot */
656
        if (old.start_addr + old.memory_size > start_addr + size) {
657
            ram_addr_t size_delta;
658

    
659
            mem = kvm_alloc_slot(s);
660
            mem->start_addr = start_addr + size;
661
            size_delta = mem->start_addr - old.start_addr;
662
            mem->memory_size = old.memory_size - size_delta;
663
            mem->ram = old.ram + size_delta;
664
            mem->flags = kvm_mem_flags(s, log_dirty);
665

    
666
            err = kvm_set_user_memory_region(s, mem);
667
            if (err) {
668
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
669
                        __func__, strerror(-err));
670
                abort();
671
            }
672
        }
673
    }
674

    
675
    /* in case the KVM bug workaround already "consumed" the new slot */
676
    if (!size) {
677
        return;
678
    }
679
    if (!add) {
680
        return;
681
    }
682
    mem = kvm_alloc_slot(s);
683
    mem->memory_size = size;
684
    mem->start_addr = start_addr;
685
    mem->ram = ram;
686
    mem->flags = kvm_mem_flags(s, log_dirty);
687

    
688
    err = kvm_set_user_memory_region(s, mem);
689
    if (err) {
690
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
691
                strerror(-err));
692
        abort();
693
    }
694
}
695

    
696
static void kvm_begin(MemoryListener *listener)
697
{
698
}
699

    
700
static void kvm_commit(MemoryListener *listener)
701
{
702
}
703

    
704
static void kvm_region_add(MemoryListener *listener,
705
                           MemoryRegionSection *section)
706
{
707
    kvm_set_phys_mem(section, true);
708
}
709

    
710
static void kvm_region_del(MemoryListener *listener,
711
                           MemoryRegionSection *section)
712
{
713
    kvm_set_phys_mem(section, false);
714
}
715

    
716
static void kvm_region_nop(MemoryListener *listener,
717
                           MemoryRegionSection *section)
718
{
719
}
720

    
721
static void kvm_log_sync(MemoryListener *listener,
722
                         MemoryRegionSection *section)
723
{
724
    int r;
725

    
726
    r = kvm_physical_sync_dirty_bitmap(section);
727
    if (r < 0) {
728
        abort();
729
    }
730
}
731

    
732
static void kvm_log_global_start(struct MemoryListener *listener)
733
{
734
    int r;
735

    
736
    r = kvm_set_migration_log(1);
737
    assert(r >= 0);
738
}
739

    
740
static void kvm_log_global_stop(struct MemoryListener *listener)
741
{
742
    int r;
743

    
744
    r = kvm_set_migration_log(0);
745
    assert(r >= 0);
746
}
747

    
748
static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
749
                                  bool match_data, uint64_t data, int fd)
750
{
751
    int r;
752

    
753
    assert(match_data && section->size <= 8);
754

    
755
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
756
                               data, true, section->size);
757
    if (r < 0) {
758
        abort();
759
    }
760
}
761

    
762
static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
763
                                  bool match_data, uint64_t data, int fd)
764
{
765
    int r;
766

    
767
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
768
                               data, false, section->size);
769
    if (r < 0) {
770
        abort();
771
    }
772
}
773

    
774
static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
775
                                 bool match_data, uint64_t data, int fd)
776
{
777
    int r;
778

    
779
    assert(match_data && section->size == 2);
780

    
781
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
782
                                   data, true);
783
    if (r < 0) {
784
        abort();
785
    }
786
}
787

    
788
static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
789
                                 bool match_data, uint64_t data, int fd)
790

    
791
{
792
    int r;
793

    
794
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
795
                                   data, false);
796
    if (r < 0) {
797
        abort();
798
    }
799
}
800

    
801
static void kvm_eventfd_add(MemoryListener *listener,
802
                            MemoryRegionSection *section,
803
                            bool match_data, uint64_t data, int fd)
804
{
805
    if (section->address_space == get_system_memory()) {
806
        kvm_mem_ioeventfd_add(section, match_data, data, fd);
807
    } else {
808
        kvm_io_ioeventfd_add(section, match_data, data, fd);
809
    }
810
}
811

    
812
static void kvm_eventfd_del(MemoryListener *listener,
813
                            MemoryRegionSection *section,
814
                            bool match_data, uint64_t data, int fd)
815
{
816
    if (section->address_space == get_system_memory()) {
817
        kvm_mem_ioeventfd_del(section, match_data, data, fd);
818
    } else {
819
        kvm_io_ioeventfd_del(section, match_data, data, fd);
820
    }
821
}
822

