Statistics
| Branch: | Revision:

root / cpus.c @ ff753bb9

History | View | Annotate | Download (22.1 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
/* Needed early for CONFIG_BSD etc. */
26
#include "config-host.h"
27

    
28
#include "monitor.h"
29
#include "sysemu.h"
30
#include "gdbstub.h"
31
#include "dma.h"
32
#include "kvm.h"
33
#include "exec-all.h"
34

    
35
#include "cpus.h"
36
#include "compatfd.h"
37
#ifdef CONFIG_LINUX
38
#include <sys/prctl.h>
39
#endif
40

    
41
#ifdef SIGRTMIN
42
#define SIG_IPI (SIGRTMIN+4)
43
#else
44
#define SIG_IPI SIGUSR1
45
#endif
46

    
47
#ifndef PR_MCE_KILL
48
#define PR_MCE_KILL 33
49
#endif
50

    
51
static CPUState *next_cpu;
52

    
53
/***********************************************************/
54
void hw_error(const char *fmt, ...)
55
{
56
    va_list ap;
57
    CPUState *env;
58

    
59
    va_start(ap, fmt);
60
    fprintf(stderr, "qemu: hardware error: ");
61
    vfprintf(stderr, fmt, ap);
62
    fprintf(stderr, "\n");
63
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
64
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
65
#ifdef TARGET_I386
66
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
67
#else
68
        cpu_dump_state(env, stderr, fprintf, 0);
69
#endif
70
    }
71
    va_end(ap);
72
    abort();
73
}
74

    
75
void cpu_synchronize_all_states(void)
76
{
77
    CPUState *cpu;
78

    
79
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
80
        cpu_synchronize_state(cpu);
81
    }
82
}
83

    
84
void cpu_synchronize_all_post_reset(void)
85
{
86
    CPUState *cpu;
87

    
88
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
89
        cpu_synchronize_post_reset(cpu);
90
    }
91
}
92

    
93
void cpu_synchronize_all_post_init(void)
94
{
95
    CPUState *cpu;
96

    
97
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
98
        cpu_synchronize_post_init(cpu);
99
    }
100
}
101

    
102
int cpu_is_stopped(CPUState *env)
103
{
104
    return !vm_running || env->stopped;
105
}
106

    
107
static void do_vm_stop(int reason)
108
{
109
    if (vm_running) {
110
        cpu_disable_ticks();
111
        vm_running = 0;
112
        pause_all_vcpus();
113
        vm_state_notify(0, reason);
114
        monitor_protocol_event(QEVENT_STOP, NULL);
115
    }
116
}
117

    
118
static int cpu_can_run(CPUState *env)
119
{
120
    if (env->stop)
121
        return 0;
122
    if (env->stopped || !vm_running)
123
        return 0;
124
    return 1;
125
}
126

    
127
static int cpu_has_work(CPUState *env)
128
{
129
    if (env->stop)
130
        return 1;
131
    if (env->queued_work_first)
132
        return 1;
133
    if (env->stopped || !vm_running)
134
        return 0;
135
    if (!env->halted)
136
        return 1;
137
    if (qemu_cpu_has_work(env))
138
        return 1;
139
    return 0;
140
}
141

    
142
static int any_cpu_has_work(void)
143
{
144
    CPUState *env;
145

    
146
    for (env = first_cpu; env != NULL; env = env->next_cpu)
147
        if (cpu_has_work(env))
148
            return 1;
149
    return 0;
150
}
151

    
152
static void cpu_debug_handler(CPUState *env)
153
{
154
    gdb_set_stop_cpu(env);
155
    debug_requested = EXCP_DEBUG;
156
    vm_stop(EXCP_DEBUG);
157
}
158

    
159
#ifndef _WIN32
160
static int io_thread_fd = -1;
161

    
162
static void qemu_event_increment(void)
163
{
164
    /* Write 8 bytes to be compatible with eventfd.  */
165
    static const uint64_t val = 1;
166
    ssize_t ret;
167

    
168
    if (io_thread_fd == -1)
169
        return;
170

    
171
    do {
172
        ret = write(io_thread_fd, &val, sizeof(val));
173
    } while (ret < 0 && errno == EINTR);
174

