Adding design-doc for user separation
[ganeti-local] / doc / design-2.3.rst
1 =================
2 Ganeti 2.3 design
3 =================
4
5 This document describes the major changes in Ganeti 2.3 compared to
6 the 2.2 version.
7
8 .. contents:: :depth: 4
9
10 As for 2.1 and 2.2 we divide the 2.3 design into three areas:
11
12 - core changes, which affect the master daemon/job queue/locking or
13   all/most logical units
14 - logical unit/feature changes
15 - external interface changes (e.g. command line, os api, hooks, ...)
16
17 Core changes
18 ============
19
20 Node Groups
21 -----------
22
23 Current state and shortcomings
24 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25
26 Currently all nodes of a Ganeti cluster are considered as part of the
27 same pool, for allocation purposes: DRBD instances for example can be
28 allocated on any two nodes.
29
30 This does cause a problem in cases where nodes are not all equally
31 connected to each other. For example if a cluster is created over two
32 set of machines, each connected to its own switch, the internal bandwidth
33 between machines connected to the same switch might be bigger than the
34 bandwidth for inter-switch connections.
35
36 Moreover some operations inside a cluster require all nodes to be locked
37 together for inter-node consistency, and won't scale if we increase the
38 number of nodes to a few hundreds.
39
40 Proposed changes
41 ~~~~~~~~~~~~~~~~
42
43 With this change we'll divide Ganeti nodes into groups. Nothing will
44 change for clusters with only one node group, the default one. Bigger
45 cluster instead will be able to have more than one group, and each node
46 will belong to exactly one.
47
48 Node group management
49 +++++++++++++++++++++
50
51 To manage node groups and the nodes belonging to them, the following new
52 commands/flags will be introduced::
53
54   gnt-node group-add <group> # add a new node group
55   gnt-node group-del <group> # delete an empty group
56   gnt-node group-list # list node groups
57   gnt-node group-rename <oldname> <newname> # rename a group
58   gnt-node list/info -g <group> # list only nodes belongin to a group
59   gnt-node add -g <group> # add a node to a certain group
60   gnt-node modify -g <group> # move a node to a new group
61
62 Instance level changes
63 ++++++++++++++++++++++
64
65 Instances will be able to live in only one group at a time. This is
66 mostly important for DRBD instances, in which case both their primary
67 and secondary nodes will need to be in the same group. To support this
68 we envision the following changes:
69
70   - The cluster will have a default group, which will initially be
71   - Instance allocation will happen to the cluster's default group
72     (which will be changable via gnt-cluster modify or RAPI) unless a
73     group is explicitely specified in the creation job (with -g or via
74     RAPI). Iallocator will be only passed the nodes belonging to that
75     group.
76   - Moving an instance between groups can only happen via an explicit
77     operation, which for example in the case of DRBD will work by
78     performing internally a replace-disks, a migration, and a second
79     replace-disks. It will be possible to cleanup an interrupted
80     group-move operation.
81   - Cluster verify will signal an error if an instance has been left
82     mid-transition between groups.
83   - Intra-group instance migration/failover will check that the target
84     group will be able to accept the instance network/storage wise, and
85     fail otherwise. In the future we may be able to make some parameter
86     changed during the move, but in the first version we expect an
87     import/export if this is not possible.
88   - From an allocation point of view, inter-group movements will be
89     shown to a iallocator as a new allocation over the target group.
90     Only in a future version we may add allocator extensions to decide
91     which group the instance should be in. In the meantime we expect
92     Ganeti administrators to either put instances on different groups by
93     filling all groups first, or to have their own strategy based on the
94     instance needs.
95
96 Internal changes
97 ++++++++++++++++
98
99 We expect the following changes for cluster management:
100
101   - Frequent multinode operations, such as os-diagnose or cluster-verify
102     will act one group at a time. The default group will be used if none
103     is passed. Command line tools will have a way to easily target all
104     groups, by generating one job per group.
105   - Groups will have a human-readable name, but will internally always
106     be referenced by a UUID, which will be immutable. For example the
107     cluster object will contain the UUID of the default group, each node
108     will contain the UUID of the group it belongs to, etc. This is done
109     to simplify referencing while keeping it easy to handle renames and
110     movements. If we see that this works well, we'll transition other
111     config objects (instances, nodes) to the same model.
112   - The addition of a new per-group lock will be evaluated, if we can
113     transition some operations now requiring the BGL to it.