    
823
static MemoryListener kvm_memory_listener = {
824
    .begin = kvm_begin,
825
    .commit = kvm_commit,
826
    .region_add = kvm_region_add,
827
    .region_del = kvm_region_del,
828
    .region_nop = kvm_region_nop,
829
    .log_start = kvm_log_start,
830
    .log_stop = kvm_log_stop,
831
    .log_sync = kvm_log_sync,
832
    .log_global_start = kvm_log_global_start,
833
    .log_global_stop = kvm_log_global_stop,
834
    .eventfd_add = kvm_eventfd_add,
835
    .eventfd_del = kvm_eventfd_del,
836
    .priority = 10,
837
};
838

    
839
static void kvm_handle_interrupt(CPUArchState *env, int mask)
840
{
841
    env->interrupt_request |= mask;
842

    
843
    if (!qemu_cpu_is_self(env)) {
844
        qemu_cpu_kick(env);
845
    }
846
}
847

    
848
int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
849
{
850
    struct kvm_irq_level event;
851
    int ret;
852

    
853
    assert(kvm_irqchip_in_kernel());
854

    
855
    event.level = level;
856
    event.irq = irq;
857
    ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
858
    if (ret < 0) {
859
        perror("kvm_set_irqchip_line");
860
        abort();
861
    }
862

    
863
    return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
864
}
865

    
866
#ifdef KVM_CAP_IRQ_ROUTING
867
typedef struct KVMMSIRoute {
868
    struct kvm_irq_routing_entry kroute;
869
    QTAILQ_ENTRY(KVMMSIRoute) entry;
870
} KVMMSIRoute;
871

    
872
static void set_gsi(KVMState *s, unsigned int gsi)
873
{
874
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
875
}
876

    
877
static void clear_gsi(KVMState *s, unsigned int gsi)
878
{
879
    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
880
}
881

    
882
static void kvm_init_irq_routing(KVMState *s)
883
{
884
    int gsi_count, i;
885

    
886
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
887
    if (gsi_count > 0) {
888
        unsigned int gsi_bits, i;
889

    
890
        /* Round up so we can search ints using ffs */
891
        gsi_bits = ALIGN(gsi_count, 32);
892
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
893
        s->gsi_count = gsi_count;
894

    
895
        /* Mark any over-allocated bits as already in use */
896
        for (i = gsi_count; i < gsi_bits; i++) {
897
            set_gsi(s, i);
898
        }
899
    }
900

    
901
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
902
    s->nr_allocated_irq_routes = 0;
903

    
904
    if (!s->direct_msi) {
905
        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
906
            QTAILQ_INIT(&s->msi_hashtab[i]);
907
        }
908
    }
909

    
910
    kvm_arch_init_irq_routing(s);
911
}
912

    
913
static void kvm_irqchip_commit_routes(KVMState *s)
914
{
915
    int ret;
916

    
917
    s->irq_routes->flags = 0;
918
    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
919
    assert(ret == 0);
920
}
921

    
922
static void kvm_add_routing_entry(KVMState *s,
923
                                  struct kvm_irq_routing_entry *entry)
924
{
925
    struct kvm_irq_routing_entry *new;
926
    int n, size;
927

    
928
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
929
        n = s->nr_allocated_irq_routes * 2;
930
        if (n < 64) {
931
            n = 64;
932
        }
933
        size = sizeof(struct kvm_irq_routing);
934
        size += n * sizeof(*new);
935
        s->irq_routes = g_realloc(s->irq_routes, size);
936
        s->nr_allocated_irq_routes = n;
937
    }
938
    n = s->irq_routes->nr++;
939
    new = &s->irq_routes->entries[n];
940
    memset(new, 0, sizeof(*new));
941
    new->gsi = entry->gsi;
942
    new->type = entry->type;
943
    new->flags = entry->flags;
944
    new->u = entry->u;
945

    
946
    set_gsi(s, entry->gsi);
947

    
948
    kvm_irqchip_commit_routes(s);
949
}
950

    
951
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
952
{
953
    struct kvm_irq_routing_entry e;
954

    
955
    assert(pin < s->gsi_count);
956

    
957
    e.gsi = irq;
958
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
959
    e.flags = 0;
960
    e.u.irqchip.irqchip = irqchip;
961
    e.u.irqchip.pin = pin;
962
    kvm_add_routing_entry(s, &e);
963
}
964