    
175
    /* EAGAIN is fine, a read must be pending.  */
176
    if (ret < 0 && errno != EAGAIN) {
177
        fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
178
                strerror(errno));
179
        exit (1);
180
    }
181
}
182

    
183
static void qemu_event_read(void *opaque)
184
{
185
    int fd = (unsigned long)opaque;
186
    ssize_t len;
187
    char buffer[512];
188

    
189
    /* Drain the notify pipe.  For eventfd, only 8 bytes will be read.  */
190
    do {
191
        len = read(fd, buffer, sizeof(buffer));
192
    } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
193
}
194

    
195
static int qemu_event_init(void)
196
{
197
    int err;
198
    int fds[2];
199

    
200
    err = qemu_eventfd(fds);
201
    if (err == -1)
202
        return -errno;
203

    
204
    err = fcntl_setfl(fds[0], O_NONBLOCK);
205
    if (err < 0)
206
        goto fail;
207

    
208
    err = fcntl_setfl(fds[1], O_NONBLOCK);
209
    if (err < 0)
210
        goto fail;
211

    
212
    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
213
                         (void *)(unsigned long)fds[0]);
214

    
215
    io_thread_fd = fds[1];
216
    return 0;
217

    
218
fail:
219
    close(fds[0]);
220
    close(fds[1]);
221
    return err;
222
}
223
#else
224
HANDLE qemu_event_handle;
225

    
226
static void dummy_event_handler(void *opaque)
227
{
228
}
229

    
230
static int qemu_event_init(void)
231
{
232
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
233
    if (!qemu_event_handle) {
234
        fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
235
        return -1;
236
    }
237
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
238
    return 0;
239
}
240

    
241
static void qemu_event_increment(void)
242
{
243
    if (!SetEvent(qemu_event_handle)) {
244
        fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
245
                GetLastError());
246
        exit (1);
247
    }
248
}
249
#endif
250

    
251
#ifndef CONFIG_IOTHREAD
252
int qemu_init_main_loop(void)
253
{
254
    cpu_set_debug_excp_handler(cpu_debug_handler);
255

    
256
    return qemu_event_init();
257
}
258

    
259
void qemu_main_loop_start(void)
260
{
261
}
262

    
263
void qemu_init_vcpu(void *_env)
264
{
265
    CPUState *env = _env;
266

    
267
    env->nr_cores = smp_cores;
268
    env->nr_threads = smp_threads;
269
    if (kvm_enabled())
270
        kvm_init_vcpu(env);
271
    return;
272
}
273

    
274
int qemu_cpu_self(void *env)
275
{
276
    return 1;
277
}
278

    
279
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
280
{
281
    func(data);
282
}
283

    
284
void resume_all_vcpus(void)
285
{
286
}
287

    
288
void pause_all_vcpus(void)
289
{
290
}
291

    
292
void qemu_cpu_kick(void *env)
293
{
294
    return;
295
}
296

    
297
void qemu_notify_event(void)
298
{
299
    CPUState *env = cpu_single_env;
300

    
301
    qemu_event_increment ();
302
    if (env) {
303
        cpu_exit(env);
304
    }
305
    if (next_cpu && env != next_cpu) {
306
        cpu_exit(next_cpu);
307
    }
308
}
309

    
310
void qemu_mutex_lock_iothread(void) {}
311
void qemu_mutex_unlock_iothread(void) {}
312

    
313
void vm_stop(int reason)
314
{
315
    do_vm_stop(reason);
316
}
317

    
318
#else /* CONFIG_IOTHREAD */
319

    
320
#include "qemu-thread.h"
321

    
322
QemuMutex qemu_global_mutex;
323
static QemuMutex qemu_fair_mutex;
324

    
325
static QemuThread io_thread;
326

    
327
static QemuThread *tcg_cpu_thread;
328
static QemuCond *tcg_halt_cond;
329

    
330
static int qemu_system_ready;
331
/* cpu creation */
332
static QemuCond qemu_cpu_cond;
333
/* system init */
334
static QemuCond qemu_system_cond;
335
static QemuCond qemu_pause_cond;
336
static QemuCond qemu_work_cond;
337

