Statistics
| Branch: | Revision:

root / util / qemu-thread-win32.c @ feature-archipelago

History | View | Annotate | Download (9.5 kB)

1
/*
2
 * Win32 implementation for mutex/cond/thread functions
3
 *
4
 * Copyright Red Hat, Inc. 2010
5
 *
6
 * Author:
7
 *  Paolo Bonzini <pbonzini@redhat.com>
8
 *
9
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10
 * See the COPYING file in the top-level directory.
11
 *
12
 */
13
#include "qemu-common.h"
14
#include "qemu/thread.h"
15
#include <process.h>
16
#include <assert.h>
17
#include <limits.h>
18

    
19
static void error_exit(int err, const char *msg)
20
{
21
    char *pstr;
22

    
23
    FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
24
                  NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
25
    fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
26
    LocalFree(pstr);
27
    abort();
28
}
29

    
30
void qemu_mutex_init(QemuMutex *mutex)
31
{
32
    mutex->owner = 0;
33
    InitializeCriticalSection(&mutex->lock);
34
}
35

    
36
void qemu_mutex_destroy(QemuMutex *mutex)
37
{
38
    assert(mutex->owner == 0);
39
    DeleteCriticalSection(&mutex->lock);
40
}
41

    
42
void qemu_mutex_lock(QemuMutex *mutex)
43
{
44
    EnterCriticalSection(&mutex->lock);
45

    
46
    /* Win32 CRITICAL_SECTIONs are recursive.  Assert that we're not
47
     * using them as such.
48
     */
49
    assert(mutex->owner == 0);
50
    mutex->owner = GetCurrentThreadId();
51
}
52

    
53
int qemu_mutex_trylock(QemuMutex *mutex)
54
{
55
    int owned;
56

    
57
    owned = TryEnterCriticalSection(&mutex->lock);
58
    if (owned) {
59
        assert(mutex->owner == 0);
60
        mutex->owner = GetCurrentThreadId();
61
    }
62
    return !owned;
63
}
64

    
65
void qemu_mutex_unlock(QemuMutex *mutex)
66
{
67
    assert(mutex->owner == GetCurrentThreadId());
68
    mutex->owner = 0;
69
    LeaveCriticalSection(&mutex->lock);
70
}
71

    
72
void qemu_cond_init(QemuCond *cond)
73
{
74
    memset(cond, 0, sizeof(*cond));
75

    
76
    cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
77
    if (!cond->sema) {
78
        error_exit(GetLastError(), __func__);
79
    }
80
    cond->continue_event = CreateEvent(NULL,    /* security */
81
                                       FALSE,   /* auto-reset */
82
                                       FALSE,   /* not signaled */
83
                                       NULL);   /* name */
84
    if (!cond->continue_event) {
85
        error_exit(GetLastError(), __func__);
86
    }
87
}
88

    
89
void qemu_cond_destroy(QemuCond *cond)
90
{
91
    BOOL result;
92
    result = CloseHandle(cond->continue_event);
93
    if (!result) {
94
        error_exit(GetLastError(), __func__);
95
    }
96
    cond->continue_event = 0;
97
    result = CloseHandle(cond->sema);
98
    if (!result) {
99
        error_exit(GetLastError(), __func__);
100
    }
101
    cond->sema = 0;
102
}
103

    
104
void qemu_cond_signal(QemuCond *cond)
105
{
106
    DWORD result;
107

    
108
    /*
109
     * Signal only when there are waiters.  cond->waiters is
110
     * incremented by pthread_cond_wait under the external lock,
111
     * so we are safe about that.
112
     */
113
    if (cond->waiters == 0) {
114
        return;
115
    }
116

    
117
    /*
118
     * Waiting threads decrement it outside the external lock, but
119
     * only if another thread is executing pthread_cond_broadcast and
120
     * has the mutex.  So, it also cannot be decremented concurrently
121
     * with this particular access.
122
     */
123
    cond->target = cond->waiters - 1;
124
    result = SignalObjectAndWait(cond->sema, cond->continue_event,
125
                                 INFINITE, FALSE);
126
    if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
127
        error_exit(GetLastError(), __func__);
128
    }
129
}
130