    
965
void kvm_irqchip_release_virq(KVMState *s, int virq)
966
{
967
    struct kvm_irq_routing_entry *e;
968
    int i;
969

    
970
    for (i = 0; i < s->irq_routes->nr; i++) {
971
        e = &s->irq_routes->entries[i];
972
        if (e->gsi == virq) {
973
            s->irq_routes->nr--;
974
            *e = s->irq_routes->entries[s->irq_routes->nr];
975
        }
976
    }
977
    clear_gsi(s, virq);
978

    
979
    kvm_irqchip_commit_routes(s);
980
}
981

    
982
static unsigned int kvm_hash_msi(uint32_t data)
983
{
984
    /* This is optimized for IA32 MSI layout. However, no other arch shall
985
     * repeat the mistake of not providing a direct MSI injection API. */
986
    return data & 0xff;
987
}
988

    
989
static void kvm_flush_dynamic_msi_routes(KVMState *s)
990
{
991
    KVMMSIRoute *route, *next;
992
    unsigned int hash;
993

    
994
    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
995
        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
996
            kvm_irqchip_release_virq(s, route->kroute.gsi);
997
            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
998
            g_free(route);
999
        }
1000
    }
1001
}
1002

    
1003
static int kvm_irqchip_get_virq(KVMState *s)
1004
{
1005
    uint32_t *word = s->used_gsi_bitmap;
1006
    int max_words = ALIGN(s->gsi_count, 32) / 32;
1007
    int i, bit;
1008
    bool retry = true;
1009

    
1010
again:
1011
    /* Return the lowest unused GSI in the bitmap */
1012
    for (i = 0; i < max_words; i++) {
1013
        bit = ffs(~word[i]);
1014
        if (!bit) {
1015
            continue;
1016
        }
1017

    
1018
        return bit - 1 + i * 32;
1019
    }
1020
    if (!s->direct_msi && retry) {
1021
        retry = false;
1022
        kvm_flush_dynamic_msi_routes(s);
1023
        goto again;
1024
    }
1025
    return -ENOSPC;
1026

    
1027
}
1028

    
1029
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1030
{
1031
    unsigned int hash = kvm_hash_msi(msg.data);
1032
    KVMMSIRoute *route;
1033

    
1034
    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1035
        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1036
            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1037
            route->kroute.u.msi.data == msg.data) {
1038
            return route;
1039
        }
1040
    }
1041
    return NULL;
1042
}
1043

    
1044
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1045
{
1046
    struct kvm_msi msi;
1047
    KVMMSIRoute *route;
1048

    
1049
    if (s->direct_msi) {
1050
        msi.address_lo = (uint32_t)msg.address;
1051
        msi.address_hi = msg.address >> 32;
1052
        msi.data = msg.data;
1053
        msi.flags = 0;
1054
        memset(msi.pad, 0, sizeof(msi.pad));
1055

    
1056
        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1057
    }
1058

    
1059
    route = kvm_lookup_msi_route(s, msg);
1060
    if (!route) {
1061
        int virq;
1062

    
1063
        virq = kvm_irqchip_get_virq(s);
1064
        if (virq < 0) {
1065
            return virq;
1066
        }
1067

    
1068
        route = g_malloc(sizeof(KVMMSIRoute));
1069
        route->kroute.gsi = virq;
1070
        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1071
        route->kroute.flags = 0;
1072
        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1073
        route->kroute.u.msi.address_hi = msg.address >> 32;
1074
        route->kroute.u.msi.data = msg.data;
1075

    
1076
        kvm_add_routing_entry(s, &route->kroute);
1077

    
1078
        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1079
                           entry);
1080
    }
1081

    
1082
    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1083

    
1084
    return kvm_irqchip_set_irq(s, route->kroute.gsi, 1);
1085
}
1086

    
1087
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1088
{
1089
    struct kvm_irq_routing_entry kroute;
1090
    int virq;
1091

    
1092
    if (!kvm_irqchip_in_kernel()) {
1093
        return -ENOSYS;
1094
    }
1095

    
1096
    virq = kvm_irqchip_get_virq(s);
1097
    if (virq < 0) {
1098
        return virq;
1099
    }
1100

    
1101
    kroute.gsi = virq;
1102
    kroute.type = KVM_IRQ_ROUTING_MSI;
1103
    kroute.flags = 0;
1104
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1105
    kroute.u.msi.address_hi = msg.address >> 32;
1106
    kroute.u.msi.data = msg.data;
1107

