More info on using the RAPI
[ganeti-local] / doc / design-2.1.rst
1 =================
2 Ganeti 2.1 design
3 =================
4
5 This document describes the major changes in Ganeti 2.1 compared to
6 the 2.0 version.
7
8 The 2.1 version will be a relatively small release. Its main aim is to
9 avoid changing too much of the core code, while addressing issues and
10 adding new features and improvements over 2.0, in a timely fashion.
11
12 .. contents:: :depth: 4
13
14 Objective
15 =========
16
17 Ganeti 2.1 will add features to help further automatization of cluster
18 operations, further improve scalability to even bigger clusters, and
19 make it easier to debug the Ganeti core.
20
21 Detailed design
22 ===============
23
24 As for 2.0 we divide the 2.1 design into three areas:
25
26 - core changes, which affect the master daemon/job queue/locking or
27   all/most logical units
28 - logical unit/feature changes
29 - external interface changes (eg. command line, os api, hooks, ...)
30
31 Core changes
32 ------------
33
34 Storage units modelling
35 ~~~~~~~~~~~~~~~~~~~~~~~
36
37 Currently, Ganeti has a good model of the block devices for instances
38 (e.g. LVM logical volumes, files, DRBD devices, etc.) but none of the
39 storage pools that are providing the space for these front-end
40 devices. For example, there are hardcoded inter-node RPC calls for
41 volume group listing, file storage creation/deletion, etc.
42
43 The storage units framework will implement a generic handling for all
44 kinds of storage backends:
45
46 - LVM physical volumes
47 - LVM volume groups
48 - File-based storage directories
49 - any other future storage method
50
51 There will be a generic list of methods that each storage unit type
52 will provide, like:
53
54 - list of storage units of this type
55 - check status of the storage unit
56
57 Additionally, there will be specific methods for each method, for
58 example:
59
60 - enable/disable allocations on a specific PV
61 - file storage directory creation/deletion
62 - VG consistency fixing
63
64 This will allow a much better modeling and unification of the various
65 RPC calls related to backend storage pool in the future. Ganeti 2.1 is
66 intended to add the basics of the framework, and not necessarilly move
67 all the curent VG/FileBased operations to it.
68
69 Note that while we model both LVM PVs and LVM VGs, the framework will
70 **not** model any relationship between the different types. In other
71 words, we don't model neither inheritances nor stacking, since this is
72 too complex for our needs. While a ``vgreduce`` operation on a LVM VG
73 could actually remove a PV from it, this will not be handled at the
74 framework level, but at individual operation level. The goal is that
75 this is a lightweight framework, for abstracting the different storage
76 operation, and not for modelling the storage hierarchy.
77
78
79 Locking improvements
80 ~~~~~~~~~~~~~~~~~~~~
81
82 Current State and shortcomings
83 ++++++++++++++++++++++++++++++
84
85 The class ``LockSet`` (see ``lib/locking.py``) is a container for one or
86 many ``SharedLock`` instances. It provides an interface to add/remove
87 locks and to acquire and subsequently release any number of those locks
88 contained in it.
89
90 Locks in a ``LockSet`` are always acquired in alphabetic order. Due to
91 the way we're using locks for nodes and instances (the single cluster
92 lock isn't affected by this issue) this can lead to long delays when
93 acquiring locks if another operation tries to acquire multiple locks but
94 has to wait for yet another operation.
95
96 In the following demonstration we assume to have the instance locks
97 ``inst1``, ``inst2``, ``inst3`` and ``inst4``.
98
99 #. Operation A grabs lock for instance ``inst4``.
100 #. Operation B wants to acquire all instance locks in alphabetic order,
101    but it has to wait for ``inst4``.
102 #. Operation C tries to lock ``inst1``, but it has to wait until
103    Operation B (which is trying to acquire all locks) releases the lock
104    again.
105 #. Operation A finishes and releases lock on ``inst4``. Operation B can
106    continue and eventually releases all locks.
107 #. Operation C can get ``inst1`` lock and finishes.
108
109 Technically there's no need for Operation C to wait for Operation A, and
110 subsequently Operation B, to finish. Operation B can't continue until
111 Operation A is done (it has to wait for ``inst4``), anyway.
112
113 Proposed changes
114 ++++++++++++++++
115
116 Non-blocking lock acquiring
117 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
118
119 Acquiring locks for OpCode execution is always done in blocking mode.
120 They won't return until the lock has successfully been acquired (or an
121 error occurred, although we won't cover that case here).
122
123 ``SharedLock`` and ``LockSet`` must be able to be acquired in a
124 non-blocking way. They must support a timeout and abort trying to
125 acquire the lock(s) after the specified amount of time.
126
127 Retry acquiring locks
128 ^^^^^^^^^^^^^^^^^^^^^
129
130 To prevent other operations from waiting for a long time, such as
131 described in the demonstration before, ``LockSet`` must not keep locks
132 for a prolonged period of time when trying to acquire two or more locks.
133 Instead it should, with an increasing timeout for acquiring all locks,
134 release all locks again and sleep some time if it fails to acquire all
135 requested locks.
136
137 A good timeout value needs to be determined. In any case should
138 ``LockSet`` proceed to acquire locks in blocking mode after a few
139 (unsuccessful) attempts to acquire all requested locks.
140
141 One proposal for the timeout is to use ``2**tries`` seconds, where
142 ``tries`` is the number of unsuccessful tries.
143
144 In the demonstration before this would allow Operation C to continue
145 after Operation B unsuccessfully tried to acquire all locks and released
146 all acquired locks (``inst1``, ``inst2`` and ``inst3``) again.
147
148 Other solutions discussed
149 +++++++++++++++++++++++++
150
151 There was also some discussion on going one step further and extend the
152 job queue (see ``lib/jqueue.py``) to select the next task for a worker
153 depending on whether it can acquire the necessary locks. While this may
154 reduce the number of necessary worker threads and/or increase throughput
155 on large clusters with many jobs, it also brings many potential
156 problems, such as contention and increased memory usage, with it. As
157 this would be an extension of the changes proposed before it could be
158 implemented at a later point in time, but we decided to stay with the
159 simpler solution for now.