    
338
static void tcg_init_ipi(void);
339
static void kvm_init_ipi(CPUState *env);
340
static sigset_t block_io_signals(void);
341

    
342
/* If we have signalfd, we mask out the signals we want to handle and then
343
 * use signalfd to listen for them.  We rely on whatever the current signal
344
 * handler is to dispatch the signals when we receive them.
345
 */
346
static void sigfd_handler(void *opaque)
347
{
348
    int fd = (unsigned long) opaque;
349
    struct qemu_signalfd_siginfo info;
350
    struct sigaction action;
351
    ssize_t len;
352

    
353
    while (1) {
354
        do {
355
            len = read(fd, &info, sizeof(info));
356
        } while (len == -1 && errno == EINTR);
357

    
358
        if (len == -1 && errno == EAGAIN) {
359
            break;
360
        }
361

    
362
        if (len != sizeof(info)) {
363
            printf("read from sigfd returned %zd: %m\n", len);
364
            return;
365
        }
366

    
367
        sigaction(info.ssi_signo, NULL, &action);
368
        if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
369
            action.sa_sigaction(info.ssi_signo,
370
                                (siginfo_t *)&info, NULL);
371
        } else if (action.sa_handler) {
372
            action.sa_handler(info.ssi_signo);
373
        }
374
    }
375
}
376

    
377
static int qemu_signalfd_init(sigset_t mask)
378
{
379
    int sigfd;
380

    
381
    sigfd = qemu_signalfd(&mask);
382
    if (sigfd == -1) {
383
        fprintf(stderr, "failed to create signalfd\n");
384
        return -errno;
385
    }
386

    
387
    fcntl_setfl(sigfd, O_NONBLOCK);
388

    
389
    qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
390
                         (void *)(unsigned long) sigfd);
391

    
392
    return 0;
393
}
394

    
395
int qemu_init_main_loop(void)
396
{
397
    int ret;
398
    sigset_t blocked_signals;
399

    
400
    cpu_set_debug_excp_handler(cpu_debug_handler);
401

    
402
    blocked_signals = block_io_signals();
403

    
404
    ret = qemu_signalfd_init(blocked_signals);
405
    if (ret)
406
        return ret;
407

    
408
    /* Note eventfd must be drained before signalfd handlers run */
409
    ret = qemu_event_init();
410
    if (ret)
411
        return ret;
412

    
413
    qemu_cond_init(&qemu_pause_cond);
414
    qemu_cond_init(&qemu_system_cond);
415
    qemu_mutex_init(&qemu_fair_mutex);
416
    qemu_mutex_init(&qemu_global_mutex);
417
    qemu_mutex_lock(&qemu_global_mutex);
418

    
419
    qemu_thread_self(&io_thread);
420

    
421
    return 0;
422
}
423

    
424
void qemu_main_loop_start(void)
425
{
426
    qemu_system_ready = 1;
427
    qemu_cond_broadcast(&qemu_system_cond);
428
}
429

    
430
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
431
{
432
    struct qemu_work_item wi;
433

    
434
    if (qemu_cpu_self(env)) {
435
        func(data);
436
        return;
437
    }
438

    
439
    wi.func = func;
440
    wi.data = data;
441
    if (!env->queued_work_first)
442
        env->queued_work_first = &wi;
443
    else
444
        env->queued_work_last->next = &wi;
445
    env->queued_work_last = &wi;
446
    wi.next = NULL;
447
    wi.done = false;
448

    
449
    qemu_cpu_kick(env);
450
    while (!wi.done) {
451
        CPUState *self_env = cpu_single_env;
452

    
453
        qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
454
        cpu_single_env = self_env;
455
    }
456
}
457

    
458
static void flush_queued_work(CPUState *env)
459
{
460
    struct qemu_work_item *wi;
461

    
462
    if (!env->queued_work_first)
463
        return;
464

    
465
    while ((wi = env->queued_work_first)) {
466
        env->queued_work_first = wi->next;
467
        wi->func(wi->data);
468
        wi->done = true;
469
    }
470
    env->queued_work_last = NULL;
471
    qemu_cond_broadcast(&qemu_work_cond);
472
}
473