    
1108
    kvm_add_routing_entry(s, &kroute);
1109

    
1110
    return virq;
1111
}
1112

    
1113
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1114
{
1115
    struct kvm_irqfd irqfd = {
1116
        .fd = fd,
1117
        .gsi = virq,
1118
        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1119
    };
1120

    
1121
    if (!kvm_irqchip_in_kernel()) {
1122
        return -ENOSYS;
1123
    }
1124

    
1125
    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1126
}
1127

    
1128
#else /* !KVM_CAP_IRQ_ROUTING */
1129

    
1130
static void kvm_init_irq_routing(KVMState *s)
1131
{
1132
}
1133

    
1134
void kvm_irqchip_release_virq(KVMState *s, int virq)
1135
{
1136
}
1137

    
1138
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1139
{
1140
    abort();
1141
}
1142

    
1143
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1144
{
1145
    abort();
1146
}
1147

    
1148
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1149
{
1150
    abort();
1151
}
1152
#endif /* !KVM_CAP_IRQ_ROUTING */
1153

    
1154
int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
1155
{
1156
    return kvm_irqchip_assign_irqfd(s, fd, virq, true);
1157
}
1158

    
1159
int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
1160
{
1161
    return kvm_irqchip_assign_irqfd(s, fd, virq, false);
1162
}
1163

    
1164
static int kvm_irqchip_create(KVMState *s)
1165
{
1166
    QemuOptsList *list = qemu_find_opts("machine");
1167
    int ret;
1168

    
1169
    if (QTAILQ_EMPTY(&list->head) ||
1170
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1171
                           "kernel_irqchip", true) ||
1172
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1173
        return 0;
1174
    }
1175

    
1176
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1177
    if (ret < 0) {
1178
        fprintf(stderr, "Create kernel irqchip failed\n");
1179
        return ret;
1180
    }
1181

    
1182
    s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1183
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1184
        s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1185
    }
1186
    kvm_kernel_irqchip = true;
1187

    
1188
    kvm_init_irq_routing(s);
1189

    
1190
    return 0;
1191
}
1192

    
1193
int kvm_init(void)
1194
{
1195
    static const char upgrade_note[] =
1196
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1197
        "(see http://sourceforge.net/projects/kvm).\n";
1198
    KVMState *s;
1199
    const KVMCapabilityInfo *missing_cap;
1200
    int ret;
1201
    int i;
1202

    
1203
    s = g_malloc0(sizeof(KVMState));
1204

    
1205
    /*
1206
     * On systems where the kernel can support different base page
1207
     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1208
     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1209
     * page size for the system though.
1210
     */
1211
    assert(TARGET_PAGE_SIZE <= getpagesize());
1212

    
1213
#ifdef KVM_CAP_SET_GUEST_DEBUG
1214
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1215
#endif
1216
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1217
        s->slots[i].slot = i;
1218
    }
1219
    s->vmfd = -1;
1220
    s->fd = qemu_open("/dev/kvm", O_RDWR);
1221
    if (s->fd == -1) {
1222
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1223
        ret = -errno;
1224
        goto err;
1225
    }
1226

    
1227
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1228
    if (ret < KVM_API_VERSION) {
1229
        if (ret > 0) {
1230
            ret = -EINVAL;
1231
        }
1232
        fprintf(stderr, "kvm version too old\n");
1233
        goto err;
1234
    }
1235

    
1236
    if (ret > KVM_API_VERSION) {
1237
        ret = -EINVAL;
1238
        fprintf(stderr, "kvm version not supported\n");
1239
        goto err;
1240
    }
1241

    
1242
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1243
    if (s->vmfd < 0) {
1244
#ifdef TARGET_S390X
1245
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1246
                        "your host kernel command line\n");
1247
#endif
1248
        ret = s->vmfd;
1249
        goto err;
1250
    }
1251

    
1252
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1253
    if (!missing_cap) {
1254
        missing_cap =
1255
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1256
    }
1257
    if (missing_cap) {
1258
        ret = -EINVAL;
1259
        fprintf(stderr, "kvm does not support %s\n%s",
1260
                missing_cap->name, upgrade_note);
1261
        goto err;
1262
    }
1263

    
1264
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1265

    
1266
    s->broken_set_mem_region = 1;
1267
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1268
    if (ret > 0) {
1269
        s->broken_set_mem_region = 0;
1270
    }
1271

    
1272
#ifdef KVM_CAP_VCPU_EVENTS
1273
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1274
#endif
1275

    
1276
    s->robust_singlestep =
1277
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1278