160
161 Implementation details
162 ++++++++++++++++++++++
163
164 ``SharedLock`` redesign
165 ^^^^^^^^^^^^^^^^^^^^^^^
166
167 The current design of ``SharedLock`` is not good for supporting timeouts
168 when acquiring a lock and there are also minor fairness issues in it. We
169 plan to address both with a redesign. A proof of concept implementation
170 was written and resulted in significantly simpler code.
171
172 Currently ``SharedLock`` uses two separate queues for shared and
173 exclusive acquires and waiters get to run in turns. This means if an
174 exclusive acquire is released, the lock will allow shared waiters to run
175 and vice versa.  Although it's still fair in the end there is a slight
176 bias towards shared waiters in the current implementation. The same
177 implementation with two shared queues can not support timeouts without
178 adding a lot of complexity.
179
180 Our proposed redesign changes ``SharedLock`` to have only one single
181 queue.  There will be one condition (see Condition_ for a note about
182 performance) in the queue per exclusive acquire and two for all shared
183 acquires (see below for an explanation). The maximum queue length will
184 always be ``2 + (number of exclusive acquires waiting)``. The number of
185 queue entries for shared acquires can vary from 0 to 2.
186
187 The two conditions for shared acquires are a bit special. They will be
188 used in turn. When the lock is instantiated, no conditions are in the
189 queue. As soon as the first shared acquire arrives (and there are
190 holder(s) or waiting acquires; see Acquire_), the active condition is
191 added to the queue. Until it becomes the topmost condition in the queue
192 and has been notified, any shared acquire is added to this active
193 condition. When the active condition is notified, the conditions are
194 swapped and further shared acquires are added to the previously inactive
195 condition (which has now become the active condition). After all waiters
196 on the previously active (now inactive) and now notified condition
197 received the notification, it is removed from the queue of pending
198 acquires.
199
200 This means shared acquires will skip any exclusive acquire in the queue.
201 We believe it's better to improve parallelization on operations only
202 asking for shared (or read-only) locks. Exclusive operations holding the
203 same lock can not be parallelized.
204
205
206 Acquire
207 *******
208
209 For exclusive acquires a new condition is created and appended to the
210 queue.  Shared acquires are added to the active condition for shared
211 acquires and if the condition is not yet on the queue, it's appended.
212
213 The next step is to wait for our condition to be on the top of the queue
214 (to guarantee fairness). If the timeout expired, we return to the caller
215 without acquiring the lock. On every notification we check whether the
216 lock has been deleted, in which case an error is returned to the caller.
217
218 The lock can be acquired if we're on top of the queue (there is no one
219 else ahead of us). For an exclusive acquire, there must not be other
220 exclusive or shared holders. For a shared acquire, there must not be an
221 exclusive holder.  If these conditions are all true, the lock is
222 acquired and we return to the caller. In any other case we wait again on
223 the condition.
224
225 If it was the last waiter on a condition, the condition is removed from
226 the queue.
227
228 Optimization: There's no need to touch the queue if there are no pending
229 acquires and no current holders. The caller can have the lock
230 immediately.
231
232 .. digraph:: "design-2.1-lock-acquire"
233
234   graph[fontsize=8, fontname="Helvetica"]
235   node[fontsize=8, fontname="Helvetica", width="0", height="0"]
236   edge[fontsize=8, fontname="Helvetica"]
237
238   /* Actions */
239   abort[label="Abort\n(couldn't acquire)"]
240   acquire[label="Acquire lock"]
241   add_to_queue[label="Add condition to queue"]
242   wait[label="Wait for notification"]
243   remove_from_queue[label="Remove from queue"]
244
245   /* Conditions */
246   alone[label="Empty queue\nand can acquire?", shape=diamond]
247   have_timeout[label="Do I have\ntimeout?", shape=diamond]
248   top_of_queue_and_can_acquire[
249     label="On top of queue and\ncan acquire lock?",
250     shape=diamond,
251     ]
252
253   /* Lines */
254   alone->acquire[label="Yes"]
255   alone->add_to_queue[label="No"]
256
257   have_timeout->abort[label="Yes"]
258   have_timeout->wait[label="No"]
259
260   top_of_queue_and_can_acquire->acquire[label="Yes"]
261   top_of_queue_and_can_acquire->have_timeout[label="No"]
262
263   add_to_queue->wait
264   wait->top_of_queue_and_can_acquire
265   acquire->remove_from_queue
266
267 Release
268 *******
269
270 First the lock removes the caller from the internal owner list. If there
271 are pending acquires in the queue, the first (the oldest) condition is
272 notified.
273
274 If the first condition was the active condition for shared acquires, the
275 inactive condition will be made active. This ensures fairness with
276 exclusive locks by forcing consecutive shared acquires to wait in the
277 queue.
278
279 .. digraph:: "design-2.1-lock-release"
280
281   graph[fontsize=8, fontname="Helvetica"]
282   node[fontsize=8, fontname="Helvetica", width="0", height="0"]
283   edge[fontsize=8, fontname="Helvetica"]
284
285   /* Actions */
286   remove_from_owners[label="Remove from owner list"]
287   notify[label="Notify topmost"]
288   swap_shared[label="Swap shared conditions"]
289   success[label="Success"]
290
291   /* Conditions */
292   have_pending[label="Any pending\nacquires?", shape=diamond]
293   was_active_queue[
294     label="Was active condition\nfor shared acquires?",
295     shape=diamond,
296     ]
297
298   /* Lines */
299   remove_from_owners->have_pending
300
301   have_pending->notify[label="Yes"]
302   have_pending->success[label="No"]
303
304   notify->was_active_queue
305
306   was_active_queue->swap_shared[label="Yes"]
307   was_active_queue->success[label="No"]
308
309   swap_shared->success
310
311
312 Delete
313 ******
314
315 The caller must either hold the lock in exclusive mode already or the
316 lock must be acquired in exclusive mode. Trying to delete a lock while
317 it's held in shared mode must fail.
318
319 After ensuring the lock is held in exclusive mode, the lock will mark
320 itself as deleted and continue to notify all pending acquires. They will
321 wake up, notice the deleted lock and return an error to the caller.
322
323
324 Condition
325 ^^^^^^^^^
326
327 Note: This is not necessary for the locking changes above, but it may be
328 a good optimization (pending performance tests).
