Statistics
| Branch: | Revision:

root / target-i386 / smm_helper.c @ feature-archipelago

History | View | Annotate | Download (11.8 kB)

1
/*
2
 *  x86 SMM helpers
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "cpu.h"
21
#include "helper.h"
22

    
23
/* SMM support */
24

    
25
#if defined(CONFIG_USER_ONLY)
26

    
27
void do_smm_enter(X86CPU *cpu)
28
{
29
}
30

    
31
void helper_rsm(CPUX86State *env)
32
{
33
}
34

    
35
#else
36

    
37
#ifdef TARGET_X86_64
38
#define SMM_REVISION_ID 0x00020064
39
#else
40
#define SMM_REVISION_ID 0x00020000
41
#endif
42

    
43
void do_smm_enter(X86CPU *cpu)
44
{
45
    CPUX86State *env = &cpu->env;
46
    CPUState *cs = CPU(cpu);
47
    target_ulong sm_state;
48
    SegmentCache *dt;
49
    int i, offset;
50

    
51
    qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
52
    log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
53

    
54
    env->hflags |= HF_SMM_MASK;
55
    cpu_smm_update(env);
56

    
57
    sm_state = env->smbase + 0x8000;
58

    
59
#ifdef TARGET_X86_64
60
    for (i = 0; i < 6; i++) {
61
        dt = &env->segs[i];
62
        offset = 0x7e00 + i * 16;
63
        stw_phys(cs->as, sm_state + offset, dt->selector);
64
        stw_phys(cs->as, sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
65
        stl_phys(cs->as, sm_state + offset + 4, dt->limit);
66
        stq_phys(cs->as, sm_state + offset + 8, dt->base);
67
    }
68

    
69
    stq_phys(cs->as, sm_state + 0x7e68, env->gdt.base);
70
    stl_phys(cs->as, sm_state + 0x7e64, env->gdt.limit);
71

    
72
    stw_phys(cs->as, sm_state + 0x7e70, env->ldt.selector);
73
    stq_phys(cs->as, sm_state + 0x7e78, env->ldt.base);
74
    stl_phys(cs->as, sm_state + 0x7e74, env->ldt.limit);
75
    stw_phys(cs->as, sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
76

    
77
    stq_phys(cs->as, sm_state + 0x7e88, env->idt.base);
78
    stl_phys(cs->as, sm_state + 0x7e84, env->idt.limit);
79

    
80
    stw_phys(cs->as, sm_state + 0x7e90, env->tr.selector);
81
    stq_phys(cs->as, sm_state + 0x7e98, env->tr.base);
82
    stl_phys(cs->as, sm_state + 0x7e94, env->tr.limit);
83
    stw_phys(cs->as, sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
84

    
85
    stq_phys(cs->as, sm_state + 0x7ed0, env->efer);
86

    
87
    stq_phys(cs->as, sm_state + 0x7ff8, env->regs[R_EAX]);
88
    stq_phys(cs->as, sm_state + 0x7ff0, env->regs[R_ECX]);
89
    stq_phys(cs->as, sm_state + 0x7fe8, env->regs[R_EDX]);
90
    stq_phys(cs->as, sm_state + 0x7fe0, env->regs[R_EBX]);
91
    stq_phys(cs->as, sm_state + 0x7fd8, env->regs[R_ESP]);
92
    stq_phys(cs->as, sm_state + 0x7fd0, env->regs[R_EBP]);
93
    stq_phys(cs->as, sm_state + 0x7fc8, env->regs[R_ESI]);
94
    stq_phys(cs->as, sm_state + 0x7fc0, env->regs[R_EDI]);
95
    for (i = 8; i < 16; i++) {
96
        stq_phys(cs->as, sm_state + 0x7ff8 - i * 8, env->regs[i]);
97
    }
98
    stq_phys(cs->as, sm_state + 0x7f78, env->eip);
99
    stl_phys(cs->as, sm_state + 0x7f70, cpu_compute_eflags(env));
100
    stl_phys(cs->as, sm_state + 0x7f68, env->dr[6]);
101
    stl_phys(cs->as, sm_state + 0x7f60, env->dr[7]);
102