    
131
void qemu_cond_broadcast(QemuCond *cond)
132
{
133
    BOOLEAN result;
134
    /*
135
     * As in pthread_cond_signal, access to cond->waiters and
136
     * cond->target is locked via the external mutex.
137
     */
138
    if (cond->waiters == 0) {
139
        return;
140
    }
141

    
142
    cond->target = 0;
143
    result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
144
    if (!result) {
145
        error_exit(GetLastError(), __func__);
146
    }
147

    
148
    /*
149
     * At this point all waiters continue. Each one takes its
150
     * slice of the semaphore. Now it's our turn to wait: Since
151
     * the external mutex is held, no thread can leave cond_wait,
152
     * yet. For this reason, we can be sure that no thread gets
153
     * a chance to eat *more* than one slice. OTOH, it means
154
     * that the last waiter must send us a wake-up.
155
     */
156
    WaitForSingleObject(cond->continue_event, INFINITE);
157
}
158

    
159
void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
160
{
161
    /*
162
     * This access is protected under the mutex.
163
     */
164
    cond->waiters++;
165

    
166
    /*
167
     * Unlock external mutex and wait for signal.
168
     * NOTE: we've held mutex locked long enough to increment
169
     * waiters count above, so there's no problem with
170
     * leaving mutex unlocked before we wait on semaphore.
171
     */
172
    qemu_mutex_unlock(mutex);
173
    WaitForSingleObject(cond->sema, INFINITE);
174

    
175
    /* Now waiters must rendez-vous with the signaling thread and
176
     * let it continue.  For cond_broadcast this has heavy contention
177
     * and triggers thundering herd.  So goes life.
178
     *
179
     * Decrease waiters count.  The mutex is not taken, so we have
180
     * to do this atomically.
181
     *
182
     * All waiters contend for the mutex at the end of this function
183
     * until the signaling thread relinquishes it.  To ensure
184
     * each waiter consumes exactly one slice of the semaphore,
185
     * the signaling thread stops until it is told by the last
186
     * waiter that it can go on.
187
     */
188
    if (InterlockedDecrement(&cond->waiters) == cond->target) {
189
        SetEvent(cond->continue_event);
190
    }
191

    
192
    qemu_mutex_lock(mutex);
193
}
194

    
195
void qemu_sem_init(QemuSemaphore *sem, int init)
196
{
197
    /* Manual reset.  */
198
    sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
199
}
200

    
201
void qemu_sem_destroy(QemuSemaphore *sem)
202
{
203
    CloseHandle(sem->sema);
204
}
205

    
206
void qemu_sem_post(QemuSemaphore *sem)
207
{
208
    ReleaseSemaphore(sem->sema, 1, NULL);
209
}
210

    
211
int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
212
{
213
    int rc = WaitForSingleObject(sem->sema, ms);
214
    if (rc == WAIT_OBJECT_0) {
215
        return 0;
216
    }
217
    if (rc != WAIT_TIMEOUT) {
218
        error_exit(GetLastError(), __func__);
219
    }
220
    return -1;
221
}
222

    
223
void qemu_sem_wait(QemuSemaphore *sem)
224
{
225
    if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
226
        error_exit(GetLastError(), __func__);
227
    }
228
}
229

    
230
void qemu_event_init(QemuEvent *ev, bool init)
231
{
232
    /* Manual reset.  */
233
    ev->event = CreateEvent(NULL, TRUE, init, NULL);
234
}
235

    
236
void qemu_event_destroy(QemuEvent *ev)
237
{
238
    CloseHandle(ev->event);
239
}
240

    
241
void qemu_event_set(QemuEvent *ev)
242
{
243
    SetEvent(ev->event);
244
}
245

    
246
void qemu_event_reset(QemuEvent *ev)
247
{
248
    ResetEvent(ev->event);
249
}
250

    
251
void qemu_event_wait(QemuEvent *ev)
252
{
253
    WaitForSingleObject(ev->event, INFINITE);
254
}
255