329
330 The existing locking code in Ganeti 2.0 uses Python's built-in
331 ``threading.Condition`` class. Unfortunately ``Condition`` implements
332 timeouts by sleeping 1ms to 20ms between tries to acquire the condition
333 lock in non-blocking mode. This requires unnecessary context switches
334 and contention on the CPython GIL (Global Interpreter Lock).
335
336 By using POSIX pipes (see ``pipe(2)``) we can use the operating system's
337 support for timeouts on file descriptors (see ``select(2)``). A custom
338 condition class will have to be written for this.
339
340 On instantiation the class creates a pipe. After each notification the
341 previous pipe is abandoned and re-created (technically the old pipe
342 needs to stay around until all notifications have been delivered).
343
344 All waiting clients of the condition use ``select(2)`` or ``poll(2)`` to
345 wait for notifications, optionally with a timeout. A notification will
346 be signalled to the waiting clients by closing the pipe. If the pipe
347 wasn't closed during the timeout, the waiting function returns to its
348 caller nonetheless.
349
350
351 Node daemon availability
352 ~~~~~~~~~~~~~~~~~~~~~~~~
353
354 Current State and shortcomings
355 ++++++++++++++++++++++++++++++
356
357 Currently, when a Ganeti node suffers serious system disk damage, the
358 migration/failover of an instance may not correctly shutdown the virtual
359 machine on the broken node causing instances duplication. The ``gnt-node
360 powercycle`` command can be used to force a node reboot and thus to
361 avoid duplicated instances. This command relies on node daemon
362 availability, though, and thus can fail if the node daemon has some
363 pages swapped out of ram, for example.
364
365
366 Proposed changes
367 ++++++++++++++++
368
369 The proposed solution forces node daemon to run exclusively in RAM. It
370 uses python ctypes to to call ``mlockall(MCL_CURRENT | MCL_FUTURE)`` on
371 the node daemon process and all its children. In addition another log
372 handler has been implemented for node daemon to redirect to
373 ``/dev/console`` messages that cannot be written on the logfile.
374
375 With these changes node daemon can successfully run basic tasks such as
376 a powercycle request even when the system disk is heavily damaged and
377 reading/writing to disk fails constantly.
378
379
380 New Features
381 ------------
382
383 Automated Ganeti Cluster Merger
384 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
385
386 Current situation
387 +++++++++++++++++
388
389 Currently there's no easy way to merge two or more clusters together.
390 But in order to optimize resources this is a needed missing piece. The
391 goal of this design doc is to come up with a easy to use solution which
392 allows you to merge two or more cluster together.
393
394 Initial contact
395 +++++++++++++++
396
397 As the design of Ganeti is based on an autonomous system, Ganeti by
398 itself has no way to reach nodes outside of its cluster. To overcome
399 this situation we're required to prepare the cluster before we can go
400 ahead with the actual merge: We've to replace at least the ssh keys on
401 the affected nodes before we can do any operation within ``gnt-``
402 commands.
403
404 To make this a automated process we'll ask the user to provide us with
405 the root password of every cluster we've to merge. We use the password
406 to grab the current ``id_dsa`` key and then rely on that ssh key for any
407 further communication to be made until the cluster is fully merged.
408
409 Cluster merge
410 +++++++++++++
411
412 After initial contact we do the cluster merge:
413
414 1. Grab the list of nodes
415 2. On all nodes add our own ``id_dsa.pub`` key to ``authorized_keys``
416 3. Stop all instances running on the merging cluster
417 4. Disable ``ganeti-watcher`` as it tries to restart Ganeti daemons
418 5. Stop all Ganeti daemons on all merging nodes
419 6. Grab the ``config.data`` from the master of the merging cluster
420 7. Stop local ``ganeti-masterd``
421 8. Merge the config:
422
423    1. Open our own cluster ``config.data``
424    2. Open cluster ``config.data`` of the merging cluster
425    3. Grab all nodes of the merging cluster
426    4. Set ``master_candidate`` to false on all merging nodes
427    5. Add the nodes to our own cluster ``config.data``
428    6. Grab all the instances on the merging cluster
429    7. Adjust the port if the instance has drbd layout:
430
431       1. In ``logical_id`` (index 2)
432       2. In ``physical_id`` (index 1 and 3)
433
434    8. Add the instances to our own cluster ``config.data``
435
436 9. Start ``ganeti-masterd`` with ``--no-voting`` ``--yes-do-it``
437 10. ``gnt-node add --readd`` on all merging nodes
438 11. ``gnt-cluster redist-conf``
439 12. Restart ``ganeti-masterd`` normally
440 13. Enable ``ganeti-watcher`` again
441 14. Start all merging instances again
442
443 Rollback
444 ++++++++
445
446 Until we actually (re)add any nodes we can abort and rollback the merge
447 at any point. After merging the config, though, we've to get the backup
448 copy of ``config.data`` (from another master candidate node). And for
449 security reasons it's a good idea to undo ``id_dsa.pub`` distribution by
450 going on every affected node and remove the ``id_dsa.pub`` key again.
451 Also we've to keep in mind, that we've to start the Ganeti daemons and
452 starting up the instances again.
453
454 Verification
455 ++++++++++++
456
457 Last but not least we should verify that the merge was successful.
458 Therefore we run ``gnt-cluster verify``, which ensures that the cluster
459 overall is in a healthy state. Additional it's also possible to compare
460 the list of instances/nodes with a list made prior to the upgrade to
461 make sure we didn't lose any data/instance/node.
462
463 Appendix
464 ++++++++
465
466 cluster-merge.py
467 ^^^^^^^^^^^^^^^^
468
469 Used to merge the cluster config. This is a POC and might differ from
470 actual production code.