    
1279
#ifdef KVM_CAP_DEBUGREGS
1280
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1281
#endif
1282

    
1283
#ifdef KVM_CAP_XSAVE
1284
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1285
#endif
1286

    
1287
#ifdef KVM_CAP_XCRS
1288
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1289
#endif
1290

    
1291
#ifdef KVM_CAP_PIT_STATE2
1292
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1293
#endif
1294

    
1295
#ifdef KVM_CAP_IRQ_ROUTING
1296
    s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1297
#endif
1298

    
1299
    ret = kvm_arch_init(s);
1300
    if (ret < 0) {
1301
        goto err;
1302
    }
1303

    
1304
    ret = kvm_irqchip_create(s);
1305
    if (ret < 0) {
1306
        goto err;
1307
    }
1308

    
1309
    kvm_state = s;
1310
    memory_listener_register(&kvm_memory_listener, NULL);
1311

    
1312
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1313

    
1314
    cpu_interrupt_handler = kvm_handle_interrupt;
1315

    
1316
    return 0;
1317

    
1318
err:
1319
    if (s) {
1320
        if (s->vmfd >= 0) {
1321
            close(s->vmfd);
1322
        }
1323
        if (s->fd != -1) {
1324
            close(s->fd);
1325
        }
1326
    }
1327
    g_free(s);
1328

    
1329
    return ret;
1330
}
1331

    
1332
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1333
                          uint32_t count)
1334
{
1335
    int i;
1336
    uint8_t *ptr = data;
1337

    
1338
    for (i = 0; i < count; i++) {
1339
        if (direction == KVM_EXIT_IO_IN) {
1340
            switch (size) {
1341
            case 1:
1342
                stb_p(ptr, cpu_inb(port));
1343
                break;
1344
            case 2:
1345
                stw_p(ptr, cpu_inw(port));
1346
                break;
1347
            case 4:
1348
                stl_p(ptr, cpu_inl(port));
1349
                break;
1350
            }
1351
        } else {
1352
            switch (size) {
1353
            case 1:
1354
                cpu_outb(port, ldub_p(ptr));
1355
                break;
1356
            case 2:
1357
                cpu_outw(port, lduw_p(ptr));
1358
                break;
1359
            case 4:
1360
                cpu_outl(port, ldl_p(ptr));
1361
                break;
1362
            }
1363
        }
1364

    
1365
        ptr += size;
1366
    }
1367
}
1368

    
1369
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1370
{
1371
    fprintf(stderr, "KVM internal error.");
1372
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1373
        int i;
1374

    
1375
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1376
        for (i = 0; i < run->internal.ndata; ++i) {
1377
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1378
                    i, (uint64_t)run->internal.data[i]);
1379
        }
1380
    } else {
1381
        fprintf(stderr, "\n");
1382
    }
1383
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1384
        fprintf(stderr, "emulation failure\n");
1385
        if (!kvm_arch_stop_on_emulation_error(env)) {
1386
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1387
            return EXCP_INTERRUPT;
1388
        }
1389
    }
1390
    /* FIXME: Should trigger a qmp message to let management know
1391
     * something went wrong.
1392
     */
1393
    return -1;
1394
}
1395

    
1396
void kvm_flush_coalesced_mmio_buffer(void)
1397
{
1398
    KVMState *s = kvm_state;
1399

    
1400
    if (s->coalesced_flush_in_progress) {
1401
        return;
1402
    }
1403

    
1404
    s->coalesced_flush_in_progress = true;
1405

    
1406
    if (s->coalesced_mmio_ring) {
1407
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1408
        while (ring->first != ring->last) {
1409
            struct kvm_coalesced_mmio *ent;
1410

    
1411
            ent = &ring->coalesced_mmio[ring->first];
1412

    
1413
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1414
            smp_wmb();
1415
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1416
        }
1417
    }
1418

    
1419
    s->coalesced_flush_in_progress = false;
1420
}
1421

    
1422
static void do_kvm_cpu_synchronize_state(void *_env)
1423
{
1424
    CPUArchState *env = _env;
1425

    
1426
    if (!env->kvm_vcpu_dirty) {
1427
        kvm_arch_get_registers(env);
1428
        env->kvm_vcpu_dirty = 1;
1429
    }
1430
}
1431

    
1432
void kvm_cpu_synchronize_state(CPUArchState *env)
1433
{
1434
    if (!env->kvm_vcpu_dirty) {
1435
        run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1436
    }
1437
}
1438