    
474
static void qemu_wait_io_event_common(CPUState *env)
475
{
476
    if (env->stop) {
477
        env->stop = 0;
478
        env->stopped = 1;
479
        qemu_cond_signal(&qemu_pause_cond);
480
    }
481
    flush_queued_work(env);
482
}
483

    
484
static void qemu_tcg_wait_io_event(void)
485
{
486
    CPUState *env;
487

    
488
    while (!any_cpu_has_work())
489
        qemu_cond_timedwait(tcg_halt_cond, &qemu_global_mutex, 1000);
490

    
491
    qemu_mutex_unlock(&qemu_global_mutex);
492

    
493
    /*
494
     * Users of qemu_global_mutex can be starved, having no chance
495
     * to acquire it since this path will get to it first.
496
     * So use another lock to provide fairness.
497
     */
498
    qemu_mutex_lock(&qemu_fair_mutex);
499
    qemu_mutex_unlock(&qemu_fair_mutex);
500

    
501
    qemu_mutex_lock(&qemu_global_mutex);
502

    
503
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
504
        qemu_wait_io_event_common(env);
505
    }
506
}
507

    
508
static void sigbus_reraise(void)
509
{
510
    sigset_t set;
511
    struct sigaction action;
512

    
513
    memset(&action, 0, sizeof(action));
514
    action.sa_handler = SIG_DFL;
515
    if (!sigaction(SIGBUS, &action, NULL)) {
516
        raise(SIGBUS);
517
        sigemptyset(&set);
518
        sigaddset(&set, SIGBUS);
519
        sigprocmask(SIG_UNBLOCK, &set, NULL);
520
    }
521
    perror("Failed to re-raise SIGBUS!\n");
522
    abort();
523
}
524

    
525
static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
526
                           void *ctx)
527
{
528
#if defined(TARGET_I386)
529
    if (kvm_on_sigbus(siginfo->ssi_code, (void *)(intptr_t)siginfo->ssi_addr))
530
#endif
531
        sigbus_reraise();
532
}
533

    
534
static void qemu_kvm_eat_signal(CPUState *env, int timeout)
535
{
536
    struct timespec ts;
537
    int r, e;
538
    siginfo_t siginfo;
539
    sigset_t waitset;
540
    sigset_t chkset;
541

    
542
    ts.tv_sec = timeout / 1000;
543
    ts.tv_nsec = (timeout % 1000) * 1000000;
544

    
545
    sigemptyset(&waitset);
546
    sigaddset(&waitset, SIG_IPI);
547
    sigaddset(&waitset, SIGBUS);
548

    
549
    do {
550
        qemu_mutex_unlock(&qemu_global_mutex);
551

    
552
        r = sigtimedwait(&waitset, &siginfo, &ts);
553
        e = errno;
554

    
555
        qemu_mutex_lock(&qemu_global_mutex);
556

    
557
        if (r == -1 && !(e == EAGAIN || e == EINTR)) {
558
            fprintf(stderr, "sigtimedwait: %s\n", strerror(e));
559
            exit(1);
560
        }
561

    
562
        switch (r) {
563
        case SIGBUS:
564
#ifdef TARGET_I386
565
            if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr))
566
#endif
567
                sigbus_reraise();
568
            break;
569
        default:
570
            break;
571
        }
572

    
573
        r = sigpending(&chkset);
574
        if (r == -1) {
575
            fprintf(stderr, "sigpending: %s\n", strerror(e));
576
            exit(1);
577
        }
578
    } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
579
}
580

    
581
static void qemu_kvm_wait_io_event(CPUState *env)
582
{
583
    while (!cpu_has_work(env))
584
        qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
585

    
586
    qemu_kvm_eat_signal(env, 0);
587
    qemu_wait_io_event_common(env);
588
}
589

    
590
static int qemu_cpu_exec(CPUState *env);
591

    
592
static void *kvm_cpu_thread_fn(void *arg)
593
{
594
    CPUState *env = arg;
595