    
103
    stl_phys(cs->as, sm_state + 0x7f48, env->cr[4]);
104
    stl_phys(cs->as, sm_state + 0x7f50, env->cr[3]);
105
    stl_phys(cs->as, sm_state + 0x7f58, env->cr[0]);
106

    
107
    stl_phys(cs->as, sm_state + 0x7efc, SMM_REVISION_ID);
108
    stl_phys(cs->as, sm_state + 0x7f00, env->smbase);
109
#else
110
    stl_phys(cs->as, sm_state + 0x7ffc, env->cr[0]);
111
    stl_phys(cs->as, sm_state + 0x7ff8, env->cr[3]);
112
    stl_phys(cs->as, sm_state + 0x7ff4, cpu_compute_eflags(env));
113
    stl_phys(cs->as, sm_state + 0x7ff0, env->eip);
114
    stl_phys(cs->as, sm_state + 0x7fec, env->regs[R_EDI]);
115
    stl_phys(cs->as, sm_state + 0x7fe8, env->regs[R_ESI]);
116
    stl_phys(cs->as, sm_state + 0x7fe4, env->regs[R_EBP]);
117
    stl_phys(cs->as, sm_state + 0x7fe0, env->regs[R_ESP]);
118
    stl_phys(cs->as, sm_state + 0x7fdc, env->regs[R_EBX]);
119
    stl_phys(cs->as, sm_state + 0x7fd8, env->regs[R_EDX]);
120
    stl_phys(cs->as, sm_state + 0x7fd4, env->regs[R_ECX]);
121
    stl_phys(cs->as, sm_state + 0x7fd0, env->regs[R_EAX]);
122
    stl_phys(cs->as, sm_state + 0x7fcc, env->dr[6]);
123
    stl_phys(cs->as, sm_state + 0x7fc8, env->dr[7]);
124

    
125
    stl_phys(cs->as, sm_state + 0x7fc4, env->tr.selector);
126
    stl_phys(cs->as, sm_state + 0x7f64, env->tr.base);
127
    stl_phys(cs->as, sm_state + 0x7f60, env->tr.limit);
128
    stl_phys(cs->as, sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
129

    
130
    stl_phys(cs->as, sm_state + 0x7fc0, env->ldt.selector);
131
    stl_phys(cs->as, sm_state + 0x7f80, env->ldt.base);
132
    stl_phys(cs->as, sm_state + 0x7f7c, env->ldt.limit);
133
    stl_phys(cs->as, sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
134

    
135
    stl_phys(cs->as, sm_state + 0x7f74, env->gdt.base);
136
    stl_phys(cs->as, sm_state + 0x7f70, env->gdt.limit);
137

    
138
    stl_phys(cs->as, sm_state + 0x7f58, env->idt.base);
139
    stl_phys(cs->as, sm_state + 0x7f54, env->idt.limit);
140

    
141
    for (i = 0; i < 6; i++) {
142
        dt = &env->segs[i];
143
        if (i < 3) {
144
            offset = 0x7f84 + i * 12;
145
        } else {
146
            offset = 0x7f2c + (i - 3) * 12;
147
        }
148
        stl_phys(cs->as, sm_state + 0x7fa8 + i * 4, dt->selector);
149
        stl_phys(cs->as, sm_state + offset + 8, dt->base);
150
        stl_phys(cs->as, sm_state + offset + 4, dt->limit);
151
        stl_phys(cs->as, sm_state + offset, (dt->flags >> 8) & 0xf0ff);
152
    }
153
    stl_phys(cs->as, sm_state + 0x7f14, env->cr[4]);
154

    
155
    stl_phys(cs->as, sm_state + 0x7efc, SMM_REVISION_ID);
156
    stl_phys(cs->as, sm_state + 0x7ef8, env->smbase);
157
#endif
158
    /* init SMM cpu state */
159

    
160
#ifdef TARGET_X86_64
161
    cpu_load_efer(env, 0);
162
#endif
163
    cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C |
164
                              DF_MASK));
165
    env->eip = 0x00008000;
166
    cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
167
                           0xffffffff, 0);
168
    cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff, 0);
169
    cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff, 0);
170
    cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff, 0);
171
    cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff, 0);
172
    cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff, 0);
173