    
1439
void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1440
{
1441
    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1442
    env->kvm_vcpu_dirty = 0;
1443
}
1444

    
1445
void kvm_cpu_synchronize_post_init(CPUArchState *env)
1446
{
1447
    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1448
    env->kvm_vcpu_dirty = 0;
1449
}
1450

    
1451
int kvm_cpu_exec(CPUArchState *env)
1452
{
1453
    struct kvm_run *run = env->kvm_run;
1454
    int ret, run_ret;
1455

    
1456
    DPRINTF("kvm_cpu_exec()\n");
1457

    
1458
    if (kvm_arch_process_async_events(env)) {
1459
        env->exit_request = 0;
1460
        return EXCP_HLT;
1461
    }
1462

    
1463
    do {
1464
        if (env->kvm_vcpu_dirty) {
1465
            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1466
            env->kvm_vcpu_dirty = 0;
1467
        }
1468

    
1469
        kvm_arch_pre_run(env, run);
1470
        if (env->exit_request) {
1471
            DPRINTF("interrupt exit requested\n");
1472
            /*
1473
             * KVM requires us to reenter the kernel after IO exits to complete
1474
             * instruction emulation. This self-signal will ensure that we
1475
             * leave ASAP again.
1476
             */
1477
            qemu_cpu_kick_self();
1478
        }
1479
        qemu_mutex_unlock_iothread();
1480

    
1481
        run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1482

    
1483
        qemu_mutex_lock_iothread();
1484
        kvm_arch_post_run(env, run);
1485

    
1486
        kvm_flush_coalesced_mmio_buffer();
1487

    
1488
        if (run_ret < 0) {
1489
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1490
                DPRINTF("io window exit\n");
1491
                ret = EXCP_INTERRUPT;
1492
                break;
1493
            }
1494
            fprintf(stderr, "error: kvm run failed %s\n",
1495
                    strerror(-run_ret));
1496
            abort();
1497
        }
1498

    
1499
        switch (run->exit_reason) {
1500
        case KVM_EXIT_IO:
1501
            DPRINTF("handle_io\n");
1502
            kvm_handle_io(run->io.port,
1503
                          (uint8_t *)run + run->io.data_offset,
1504
                          run->io.direction,
1505
                          run->io.size,
1506
                          run->io.count);
1507
            ret = 0;
1508
            break;
1509
        case KVM_EXIT_MMIO:
1510
            DPRINTF("handle_mmio\n");
1511
            cpu_physical_memory_rw(run->mmio.phys_addr,
1512
                                   run->mmio.data,
1513
                                   run->mmio.len,
1514
                                   run->mmio.is_write);
1515
            ret = 0;
1516
            break;
1517
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1518
            DPRINTF("irq_window_open\n");
1519
            ret = EXCP_INTERRUPT;
1520
            break;
1521
        case KVM_EXIT_SHUTDOWN:
1522
            DPRINTF("shutdown\n");
1523
            qemu_system_reset_request();
1524
            ret = EXCP_INTERRUPT;
1525
            break;
1526
        case KVM_EXIT_UNKNOWN:
1527
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1528
                    (uint64_t)run->hw.hardware_exit_reason);
1529
            ret = -1;
1530
            break;
1531
        case KVM_EXIT_INTERNAL_ERROR:
1532
            ret = kvm_handle_internal_error(env, run);
1533
            break;
1534
        default:
1535
            DPRINTF("kvm_arch_handle_exit\n");
1536
            ret = kvm_arch_handle_exit(env, run);
1537
            break;
1538
        }
1539
    } while (ret == 0);
1540

    
1541
    if (ret < 0) {
1542
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1543
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1544
    }
1545

    
1546
    env->exit_request = 0;
1547
    return ret;
1548
}
1549

    
1550
int kvm_ioctl(KVMState *s, int type, ...)
1551
{
1552
    int ret;
1553
    void *arg;
1554
    va_list ap;
1555

    
1556
    va_start(ap, type);
1557
    arg = va_arg(ap, void *);
1558
    va_end(ap);
1559

    
1560
    ret = ioctl(s->fd, type, arg);
1561
    if (ret == -1) {
1562
        ret = -errno;
1563
    }
1564
    return ret;
1565
}
1566

    
1567
int kvm_vm_ioctl(KVMState *s, int type, ...)
1568
{
1569
    int ret;
1570
    void *arg;
1571
    va_list ap;
1572

    
1573
    va_start(ap, type);
1574
    arg = va_arg(ap, void *);
1575
    va_end(ap);
1576