    
596
    qemu_mutex_lock(&qemu_global_mutex);
597
    qemu_thread_self(env->thread);
598
    if (kvm_enabled())
599
        kvm_init_vcpu(env);
600

    
601
    kvm_init_ipi(env);
602

    
603
    /* signal CPU creation */
604
    env->created = 1;
605
    qemu_cond_signal(&qemu_cpu_cond);
606

    
607
    /* and wait for machine initialization */
608
    while (!qemu_system_ready)
609
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
610

    
611
    while (1) {
612
        if (cpu_can_run(env))
613
            qemu_cpu_exec(env);
614
        qemu_kvm_wait_io_event(env);
615
    }
616

    
617
    return NULL;
618
}
619

    
620
static void *tcg_cpu_thread_fn(void *arg)
621
{
622
    CPUState *env = arg;
623

    
624
    tcg_init_ipi();
625
    qemu_thread_self(env->thread);
626

    
627
    /* signal CPU creation */
628
    qemu_mutex_lock(&qemu_global_mutex);
629
    for (env = first_cpu; env != NULL; env = env->next_cpu)
630
        env->created = 1;
631
    qemu_cond_signal(&qemu_cpu_cond);
632

    
633
    /* and wait for machine initialization */
634
    while (!qemu_system_ready)
635
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
636

    
637
    while (1) {
638
        cpu_exec_all();
639
        qemu_tcg_wait_io_event();
640
    }
641

    
642
    return NULL;
643
}
644

    
645
void qemu_cpu_kick(void *_env)
646
{
647
    CPUState *env = _env;
648
    qemu_cond_broadcast(env->halt_cond);
649
    qemu_thread_signal(env->thread, SIG_IPI);
650
}
651

    
652
int qemu_cpu_self(void *_env)
653
{
654
    CPUState *env = _env;
655
    QemuThread this;
656

    
657
    qemu_thread_self(&this);
658

    
659
    return qemu_thread_equal(&this, env->thread);
660
}
661

    
662
static void cpu_signal(int sig)
663
{
664
    if (cpu_single_env)
665
        cpu_exit(cpu_single_env);
666
    exit_request = 1;
667
}
668

    
669
static void tcg_init_ipi(void)
670
{
671
    sigset_t set;
672
    struct sigaction sigact;
673

    
674
    memset(&sigact, 0, sizeof(sigact));
675
    sigact.sa_handler = cpu_signal;
676
    sigaction(SIG_IPI, &sigact, NULL);
677

    
678
    sigemptyset(&set);
679
    sigaddset(&set, SIG_IPI);
680
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
681
}
682

    
683
static void dummy_signal(int sig)
684
{
685
}
686

    
687
static void kvm_init_ipi(CPUState *env)
688
{
689
    int r;
690
    sigset_t set;
691
    struct sigaction sigact;
692

    
693
    memset(&sigact, 0, sizeof(sigact));
694
    sigact.sa_handler = dummy_signal;
695
    sigaction(SIG_IPI, &sigact, NULL);
696

    
697
    pthread_sigmask(SIG_BLOCK, NULL, &set);
698
    sigdelset(&set, SIG_IPI);
699
    sigdelset(&set, SIGBUS);
700
    r = kvm_set_signal_mask(env, &set);
701
    if (r) {
702
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(r));
703
        exit(1);
704
    }
705
}
706

    
707
static sigset_t block_io_signals(void)
708
{
709
    sigset_t set;
710
    struct sigaction action;
711

    
712
    /* SIGUSR2 used by posix-aio-compat.c */
713
    sigemptyset(&set);
714
    sigaddset(&set, SIGUSR2);
715
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
716

    
717
    sigemptyset(&set);
718
    sigaddset(&set, SIGIO);
719
    sigaddset(&set, SIGALRM);
720
    sigaddset(&set, SIG_IPI);
721
    sigaddset(&set, SIGBUS);
722
    pthread_sigmask(SIG_BLOCK, &set, NULL);
723

    
724
    memset(&action, 0, sizeof(action));
725
    action.sa_flags = SA_SIGINFO;
726
    action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
727
    sigaction(SIGBUS, &action, NULL);
728
    prctl(PR_MCE_KILL, 1, 1, 0, 0);
729