471
472 ::
473
474   #!/usr/bin/python
475
476   import sys
477   from ganeti import config
478   from ganeti import constants
479
480   c_mine = config.ConfigWriter(offline=True)
481   c_other = config.ConfigWriter(sys.argv[1])
482
483   fake_id = 0
484   for node in c_other.GetNodeList():
485     node_info = c_other.GetNodeInfo(node)
486     node_info.master_candidate = False
487     c_mine.AddNode(node_info, str(fake_id))
488     fake_id += 1
489
490   for instance in c_other.GetInstanceList():
491     instance_info = c_other.GetInstanceInfo(instance)
492     for dsk in instance_info.disks:
493       if dsk.dev_type in constants.LDS_DRBD:
494          port = c_mine.AllocatePort()
495          logical_id = list(dsk.logical_id)
496          logical_id[2] = port
497          dsk.logical_id = tuple(logical_id)
498          physical_id = list(dsk.physical_id)
499          physical_id[1] = physical_id[3] = port
500          dsk.physical_id = tuple(physical_id)
501     c_mine.AddInstance(instance_info, str(fake_id))
502     fake_id += 1
503
504
505 Feature changes
506 ---------------
507
508 Ganeti Confd
509 ~~~~~~~~~~~~
510
511 Current State and shortcomings
512 ++++++++++++++++++++++++++++++
513
514 In Ganeti 2.0 all nodes are equal, but some are more equal than others.
515 In particular they are divided between "master", "master candidates" and
516 "normal".  (Moreover they can be offline or drained, but this is not
517 important for the current discussion). In general the whole
518 configuration is only replicated to master candidates, and some partial
519 information is spread to all nodes via ssconf.
520
521 This change was done so that the most frequent Ganeti operations didn't
522 need to contact all nodes, and so clusters could become bigger. If we
523 want more information to be available on all nodes, we need to add more
524 ssconf values, which is counter-balancing the change, or to talk with
525 the master node, which is not designed to happen now, and requires its
526 availability.
527
528 Information such as the instance->primary_node mapping will be needed on
529 all nodes, and we also want to make sure services external to the
530 cluster can query this information as well. This information must be
531 available at all times, so we can't query it through RAPI, which would
532 be a single point of failure, as it's only available on the master.
533
534
535 Proposed changes
536 ++++++++++++++++
537
538 In order to allow fast and highly available access read-only to some
539 configuration values, we'll create a new ganeti-confd daemon, which will
540 run on master candidates. This daemon will talk via UDP, and
541 authenticate messages using HMAC with a cluster-wide shared key. This
542 key will be generated at cluster init time, and stored on the clusters
543 alongside the ganeti SSL keys, and readable only by root.
544
545 An interested client can query a value by making a request to a subset
546 of the cluster master candidates. It will then wait to get a few
547 responses, and use the one with the highest configuration serial number.
548 Since the configuration serial number is increased each time the ganeti
549 config is updated, and the serial number is included in all answers,
550 this can be used to make sure to use the most recent answer, in case
551 some master candidates are stale or in the middle of a configuration
552 update.
553
554 In order to prevent replay attacks queries will contain the current unix
555 timestamp according to the client, and the server will verify that its
556 timestamp is in the same 5 minutes range (this requires synchronized
557 clocks, which is a good idea anyway). Queries will also contain a "salt"
558 which they expect the answers to be sent with, and clients are supposed
559 to accept only answers which contain salt generated by them.
560
561 The configuration daemon will be able to answer simple queries such as:
562
563 - master candidates list
564 - master node
565 - offline nodes
566 - instance list
567 - instance primary nodes
568
569 Wire protocol
570 ^^^^^^^^^^^^^
571
572 A confd query will look like this, on the wire::
573
574   plj0{
575     "msg": "{\"type\": 1,
576              \"rsalt\": \"9aa6ce92-8336-11de-af38-001d093e835f\",
577              \"protocol\": 1,
578              \"query\": \"node1.example.com\"}\n",
579     "salt": "1249637704",
580     "hmac": "4a4139b2c3c5921f7e439469a0a45ad200aead0f"
581   }
582
583 ``plj0`` is a fourcc that details the message content. It stands for plain
584 json 0, and can be changed as we move on to different type of protocols
585 (for example protocol buffers, or encrypted json). What follows is a
586 json encoded string, with the following fields:
587
588 - ``msg`` contains a JSON-encoded query, its fields are:
589
590   - ``protocol``, integer, is the confd protocol version (initially
591     just ``constants.CONFD_PROTOCOL_VERSION``, with a value of 1)
592   - ``type``, integer, is the query type. For example "node role by
593     name" or "node primary ip by instance ip". Constants will be
594     provided for the actual available query types
595   - ``query`` is a multi-type field (depending on the ``type`` field):
596
597     - it can be missing, when the request is fully determined by the
598       ``type`` field
599     - it can contain a string which denotes the search key: for
600       example an IP, or a node name
601     - it can contain a dictionary, in which case the actual details
602       vary further per request type
603
604   - ``rsalt``, string, is the required response salt; the client must
605     use it to recognize which answer it's getting.
606
607 - ``salt`` must be the current unix timestamp, according to the
608   client; servers should refuse messages which have a wrong timing,
609   according to their configuration and clock
610 - ``hmac`` is an hmac signature of salt+msg, with the cluster hmac key
611
612 If an answer comes back (which is optional, since confd works over UDP)
613 it will be in this format::
614
615   plj0{
616     "msg": "{\"status\": 0,
617              \"answer\": 0,
618              \"serial\": 42,
619              \"protocol\": 1}\n",
620     "salt": "9aa6ce92-8336-11de-af38-001d093e835f",
621     "hmac": "aaeccc0dff9328fdf7967cb600b6a80a6a9332af"
622   }
623
624 Where:
625
626 - ``plj0`` the message type magic fourcc, as discussed above
627 - ``msg`` contains a JSON-encoded answer, its fields are:
628
629   - ``protocol``, integer, is the confd protocol version (initially
630     just constants.CONFD_PROTOCOL_VERSION, with a value of 1)
631   - ``status``, integer, is the error code; initially just ``0`` for
632     'ok' or ``1`` for 'error' (in which case answer contains an error
633     detail, rather than an answer), but in the future it may be
634     expanded to have more meanings (e.g. ``2`` if the answer is
635     compressed)
636   - ``answer``, is the actual answer; its type and meaning is query
637     specific: for example for "node primary ip by instance ip" queries
638     it will be a string containing an IP address, for "node role by
639     name" queries it will be an integer which encodes the role
640     (master, candidate, drained, offline) according to constants
641
642 - ``salt`` is the requested salt from the query; a client can use it
643   to recognize what query the answer is answering.