    
174
    cpu_x86_update_cr0(env,
175
                       env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK |
176
                                      CR0_PG_MASK));
177
    cpu_x86_update_cr4(env, 0);
178
    env->dr[7] = 0x00000400;
179
    CC_OP = CC_OP_EFLAGS;
180
}
181

    
182
void helper_rsm(CPUX86State *env)
183
{
184
    CPUState *cs = ENV_GET_CPU(env);
185
    X86CPU *cpu = x86_env_get_cpu(env);
186
    target_ulong sm_state;
187
    int i, offset;
188
    uint32_t val;
189

    
190
    sm_state = env->smbase + 0x8000;
191
#ifdef TARGET_X86_64
192
    cpu_load_efer(env, ldq_phys(cs->as, sm_state + 0x7ed0));
193

    
194
    for (i = 0; i < 6; i++) {
195
        offset = 0x7e00 + i * 16;
196
        cpu_x86_load_seg_cache(env, i,
197
                               lduw_phys(cs->as, sm_state + offset),
198
                               ldq_phys(cs->as, sm_state + offset + 8),
199
                               ldl_phys(cs->as, sm_state + offset + 4),
200
                               (lduw_phys(cs->as, sm_state + offset + 2) &
201
                                0xf0ff) << 8);
202
    }
203

    
204
    env->gdt.base = ldq_phys(cs->as, sm_state + 0x7e68);
205
    env->gdt.limit = ldl_phys(cs->as, sm_state + 0x7e64);
206

    
207
    env->ldt.selector = lduw_phys(cs->as, sm_state + 0x7e70);
208
    env->ldt.base = ldq_phys(cs->as, sm_state + 0x7e78);
209
    env->ldt.limit = ldl_phys(cs->as, sm_state + 0x7e74);
210
    env->ldt.flags = (lduw_phys(cs->as, sm_state + 0x7e72) & 0xf0ff) << 8;
211

    
212
    env->idt.base = ldq_phys(cs->as, sm_state + 0x7e88);
213
    env->idt.limit = ldl_phys(cs->as, sm_state + 0x7e84);
214

    
215
    env->tr.selector = lduw_phys(cs->as, sm_state + 0x7e90);
216
    env->tr.base = ldq_phys(cs->as, sm_state + 0x7e98);
217
    env->tr.limit = ldl_phys(cs->as, sm_state + 0x7e94);
218
    env->tr.flags = (lduw_phys(cs->as, sm_state + 0x7e92) & 0xf0ff) << 8;
219

    
220
    env->regs[R_EAX] = ldq_phys(cs->as, sm_state + 0x7ff8);
221
    env->regs[R_ECX] = ldq_phys(cs->as, sm_state + 0x7ff0);
222
    env->regs[R_EDX] = ldq_phys(cs->as, sm_state + 0x7fe8);
223
    env->regs[R_EBX] = ldq_phys(cs->as, sm_state + 0x7fe0);
224
    env->regs[R_ESP] = ldq_phys(cs->as, sm_state + 0x7fd8);
225
    env->regs[R_EBP] = ldq_phys(cs->as, sm_state + 0x7fd0);
226
    env->regs[R_ESI] = ldq_phys(cs->as, sm_state + 0x7fc8);
227
    env->regs[R_EDI] = ldq_phys(cs->as, sm_state + 0x7fc0);
228
    for (i = 8; i < 16; i++) {
229
        env->regs[i] = ldq_phys(cs->as, sm_state + 0x7ff8 - i * 8);
230
    }
231
    env->eip = ldq_phys(cs->as, sm_state + 0x7f78);
232
    cpu_load_eflags(env, ldl_phys(cs->as, sm_state + 0x7f70),
233
                    ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
234
    env->dr[6] = ldl_phys(cs->as, sm_state + 0x7f68);
235
    env->dr[7] = ldl_phys(cs->as, sm_state + 0x7f60);
236

    
237
    cpu_x86_update_cr4(env, ldl_phys(cs->as, sm_state + 0x7f48));
238
    cpu_x86_update_cr3(env, ldl_phys(cs->as, sm_state + 0x7f50));
239
    cpu_x86_update_cr0(env, ldl_phys(cs->as, sm_state + 0x7f58));
240