    
730
    return set;
731
}
732

    
733
void qemu_mutex_lock_iothread(void)
734
{
735
    if (kvm_enabled()) {
736
        qemu_mutex_lock(&qemu_fair_mutex);
737
        qemu_mutex_lock(&qemu_global_mutex);
738
        qemu_mutex_unlock(&qemu_fair_mutex);
739
    } else {
740
        qemu_mutex_lock(&qemu_fair_mutex);
741
        if (qemu_mutex_trylock(&qemu_global_mutex)) {
742
            qemu_thread_signal(tcg_cpu_thread, SIG_IPI);
743
            qemu_mutex_lock(&qemu_global_mutex);
744
        }
745
        qemu_mutex_unlock(&qemu_fair_mutex);
746
    }
747
}
748

    
749
void qemu_mutex_unlock_iothread(void)
750
{
751
    qemu_mutex_unlock(&qemu_global_mutex);
752
}
753

    
754
static int all_vcpus_paused(void)
755
{
756
    CPUState *penv = first_cpu;
757

    
758
    while (penv) {
759
        if (!penv->stopped)
760
            return 0;
761
        penv = (CPUState *)penv->next_cpu;
762
    }
763

    
764
    return 1;
765
}
766

    
767
void pause_all_vcpus(void)
768
{
769
    CPUState *penv = first_cpu;
770

    
771
    while (penv) {
772
        penv->stop = 1;
773
        qemu_cpu_kick(penv);
774
        penv = (CPUState *)penv->next_cpu;
775
    }
776

    
777
    while (!all_vcpus_paused()) {
778
        qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
779
        penv = first_cpu;
780
        while (penv) {
781
            qemu_cpu_kick(penv);
782
            penv = (CPUState *)penv->next_cpu;
783
        }
784
    }
785
}
786

    
787
void resume_all_vcpus(void)
788
{
789
    CPUState *penv = first_cpu;
790

    
791
    while (penv) {
792
        penv->stop = 0;
793
        penv->stopped = 0;
794
        qemu_cpu_kick(penv);
795
        penv = (CPUState *)penv->next_cpu;
796
    }
797
}
798

    
799
static void tcg_init_vcpu(void *_env)
800
{
801
    CPUState *env = _env;
802
    /* share a single thread for all cpus with TCG */
803
    if (!tcg_cpu_thread) {
804
        env->thread = qemu_mallocz(sizeof(QemuThread));
805
        env->halt_cond = qemu_mallocz(sizeof(QemuCond));
806
        qemu_cond_init(env->halt_cond);
807
        qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
808
        while (env->created == 0)
809
            qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
810
        tcg_cpu_thread = env->thread;
811
        tcg_halt_cond = env->halt_cond;
812
    } else {
813
        env->thread = tcg_cpu_thread;
814
        env->halt_cond = tcg_halt_cond;
815
    }
816
}
817

    
818
static void kvm_start_vcpu(CPUState *env)
819
{
820
    env->thread = qemu_mallocz(sizeof(QemuThread));
821
    env->halt_cond = qemu_mallocz(sizeof(QemuCond));
822
    qemu_cond_init(env->halt_cond);
823
    qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
824
    while (env->created == 0)
825
        qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
826
}
827

    
828
void qemu_init_vcpu(void *_env)
829
{
830
    CPUState *env = _env;
831

    
832
    env->nr_cores = smp_cores;
833
    env->nr_threads = smp_threads;
834
    if (kvm_enabled())
835
        kvm_start_vcpu(env);
836
    else
837
        tcg_init_vcpu(env);
838
}
839

    
840
void qemu_notify_event(void)
841
{
842
    qemu_event_increment();
843
}
844

    
845
static void qemu_system_vmstop_request(int reason)
846
{
847
    vmstop_requested = reason;
848
    qemu_notify_event();
849
}
850

    
851
void vm_stop(int reason)
852
{
853
    QemuThread me;
854
    qemu_thread_self(&me);
855