644 - ``hmac`` is an hmac signature of salt+msg, with the cluster hmac key
645
646
647 Redistribute Config
648 ~~~~~~~~~~~~~~~~~~~
649
650 Current State and shortcomings
651 ++++++++++++++++++++++++++++++
652
653 Currently LUClusterRedistConf triggers a copy of the updated
654 configuration file to all master candidates and of the ssconf files to
655 all nodes. There are other files which are maintained manually but which
656 are important to keep in sync. These are:
657
658 - rapi SSL key certificate file (rapi.pem) (on master candidates)
659 - rapi user/password file rapi_users (on master candidates)
660
661 Furthermore there are some files which are hypervisor specific but we
662 may want to keep in sync:
663
664 - the xen-hvm hypervisor uses one shared file for all vnc passwords, and
665   copies the file once, during node add. This design is subject to
666   revision to be able to have different passwords for different groups
667   of instances via the use of hypervisor parameters, and to allow
668   xen-hvm and kvm to use an equal system to provide password-protected
669   vnc sessions. In general, though, it would be useful if the vnc
670   password files were copied as well, to avoid unwanted vnc password
671   changes on instance failover/migrate.
672
673 Optionally the admin may want to also ship files such as the global
674 xend.conf file, and the network scripts to all nodes.
675
676 Proposed changes
677 ++++++++++++++++
678
679 RedistributeConfig will be changed to copy also the rapi files, and to
680 call every enabled hypervisor asking for a list of additional files to
681 copy. Users will have the possibility to populate a file containing a
682 list of files to be distributed; this file will be propagated as well.
683 Such solution is really simple to implement and it's easily usable by
684 scripts.
685
686 This code will be also shared (via tasklets or by other means, if
687 tasklets are not ready for 2.1) with the AddNode and SetNodeParams LUs
688 (so that the relevant files will be automatically shipped to new master
689 candidates as they are set).
690
691 VNC Console Password
692 ~~~~~~~~~~~~~~~~~~~~
693
694 Current State and shortcomings
695 ++++++++++++++++++++++++++++++
696
697 Currently just the xen-hvm hypervisor supports setting a password to
698 connect the the instances' VNC console, and has one common password
699 stored in a file.
700
701 This doesn't allow different passwords for different instances/groups of
702 instances, and makes it necessary to remember to copy the file around
703 the cluster when the password changes.
704
705 Proposed changes
706 ++++++++++++++++
707
708 We'll change the VNC password file to a vnc_password_file hypervisor
709 parameter.  This way it can have a cluster default, but also a different
710 value for each instance. The VNC enabled hypervisors (xen and kvm) will
711 publish all the password files in use through the cluster so that a
712 redistribute-config will ship them to all nodes (see the Redistribute
713 Config proposed changes above).
714
715 The current VNC_PASSWORD_FILE constant will be removed, but its value
716 will be used as the default HV_VNC_PASSWORD_FILE value, thus retaining
717 backwards compatibility with 2.0.
718
719 The code to export the list of VNC password files from the hypervisors
720 to RedistributeConfig will be shared between the KVM and xen-hvm
721 hypervisors.
722
723 Disk/Net parameters
724 ~~~~~~~~~~~~~~~~~~~
725
726 Current State and shortcomings
727 ++++++++++++++++++++++++++++++
728
729 Currently disks and network interfaces have a few tweakable options and
730 all the rest is left to a default we chose. We're finding that we need
731 more and more to tweak some of these parameters, for example to disable
732 barriers for DRBD devices, or allow striping for the LVM volumes.
733
734 Moreover for many of these parameters it will be nice to have
735 cluster-wide defaults, and then be able to change them per
736 disk/interface.
737
738 Proposed changes
739 ++++++++++++++++
740
741 We will add new cluster level diskparams and netparams, which will
742 contain all the tweakable parameters. All values which have a sensible
743 cluster-wide default will go into this new structure while parameters
744 which have unique values will not.
745
746 Example of network parameters:
747   - mode: bridge/route
748   - link: for mode "bridge" the bridge to connect to, for mode route it
749     can contain the routing table, or the destination interface
750
751 Example of disk parameters:
752   - stripe: lvm stripes
753   - stripe_size: lvm stripe size
754   - meta_flushes: drbd, enable/disable metadata "barriers"
755   - data_flushes: drbd, enable/disable data "barriers"
756
757 Some parameters are bound to be disk-type specific (drbd, vs lvm, vs
758 files) or hypervisor specific (nic models for example), but for now they
759 will all live in the same structure. Each component is supposed to
760 validate only the parameters it knows about, and ganeti itself will make
761 sure that no "globally unknown" parameters are added, and that no
762 parameters have overridden meanings for different components.
763
764 The parameters will be kept, as for the BEPARAMS into a "default"
765 category, which will allow us to expand on by creating instance
766 "classes" in the future.  Instance classes is not a feature we plan
767 implementing in 2.1, though.
768
769
770 Global hypervisor parameters
771 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
772
773 Current State and shortcomings
774 ++++++++++++++++++++++++++++++
775
776 Currently all hypervisor parameters are modifiable both globally
777 (cluster level) and at instance level. However, there is no other
778 framework to held hypervisor-specific parameters, so if we want to add
779 a new class of hypervisor parameters that only makes sense on a global
780 level, we have to change the hvparams framework.
781
782 Proposed changes
783 ++++++++++++++++
784
785 We add a new (global, not per-hypervisor) list of parameters which are
786 not changeable on a per-instance level. The create, modify and query
787 instance operations are changed to not allow/show these parameters.
788
789 Furthermore, to allow transition of parameters to the global list, and
790 to allow cleanup of inadverdently-customised parameters, the
791 ``UpgradeConfig()`` method of instances will drop any such parameters
792 from their list of hvparams, such that a restart of the master daemon
793 is all that is needed for cleaning these up.
794
795 Also, the framework is simple enough that if we need to replicate it
796 at beparams level we can do so easily.
797
798
799 Non bridged instances support
800 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
801
802 Current State and shortcomings
803 ++++++++++++++++++++++++++++++
804
805 Currently each instance NIC must be connected to a bridge, and if the
806 bridge is not specified the default cluster one is used. This makes it
807 impossible to use the vif-route xen network scripts, or other
808 alternative mechanisms that don't need a bridge to work.