    
1577
    ret = ioctl(s->vmfd, type, arg);
1578
    if (ret == -1) {
1579
        ret = -errno;
1580
    }
1581
    return ret;
1582
}
1583

    
1584
int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1585
{
1586
    int ret;
1587
    void *arg;
1588
    va_list ap;
1589

    
1590
    va_start(ap, type);
1591
    arg = va_arg(ap, void *);
1592
    va_end(ap);
1593

    
1594
    ret = ioctl(env->kvm_fd, type, arg);
1595
    if (ret == -1) {
1596
        ret = -errno;
1597
    }
1598
    return ret;
1599
}
1600

    
1601
int kvm_has_sync_mmu(void)
1602
{
1603
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1604
}
1605

    
1606
int kvm_has_vcpu_events(void)
1607
{
1608
    return kvm_state->vcpu_events;
1609
}
1610

    
1611
int kvm_has_robust_singlestep(void)
1612
{
1613
    return kvm_state->robust_singlestep;
1614
}
1615

    
1616
int kvm_has_debugregs(void)
1617
{
1618
    return kvm_state->debugregs;
1619
}
1620

    
1621
int kvm_has_xsave(void)
1622
{
1623
    return kvm_state->xsave;
1624
}
1625

    
1626
int kvm_has_xcrs(void)
1627
{
1628
    return kvm_state->xcrs;
1629
}
1630

    
1631
int kvm_has_pit_state2(void)
1632
{
1633
    return kvm_state->pit_state2;
1634
}
1635

    
1636
int kvm_has_many_ioeventfds(void)
1637
{
1638
    if (!kvm_enabled()) {
1639
        return 0;
1640
    }
1641
    return kvm_state->many_ioeventfds;
1642
}
1643

    
1644
int kvm_has_gsi_routing(void)
1645
{
1646
#ifdef KVM_CAP_IRQ_ROUTING
1647
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1648
#else
1649
    return false;
1650
#endif
1651
}
1652

    
1653
int kvm_allows_irq0_override(void)
1654
{
1655
    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1656
}
1657

    
1658
void *kvm_vmalloc(ram_addr_t size)
1659
{
1660
#ifdef TARGET_S390X
1661
    void *mem;
1662

    
1663
    mem = kvm_arch_vmalloc(size);
1664
    if (mem) {
1665
        return mem;
1666
    }
1667
#endif
1668
    return qemu_vmalloc(size);
1669
}
1670

    
1671
void kvm_setup_guest_memory(void *start, size_t size)
1672
{
1673
    if (!kvm_has_sync_mmu()) {
1674
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1675

    
1676
        if (ret) {
1677
            perror("qemu_madvise");
1678
            fprintf(stderr,
1679
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1680
            exit(1);
1681
        }
1682
    }
1683
}
1684

    
1685
#ifdef KVM_CAP_SET_GUEST_DEBUG
1686
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1687
                                                 target_ulong pc)
1688
{
1689
    struct kvm_sw_breakpoint *bp;
1690

    
1691
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1692
        if (bp->pc == pc) {
1693
            return bp;
1694
        }
1695
    }
1696
    return NULL;
1697
}
1698

    
1699
int kvm_sw_breakpoints_active(CPUArchState *env)
1700
{
1701
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1702
}
1703

    
1704
struct kvm_set_guest_debug_data {
1705
    struct kvm_guest_debug dbg;
1706
    CPUArchState *env;
1707
    int err;
1708
};
1709

    
1710
static void kvm_invoke_set_guest_debug(void *data)
1711
{
1712
    struct kvm_set_guest_debug_data *dbg_data = data;
1713
    CPUArchState *env = dbg_data->env;
1714

    
1715
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1716
}
1717

    
1718
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1719
{
1720
    struct kvm_set_guest_debug_data data;
1721

    
1722
    data.dbg.control = reinject_trap;
1723

    
1724
    if (env->singlestep_enabled) {
1725
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1726
    }
1727
    kvm_arch_update_guest_debug(env, &data.dbg);
1728
    data.env = env;
1729

    
1730
    run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1731
    return data.err;
1732
}
1733

    
1734
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1735
                          target_ulong len, int type)
1736
{
1737
    struct kvm_sw_breakpoint *bp;
1738
    CPUArchState *env;
1739
    int err;
1740

    
1741
    if (type == GDB_BREAKPOINT_SW) {
1742
        bp = kvm_find_sw_breakpoint(current_env, addr);
1743
        if (bp) {
1744
            bp->use_count++;
1745
            return 0;
1746
        }
1747