    
856
    if (!qemu_thread_equal(&me, &io_thread)) {
857
        qemu_system_vmstop_request(reason);
858
        /*
859
         * FIXME: should not return to device code in case
860
         * vm_stop() has been requested.
861
         */
862
        if (cpu_single_env) {
863
            cpu_exit(cpu_single_env);
864
            cpu_single_env->stop = 1;
865
        }
866
        return;
867
    }
868
    do_vm_stop(reason);
869
}
870

    
871
#endif
872

    
873
static int qemu_cpu_exec(CPUState *env)
874
{
875
    int ret;
876
#ifdef CONFIG_PROFILER
877
    int64_t ti;
878
#endif
879

    
880
#ifdef CONFIG_PROFILER
881
    ti = profile_getclock();
882
#endif
883
    if (use_icount) {
884
        int64_t count;
885
        int decr;
886
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
887
        env->icount_decr.u16.low = 0;
888
        env->icount_extra = 0;
889
        count = qemu_icount_round (qemu_next_deadline());
890
        qemu_icount += count;
891
        decr = (count > 0xffff) ? 0xffff : count;
892
        count -= decr;
893
        env->icount_decr.u16.low = decr;
894
        env->icount_extra = count;
895
    }
896
    ret = cpu_exec(env);
897
#ifdef CONFIG_PROFILER
898
    qemu_time += profile_getclock() - ti;
899
#endif
900
    if (use_icount) {
901
        /* Fold pending instructions back into the
902
           instruction counter, and clear the interrupt flag.  */
903
        qemu_icount -= (env->icount_decr.u16.low
904
                        + env->icount_extra);
905
        env->icount_decr.u32 = 0;
906
        env->icount_extra = 0;
907
    }
908
    return ret;
909
}
910

    
911
bool cpu_exec_all(void)
912
{
913
    if (next_cpu == NULL)
914
        next_cpu = first_cpu;
915
    for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
916
        CPUState *env = next_cpu;
917

    
918
        qemu_clock_enable(vm_clock,
919
                          (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
920

    
921
        if (qemu_alarm_pending())
922
            break;
923
        if (cpu_can_run(env)) {
924
            if (qemu_cpu_exec(env) == EXCP_DEBUG) {
925
                break;
926
            }
927
        } else if (env->stop) {
928
            break;
929
        }
930
    }
931
    exit_request = 0;
932
    return any_cpu_has_work();
933
}
934

    
935
void set_numa_modes(void)
936
{
937
    CPUState *env;
938
    int i;
939

    
940
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
941
        for (i = 0; i < nb_numa_nodes; i++) {
942
            if (node_cpumask[i] & (1 << env->cpu_index)) {
943
                env->numa_node = i;
944
            }
945
        }
946
    }
947
}
948

    
949
void set_cpu_log(const char *optarg)
950
{
951
    int mask;
952
    const CPULogItem *item;
953

    
954
    mask = cpu_str_to_log_mask(optarg);
955
    if (!mask) {
956
        printf("Log items (comma separated):\n");
957
        for (item = cpu_log_items; item->mask != 0; item++) {
958
            printf("%-10s %s\n", item->name, item->help);
959
        }
960
        exit(1);
961
    }
962
    cpu_set_log(mask);
963
}
964

    
965
/* Return the virtual CPU time, based on the instruction counter.  */
966
int64_t cpu_get_icount(void)
967
{
968
    int64_t icount;
969
    CPUState *env = cpu_single_env;;
970

    
971
    icount = qemu_icount;
972
    if (env) {
973
        if (!can_do_io(env)) {
974
            fprintf(stderr, "Bad clock read\n");
975
        }
976
        icount -= (env->icount_decr.u16.low + env->icount_extra);
977
    }
978
    return qemu_icount_bias + (icount << icount_time_shift);
979
}
980

    
981
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
982
{
983
    /* XXX: implement xxx_cpu_list for targets that still miss it */
984
#if defined(cpu_list_id)
985
    cpu_list_id(f, cpu_fprintf, optarg);
986
#elif defined(cpu_list)
987
    cpu_list(f, cpu_fprintf); /* deprecated */
988
#endif
989
}