809
810 Proposed changes
811 ++++++++++++++++
812
813 The new "mode" network parameter will distinguish between bridged
814 interfaces and routed ones.
815
816 When mode is "bridge" the "link" parameter will contain the bridge the
817 instance should be connected to, effectively making things as today. The
818 value has been migrated from a nic field to a parameter to allow for an
819 easier manipulation of the cluster default.
820
821 When mode is "route" the ip field of the interface will become
822 mandatory, to allow for a route to be set. In the future we may want
823 also to accept multiple IPs or IP/mask values for this purpose. We will
824 evaluate possible meanings of the link parameter to signify a routing
825 table to be used, which would allow for insulation between instance
826 groups (as today happens for different bridges).
827
828 For now we won't add a parameter to specify which network script gets
829 called for which instance, so in a mixed cluster the network script must
830 be able to handle both cases. The default kvm vif script will be changed
831 to do so. (Xen doesn't have a ganeti provided script, so nothing will be
832 done for that hypervisor)
833
834 Introducing persistent UUIDs
835 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
836
837 Current state and shortcomings
838 ++++++++++++++++++++++++++++++
839
840 Some objects in the Ganeti configurations are tracked by their name
841 while also supporting renames. This creates an extra difficulty,
842 because neither Ganeti nor external management tools can then track
843 the actual entity, and due to the name change it behaves like a new
844 one.
845
846 Proposed changes part 1
847 +++++++++++++++++++++++
848
849 We will change Ganeti to use UUIDs for entity tracking, but in a
850 staggered way. In 2.1, we will simply add an “uuid” attribute to each
851 of the instances, nodes and cluster itself. This will be reported on
852 instance creation for nodes, and on node adds for the nodes. It will
853 be of course avaiblable for querying via the OpNodeQuery/Instance and
854 cluster information, and via RAPI as well.
855
856 Note that Ganeti will not provide any way to change this attribute.
857
858 Upgrading from Ganeti 2.0 will automatically add an ‘uuid’ attribute
859 to all entities missing it.
860
861
862 Proposed changes part 2
863 +++++++++++++++++++++++
864
865 In the next release (e.g. 2.2), the tracking of objects will change
866 from the name to the UUID internally, and externally Ganeti will
867 accept both forms of identification; e.g. an RAPI call would be made
868 either against ``/2/instances/foo.bar`` or against
869 ``/2/instances/bb3b2e42…``. Since an FQDN must have at least a dot,
870 and dots are not valid characters in UUIDs, we will not have namespace
871 issues.
872
873 Another change here is that node identification (during cluster
874 operations/queries like master startup, “am I the master?” and
875 similar) could be done via UUIDs which is more stable than the current
876 hostname-based scheme.
877
878 Internal tracking refers to the way the configuration is stored; a
879 DRBD disk of an instance refers to the node name (so that IPs can be
880 changed easily), but this is still a problem for name changes; thus
881 these will be changed to point to the node UUID to ease renames.
882
883 The advantages of this change (after the second round of changes), is
884 that node rename becomes trivial, whereas today node rename would
885 require a complete lock of all instances.
886
887
888 Automated disk repairs infrastructure
889 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
890
891 Replacing defective disks in an automated fashion is quite difficult
892 with the current version of Ganeti. These changes will introduce
893 additional functionality and interfaces to simplify automating disk
894 replacements on a Ganeti node.
895
896 Fix node volume group
897 +++++++++++++++++++++
898
899 This is the most difficult addition, as it can lead to dataloss if it's
900 not properly safeguarded.
901
902 The operation must be done only when all the other nodes that have
903 instances in common with the target node are fine, i.e. this is the only
904 node with problems, and also we have to double-check that all instances
905 on this node have at least a good copy of the data.
906
907 This might mean that we have to enhance the GetMirrorStatus calls, and
908 introduce and a smarter version that can tell us more about the status
909 of an instance.
910
911 Stop allocation on a given PV
912 +++++++++++++++++++++++++++++
913
914 This is somewhat simple. First we need a "list PVs" opcode (and its
915 associated logical unit) and then a set PV status opcode/LU. These in
916 combination should allow both checking and changing the disk/PV status.
917
918 Instance disk status
919 ++++++++++++++++++++
920
921 This new opcode or opcode change must list the instance-disk-index and
922 node combinations of the instance together with their status. This will
923 allow determining what part of the instance is broken (if any).
924
925 Repair instance
926 +++++++++++++++
927
928 This new opcode/LU/RAPI call will run ``replace-disks -p`` as needed, in
929 order to fix the instance status. It only affects primary instances;
930 secondaries can just be moved away.
931
932 Migrate node
933 ++++++++++++
934
935 This new opcode/LU/RAPI call will take over the current ``gnt-node
936 migrate`` code and run migrate for all instances on the node.
937
938 Evacuate node
939 ++++++++++++++
940
941 This new opcode/LU/RAPI call will take over the current ``gnt-node
942 evacuate`` code and run replace-secondary with an iallocator script for
943 all instances on the node.
944
945
946 User-id pool
947 ~~~~~~~~~~~~
948
949 In order to allow running different processes under unique user-ids
950 on a node, we introduce the user-id pool concept.
951
952 The user-id pool is a cluster-wide configuration parameter.
953 It is a list of user-ids and/or user-id ranges that are reserved
954 for running Ganeti processes (including KVM instances).
955 The code guarantees that on a given node a given user-id is only
956 handed out if there is no other process running with that user-id.
957
958 Please note, that this can only be guaranteed if all processes in
959 the system - that run under a user-id belonging to the pool - are
960 started by reserving a user-id first. That can be accomplished
961 either by using the RequestUnusedUid() function to get an unused
962 user-id or by implementing the same locking mechanism.
963
964 Implementation
965 ++++++++++++++
966
967 The functions that are specific to the user-id pool feature are located
968 in a separate module: ``lib/uidpool.py``.
969
970 Storage
971 ^^^^^^^
972
973 The user-id pool is a single cluster parameter. It is stored in the
974 *Cluster* object under the ``uid_pool`` name as a list of integer
975 tuples. These tuples represent the boundaries of user-id ranges.