    
256
struct QemuThreadData {
257
    /* Passed to win32_start_routine.  */
258
    void             *(*start_routine)(void *);
259
    void             *arg;
260
    short             mode;
261

    
262
    /* Only used for joinable threads. */
263
    bool              exited;
264
    void             *ret;
265
    CRITICAL_SECTION  cs;
266
};
267

    
268
static __thread QemuThreadData *qemu_thread_data;
269

    
270
static unsigned __stdcall win32_start_routine(void *arg)
271
{
272
    QemuThreadData *data = (QemuThreadData *) arg;
273
    void *(*start_routine)(void *) = data->start_routine;
274
    void *thread_arg = data->arg;
275

    
276
    if (data->mode == QEMU_THREAD_DETACHED) {
277
        g_free(data);
278
        data = NULL;
279
    }
280
    qemu_thread_data = data;
281
    qemu_thread_exit(start_routine(thread_arg));
282
    abort();
283
}
284

    
285
void qemu_thread_exit(void *arg)
286
{
287
    QemuThreadData *data = qemu_thread_data;
288

    
289
    if (data) {
290
        assert(data->mode != QEMU_THREAD_DETACHED);
291
        data->ret = arg;
292
        EnterCriticalSection(&data->cs);
293
        data->exited = true;
294
        LeaveCriticalSection(&data->cs);
295
    }
296
    _endthreadex(0);
297
}
298

    
299
void *qemu_thread_join(QemuThread *thread)
300
{
301
    QemuThreadData *data;
302
    void *ret;
303
    HANDLE handle;
304

    
305
    data = thread->data;
306
    if (!data) {
307
        return NULL;
308
    }
309
    /*
310
     * Because multiple copies of the QemuThread can exist via
311
     * qemu_thread_get_self, we need to store a value that cannot
312
     * leak there.  The simplest, non racy way is to store the TID,
313
     * discard the handle that _beginthreadex gives back, and
314
     * get another copy of the handle here.
315
     */
316
    handle = qemu_thread_get_handle(thread);
317
    if (handle) {
318
        WaitForSingleObject(handle, INFINITE);
319
        CloseHandle(handle);
320
    }
321
    ret = data->ret;
322
    assert(data->mode != QEMU_THREAD_DETACHED);
323
    DeleteCriticalSection(&data->cs);
324
    g_free(data);
325
    return ret;
326
}
327

    
328
void qemu_thread_create(QemuThread *thread,
329
                       void *(*start_routine)(void *),
330
                       void *arg, int mode)
331
{
332
    HANDLE hThread;
333
    struct QemuThreadData *data;
334

    
335
    data = g_malloc(sizeof *data);
336
    data->start_routine = start_routine;
337
    data->arg = arg;
338
    data->mode = mode;
339
    data->exited = false;
340

    
341
    if (data->mode != QEMU_THREAD_DETACHED) {
342
        InitializeCriticalSection(&data->cs);
343
    }
344

    
345
    hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
346
                                      data, 0, &thread->tid);
347
    if (!hThread) {
348
        error_exit(GetLastError(), __func__);
349
    }
350
    CloseHandle(hThread);
351
    thread->data = (mode == QEMU_THREAD_DETACHED) ? NULL : data;
352
}
353

    
354
void qemu_thread_get_self(QemuThread *thread)
355
{
356
    thread->data = qemu_thread_data;
357
    thread->tid = GetCurrentThreadId();
358
}
359

    
360
HANDLE qemu_thread_get_handle(QemuThread *thread)
361
{
362
    QemuThreadData *data;
363
    HANDLE handle;
364

    
365
    data = thread->data;
366
    if (!data) {
367
        return NULL;
368
    }
369

    
370
    assert(data->mode != QEMU_THREAD_DETACHED);
371
    EnterCriticalSection(&data->cs);
372
    if (!data->exited) {
373
        handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE,
374
                            thread->tid);
375
    } else {
376
        handle = NULL;
377
    }
378
    LeaveCriticalSection(&data->cs);
379
    return handle;
380
}
381

    
382
bool qemu_thread_is_self(QemuThread *thread)
383
{
384
    return GetCurrentThreadId() == thread->tid;
385
}