    
241
    val = ldl_phys(cs->as, sm_state + 0x7efc); /* revision ID */
242
    if (val & 0x20000) {
243
        env->smbase = ldl_phys(cs->as, sm_state + 0x7f00) & ~0x7fff;
244
    }
245
#else
246
    cpu_x86_update_cr0(env, ldl_phys(cs->as, sm_state + 0x7ffc));
247
    cpu_x86_update_cr3(env, ldl_phys(cs->as, sm_state + 0x7ff8));
248
    cpu_load_eflags(env, ldl_phys(cs->as, sm_state + 0x7ff4),
249
                    ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
250
    env->eip = ldl_phys(cs->as, sm_state + 0x7ff0);
251
    env->regs[R_EDI] = ldl_phys(cs->as, sm_state + 0x7fec);
252
    env->regs[R_ESI] = ldl_phys(cs->as, sm_state + 0x7fe8);
253
    env->regs[R_EBP] = ldl_phys(cs->as, sm_state + 0x7fe4);
254
    env->regs[R_ESP] = ldl_phys(cs->as, sm_state + 0x7fe0);
255
    env->regs[R_EBX] = ldl_phys(cs->as, sm_state + 0x7fdc);
256
    env->regs[R_EDX] = ldl_phys(cs->as, sm_state + 0x7fd8);
257
    env->regs[R_ECX] = ldl_phys(cs->as, sm_state + 0x7fd4);
258
    env->regs[R_EAX] = ldl_phys(cs->as, sm_state + 0x7fd0);
259
    env->dr[6] = ldl_phys(cs->as, sm_state + 0x7fcc);
260
    env->dr[7] = ldl_phys(cs->as, sm_state + 0x7fc8);
261

    
262
    env->tr.selector = ldl_phys(cs->as, sm_state + 0x7fc4) & 0xffff;
263
    env->tr.base = ldl_phys(cs->as, sm_state + 0x7f64);
264
    env->tr.limit = ldl_phys(cs->as, sm_state + 0x7f60);
265
    env->tr.flags = (ldl_phys(cs->as, sm_state + 0x7f5c) & 0xf0ff) << 8;
266

    
267
    env->ldt.selector = ldl_phys(cs->as, sm_state + 0x7fc0) & 0xffff;
268
    env->ldt.base = ldl_phys(cs->as, sm_state + 0x7f80);
269
    env->ldt.limit = ldl_phys(cs->as, sm_state + 0x7f7c);
270
    env->ldt.flags = (ldl_phys(cs->as, sm_state + 0x7f78) & 0xf0ff) << 8;
271

    
272
    env->gdt.base = ldl_phys(cs->as, sm_state + 0x7f74);
273
    env->gdt.limit = ldl_phys(cs->as, sm_state + 0x7f70);
274

    
275
    env->idt.base = ldl_phys(cs->as, sm_state + 0x7f58);
276
    env->idt.limit = ldl_phys(cs->as, sm_state + 0x7f54);
277

    
278
    for (i = 0; i < 6; i++) {
279
        if (i < 3) {
280
            offset = 0x7f84 + i * 12;
281
        } else {
282
            offset = 0x7f2c + (i - 3) * 12;
283
        }
284
        cpu_x86_load_seg_cache(env, i,
285
                               ldl_phys(cs->as,
286
                                        sm_state + 0x7fa8 + i * 4) & 0xffff,
287
                               ldl_phys(cs->as, sm_state + offset + 8),
288
                               ldl_phys(cs->as, sm_state + offset + 4),
289
                               (ldl_phys(cs->as,
290
                                         sm_state + offset) & 0xf0ff) << 8);
291
    }
292
    cpu_x86_update_cr4(env, ldl_phys(cs->as, sm_state + 0x7f14));
293

    
294
    val = ldl_phys(cs->as, sm_state + 0x7efc); /* revision ID */
295
    if (val & 0x20000) {
296
        env->smbase = ldl_phys(cs->as, sm_state + 0x7ef8) & ~0x7fff;
297
    }
298
#endif
299
    CC_OP = CC_OP_EFLAGS;
300
    env->hflags &= ~HF_SMM_MASK;
301
    cpu_smm_update(env);
302

    
303
    qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
304
    log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
305
}
306

    
307
#endif /* !CONFIG_USER_ONLY */