976 For single user-ids, the boundaries are equal.
977
978 The internal user-id pool representation is converted into a
979 string: a newline separated list of user-ids or user-id ranges.
980 This string representation is distributed to all the nodes via the
981 *ssconf* mechanism. This means that the user-id pool can be
982 accessed in a read-only way on any node without consulting the master
983 node or master candidate nodes.
984
985 Initial value
986 ^^^^^^^^^^^^^
987
988 The value of the user-id pool cluster parameter can be initialized
989 at cluster initialization time using the
990
991 ``gnt-cluster init --uid-pool <uid-pool definition> ...``
992
993 command.
994
995 As there is no sensible default value for the user-id pool parameter,
996 it is initialized to an empty list if no ``--uid-pool`` option is
997 supplied at cluster init time.
998
999 If the user-id pool is empty, the user-id pool feature is considered
1000 to be disabled.
1001
1002 Manipulation
1003 ^^^^^^^^^^^^
1004
1005 The user-id pool cluster parameter can be modified from the
1006 command-line with the following commands:
1007
1008 - ``gnt-cluster modify --uid-pool <uid-pool definition>``
1009 - ``gnt-cluster modify --add-uids <uid-pool definition>``
1010 - ``gnt-cluster modify --remove-uids <uid-pool definition>``
1011
1012 The ``--uid-pool`` option overwrites the current setting with the
1013 supplied ``<uid-pool definition>``, while
1014 ``--add-uids``/``--remove-uids`` adds/removes the listed uids
1015 or uid-ranges from the pool.
1016
1017 The ``<uid-pool definition>`` should be a comma-separated list of
1018 user-ids or user-id ranges. A range should be defined by a lower and
1019 a higher boundary. The boundaries should be separated with a dash.
1020 The boundaries are inclusive.
1021
1022 The ``<uid-pool definition>`` is parsed into the internal
1023 representation, sanity-checked and stored in the ``uid_pool``
1024 attribute of the *Cluster* object.
1025
1026 It is also immediately converted into a string (formatted in the
1027 input format) and distributed to all nodes via the *ssconf* mechanism.
1028
1029 Inspection
1030 ^^^^^^^^^^
1031
1032 The current value of the user-id pool cluster parameter is printed
1033 by the ``gnt-cluster info`` command.
1034
1035 The output format is accepted by the ``gnt-cluster modify --uid-pool``
1036 command.
1037
1038 Locking
1039 ^^^^^^^
1040
1041 The ``uidpool.py`` module provides a function (``RequestUnusedUid``)
1042 for requesting an unused user-id from the pool.
1043
1044 This will try to find a random user-id that is not currently in use.
1045 The algorithm is the following:
1046
1047 1) Randomize the list of user-ids in the user-id pool
1048 2) Iterate over this randomized UID list
1049 3) Create a lock file (it doesn't matter if it already exists)
1050 4) Acquire an exclusive POSIX lock on the file, to provide mutual
1051    exclusion for the following non-atomic operations
1052 5) Check if there is a process in the system with the given UID
1053 6) If there isn't, return the UID, otherwise unlock the file and
1054    continue the iteration over the user-ids
1055
1056 The user can than start a new process with this user-id.
1057 Once a process is successfully started, the exclusive POSIX lock can
1058 be released, but the lock file will remain in the filesystem.
1059 The presence of such a lock file means that the given user-id is most
1060 probably in use. The lack of a uid lock file does not guarantee that
1061 there are no processes with that user-id.
1062
1063 After acquiring the exclusive POSIX lock, ``RequestUnusedUid``
1064 always performs a check to see if there is a process running with the
1065 given uid.
1066
1067 A user-id can be returned to the pool, by calling the
1068 ``ReleaseUid`` function. This will remove the corresponding lock file.
1069 Note, that it doesn't check if there is any process still running
1070 with that user-id. The removal of the lock file only means that there
1071 are most probably no processes with the given user-id. This helps
1072 in speeding up the process of finding a user-id that is guaranteed to
1073 be unused.
1074
1075 There is a convenience function, called ``ExecWithUnusedUid`` that
1076 wraps the execution of a function (or any callable) that requires a
1077 unique user-id. ``ExecWithUnusedUid`` takes care of requesting an
1078 unused user-id and unlocking the lock file. It also automatically
1079 returns the user-id to the pool if the callable raises an exception.
1080
1081 Code examples
1082 +++++++++++++
1083
1084 Requesting a user-id from the pool:
1085
1086 ::
1087
1088   from ganeti import ssconf
1089   from ganeti import uidpool
1090
1091   # Get list of all user-ids in the uid-pool from ssconf
1092   ss = ssconf.SimpleStore()
1093   uid_pool = uidpool.ParseUidPool(ss.GetUidPool(), separator="\n")
1094   all_uids = set(uidpool.ExpandUidPool(uid_pool))
1095
1096   uid = uidpool.RequestUnusedUid(all_uids)
1097   try:
1098     <start a process with the UID>
1099     # Once the process is started, we can release the file lock
1100     uid.Unlock()
1101   except ..., err:
1102     # Return the UID to the pool
1103     uidpool.ReleaseUid(uid)
1104
1105
1106 Releasing a user-id:
1107
1108 ::
1109
1110   from ganeti import uidpool
1111
1112   uid = <get the UID the process is running under>
1113   <stop the process>
1114   uidpool.ReleaseUid(uid)
1115
1116
1117 External interface changes
1118 --------------------------
1119
1120 OS API
1121 ~~~~~~
1122
1123 The OS API of Ganeti 2.0 has been built with extensibility in mind.
1124 Since we pass everything as environment variables it's a lot easier to
1125 send new information to the OSes without breaking retrocompatibility.
1126 This section of the design outlines the proposed extensions to the API
1127 and their implementation.
1128
1129 API Version Compatibility Handling
1130 ++++++++++++++++++++++++++++++++++
1131
1132 In 2.1 there will be a new OS API version (eg. 15), which should be
1133 mostly compatible with api 10, except for some new added variables.