    
1748
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1749
        if (!bp) {
1750
            return -ENOMEM;
1751
        }
1752

    
1753
        bp->pc = addr;
1754
        bp->use_count = 1;
1755
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1756
        if (err) {
1757
            g_free(bp);
1758
            return err;
1759
        }
1760

    
1761
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1762
                          bp, entry);
1763
    } else {
1764
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1765
        if (err) {
1766
            return err;
1767
        }
1768
    }
1769

    
1770
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1771
        err = kvm_update_guest_debug(env, 0);
1772
        if (err) {
1773
            return err;
1774
        }
1775
    }
1776
    return 0;
1777
}
1778

    
1779
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1780
                          target_ulong len, int type)
1781
{
1782
    struct kvm_sw_breakpoint *bp;
1783
    CPUArchState *env;
1784
    int err;
1785

    
1786
    if (type == GDB_BREAKPOINT_SW) {
1787
        bp = kvm_find_sw_breakpoint(current_env, addr);
1788
        if (!bp) {
1789
            return -ENOENT;
1790
        }
1791

    
1792
        if (bp->use_count > 1) {
1793
            bp->use_count--;
1794
            return 0;
1795
        }
1796

    
1797
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1798
        if (err) {
1799
            return err;
1800
        }
1801

    
1802
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1803
        g_free(bp);
1804
    } else {
1805
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1806
        if (err) {
1807
            return err;
1808
        }
1809
    }
1810

    
1811
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1812
        err = kvm_update_guest_debug(env, 0);
1813
        if (err) {
1814
            return err;
1815
        }
1816
    }
1817
    return 0;
1818
}
1819

    
1820
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1821
{
1822
    struct kvm_sw_breakpoint *bp, *next;
1823
    KVMState *s = current_env->kvm_state;
1824
    CPUArchState *env;
1825

    
1826
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1827
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1828
            /* Try harder to find a CPU that currently sees the breakpoint. */
1829
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1830
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1831
                    break;
1832
                }
1833
            }
1834
        }
1835
    }
1836
    kvm_arch_remove_all_hw_breakpoints();
1837

    
1838
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1839
        kvm_update_guest_debug(env, 0);
1840
    }
1841
}
1842

    
1843
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1844

    
1845
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1846
{
1847
    return -EINVAL;
1848
}
1849

    
1850
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1851
                          target_ulong len, int type)
1852
{
1853
    return -EINVAL;
1854
}
1855

    
1856
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1857
                          target_ulong len, int type)
1858
{
1859
    return -EINVAL;
1860
}
1861

    
1862
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1863
{
1864
}
1865
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1866

    
1867
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1868
{
1869
    struct kvm_signal_mask *sigmask;
1870
    int r;
1871

    
1872
    if (!sigset) {
1873
        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1874
    }
1875

    
1876
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1877

    
1878
    sigmask->len = 8;
1879
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1880
    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1881
    g_free(sigmask);
1882

    
1883
    return r;
1884
}
1885

    
1886
int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1887
                           uint32_t size)
1888
{
1889
    int ret;
1890
    struct kvm_ioeventfd iofd;
1891

    
1892
    iofd.datamatch = val;
1893
    iofd.addr = addr;
1894
    iofd.len = size;
1895
    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1896
    iofd.fd = fd;
1897

    
1898
    if (!kvm_enabled()) {
1899
        return -ENOSYS;
1900
    }
1901

    
1902
    if (!assign) {
1903
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1904
    }
1905

    
1906
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1907

    
1908
    if (ret < 0) {
1909
        return -errno;
1910
    }
1911

    
1912
    return 0;
1913
}
1914

    
1915
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1916
{
1917
    struct kvm_ioeventfd kick = {
1918
        .datamatch = val,
1919
        .addr = addr,
1920
        .len = 2,
1921
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1922
        .fd = fd,
1923
    };
1924
    int r;
1925
    if (!kvm_enabled()) {
1926
        return -ENOSYS;
1927
    }
1928
    if (!assign) {
1929
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1930
    }
1931
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1932
    if (r < 0) {
1933
        return r;
1934
    }
1935
    return 0;
1936
}
1937

    
1938
int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1939
{
1940
    return kvm_arch_on_sigbus_vcpu(env, code, addr);
1941
}
1942

    
1943
int kvm_on_sigbus(int code, void *addr)
1944
{
1945
    return kvm_arch_on_sigbus(code, addr);
1946
}