1134 Since it's easy not to pass some variables we'll be able to handle
1135 Ganeti 2.0 OSes by just filtering out the newly added piece of
1136 information. We will still encourage OSes to declare support for the new
1137 API after checking that the new variables don't provide any conflict for
1138 them, and we will drop api 10 support after ganeti 2.1 has released.
1139
1140 New Environment variables
1141 +++++++++++++++++++++++++
1142
1143 Some variables have never been added to the OS api but would definitely
1144 be useful for the OSes. We plan to add an INSTANCE_HYPERVISOR variable
1145 to allow the OS to make changes relevant to the virtualization the
1146 instance is going to use. Since this field is immutable for each
1147 instance, the os can tight the install without caring of making sure the
1148 instance can run under any virtualization technology.
1149
1150 We also want the OS to know the particular hypervisor parameters, to be
1151 able to customize the install even more.  Since the parameters can
1152 change, though, we will pass them only as an "FYI": if an OS ties some
1153 instance functionality to the value of a particular hypervisor parameter
1154 manual changes or a reinstall may be needed to adapt the instance to the
1155 new environment. This is not a regression as of today, because even if
1156 the OSes are left blind about this information, sometimes they still
1157 need to make compromises and cannot satisfy all possible parameter
1158 values.
1159
1160 OS Variants
1161 +++++++++++
1162
1163 Currently we are assisting to some degree of "os proliferation" just to
1164 change a simple installation behavior. This means that the same OS gets
1165 installed on the cluster multiple times, with different names, to
1166 customize just one installation behavior. Usually such OSes try to share
1167 as much as possible through symlinks, but this still causes
1168 complications on the user side, especially when multiple parameters must
1169 be cross-matched.
1170
1171 For example today if you want to install debian etch, lenny or squeeze
1172 you probably need to install the debootstrap OS multiple times, changing
1173 its configuration file, and calling it debootstrap-etch,
1174 debootstrap-lenny or debootstrap-squeeze. Furthermore if you have for
1175 example a "server" and a "development" environment which installs
1176 different packages/configuration files and must be available for all
1177 installs you'll probably end  up with deboostrap-etch-server,
1178 debootstrap-etch-dev, debootrap-lenny-server, debootstrap-lenny-dev,
1179 etc. Crossing more than two parameters quickly becomes not manageable.
1180
1181 In order to avoid this we plan to make OSes more customizable, by
1182 allowing each OS to declare a list of variants which can be used to
1183 customize it. The variants list is mandatory and must be written, one
1184 variant per line, in the new "variants.list" file inside the main os
1185 dir. At least one supported variant must be supported. When choosing the
1186 OS exactly one variant will have to be specified, and will be encoded in
1187 the os name as <OS-name>+<variant>. As for today it will be possible to
1188 change an instance's OS at creation or install time.
1189
1190 The 2.1 OS list will be the combination of each OS, plus its supported
1191 variants. This will cause the name name proliferation to remain, but at
1192 least the internal OS code will be simplified to just parsing the passed
1193 variant, without the need for symlinks or code duplication.
1194
1195 Also we expect the OSes to declare only "interesting" variants, but to
1196 accept some non-declared ones which a user will be able to pass in by
1197 overriding the checks ganeti does. This will be useful for allowing some
1198 variations to be used without polluting the OS list (per-OS
1199 documentation should list all supported variants). If a variant which is
1200 not internally supported is forced through, the OS scripts should abort.
1201
1202 In the future (post 2.1) we may want to move to full fledged parameters
1203 all orthogonal to each other (for example "architecture" (i386, amd64),
1204 "suite" (lenny, squeeze, ...), etc). (As opposed to the variant, which
1205 is a single parameter, and you need a different variant for all the set
1206 of combinations you want to support).  In this case we envision the
1207 variants to be moved inside of Ganeti and be associated with lists
1208 parameter->values associations, which will then be passed to the OS.
1209
1210
1211 IAllocator changes
1212 ~~~~~~~~~~~~~~~~~~
1213
1214 Current State and shortcomings
1215 ++++++++++++++++++++++++++++++
1216
1217 The iallocator interface allows creation of instances without manually
1218 specifying nodes, but instead by specifying plugins which will do the
1219 required computations and produce a valid node list.
1220
1221 However, the interface is quite akward to use:
1222
1223 - one cannot set a 'default' iallocator script
1224 - one cannot use it to easily test if allocation would succeed
1225 - some new functionality, such as rebalancing clusters and calculating
1226   capacity estimates is needed
1227
1228 Proposed changes
1229 ++++++++++++++++
1230
1231 There are two area of improvements proposed:
1232
1233 - improving the use of the current interface
1234 - extending the IAllocator API to cover more automation
1235
1236
1237 Default iallocator names
1238 ^^^^^^^^^^^^^^^^^^^^^^^^
1239
1240 The cluster will hold, for each type of iallocator, a (possibly empty)
1241 list of modules that will be used automatically.
1242
1243 If the list is empty, the behaviour will remain the same.
1244
1245 If the list has one entry, then ganeti will behave as if
1246 '--iallocator' was specifyed on the command line. I.e. use this
1247 allocator by default. If the user however passed nodes, those will be
1248 used in preference.
1249
1250 If the list has multiple entries, they will be tried in order until
1251 one gives a successful answer.
1252
1253 Dry-run allocation
1254 ^^^^^^^^^^^^^^^^^^
1255
1256 The create instance LU will get a new 'dry-run' option that will just
1257 simulate the placement, and return the chosen node-lists after running
1258 all the usual checks.
1259
1260 Cluster balancing
1261 ^^^^^^^^^^^^^^^^^
1262
1263 Instance add/removals/moves can create a situation where load on the
1264 nodes is not spread equally. For this, a new iallocator mode will be
1265 implemented called ``balance`` in which the plugin, given the current
1266 cluster state, and a maximum number of operations, will need to
1267 compute the instance relocations needed in order to achieve a "better"
1268 (for whatever the script believes it's better) cluster.
1269
1270 Cluster capacity calculation
1271 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1272
1273 In this mode, called ``capacity``, given an instance specification and
1274 the current cluster state (similar to the ``allocate`` mode), the
1275 plugin needs to return:
1276
1277 - how many instances can be allocated on the cluster with that
1278   specification
1279 - on which nodes these will be allocated (in order)
1280
1281 .. vim: set textwidth=72 :