114   - Master candidate status will be allowed to be spread among groups.
115     For the first version we won't add any restriction over how this is
116     done, although in the future we may have a minimum number of master
117     candidates which Ganeti will try to keep in each group, for example.
118
119 Other work and future changes
120 +++++++++++++++++++++++++++++
121
122 Commands like gnt-cluster command/copyfile will continue to work on the
123 whole cluster, but it will be possible to target one group only by
124 specifying it.
125
126 Commands which allow selection of sets of resources (for example
127 gnt-instance start/stop) will be able to select them by node group as
128 well.
129
130 Initially node groups won't be taggable objects, to simplify the first
131 implementation, but we expect this to be easy to add in a future version
132 should we see it's useful.
133
134 We envision groups as a good place to enhance cluster scalability. In
135 the future we may want to use them ad units for configuration diffusion,
136 to allow a better master scalability. For example it could be possible
137 to change some all-nodes RPCs to contact each group once, from the
138 master, and make one node in the group perform internal diffusion. We
139 won't implement this in the first version, but we'll evaluate it for the
140 future, if we see scalability problems on big multi-group clusters.
141
142 When Ganeti will support more storage models (eg. SANs, sheepdog, ceph)
143 we expect groups to be the basis for this, allowing for example a
144 different sheepdog/ceph cluster, or a different SAN to be connected to
145 each group. In some cases this will mean that inter-group move operation
146 will be necessarily performed with instance downtime, unless the
147 hypervisor has block-migrate functionality, and we implement support for
148 it (this would be theoretically possible, today, with KVM, for example).
149
150 Scalability issues with big clusters
151 ------------------------------------
152
153 Current and future issues
154 ~~~~~~~~~~~~~~~~~~~~~~~~~
155
156 Assuming the node groups feature will enable bigger clusters, other
157 parts of Ganeti will be impacted even more by the (in effect) bigger
158 clusters.
159
160 While many areas will be impacted, one is the most important: the fact
161 that the watcher still needs to be able to repair instance data on the
162 current 5 minutes time-frame (a shorter time-frame would be even
163 better). This means that the watcher itself needs to have parallelism
164 when dealing with node groups.
165
166 Also, the iallocator plugins are being fed data from Ganeti but also
167 need access to the full cluster state, and in general we still rely on
168 being able to compute the full cluster state somewhat “cheaply” and
169 on-demand. This conflicts with the goal of disconnecting the different
170 node groups, and to keep the same parallelism while growing the cluster
171 size.
172
173 Another issue is that the current capacity calculations are done
174 completely outside Ganeti (and they need access to the entire cluster
175 state), and this prevents keeping the capacity numbers in sync with the
176 cluster state. While this is still acceptable for smaller clusters where
177 a small number of allocations/removal are presumed to occur between two
178 periodic capacity calculations, on bigger clusters where we aim to
179 parallelise heavily between node groups this is no longer true.
180
181
182
183 As proposed changes, the main change is introducing a cluster state
184 cache (not serialised to disk), and to update many of the LUs and
185 cluster operations to account for it. Furthermore, the capacity
186 calculations will be integrated via a new OpCode/LU, so that we have
187 faster feedback (instead of periodic computation).
188
189 Cluster state cache
190 ~~~~~~~~~~~~~~~~~~~
191
192 A new cluster state cache will be introduced. The cache relies on two
193 main ideas:
194
195 - the total node memory, CPU count are very seldom changing; the total
196   node disk space is also slow changing, but can change at runtime; the
197   free memory and free disk will change significantly for some jobs, but
198   on a short timescale; in general, these values will mostly “constant”
199   during the lifetime of a job
200 - we already have a periodic set of jobs that query the node and
201   instance state, driven the by :command:`ganeti-watcher` command, and
202   we're just discarding the results after acting on them
203
204 Given the above, it makes sense to cache inside the master daemon the
205 results of node and instance state (with a focus on the node state).
206
207 The cache will not be serialised to disk, and will be for the most part
208 transparent to the outside of the master daemon.
209
210 Cache structure
211 +++++++++++++++
212
213 The cache will be oriented with a focus on node groups, so that it will
214 be easy to invalidate an entire node group, or a subset of nodes, or the
215 entire cache. The instances will be stored in the node group of their
216 primary node.
217
218 Furthermore, since the node and instance properties determine the
219 capacity statistics in a deterministic way, the cache will also hold, at
220 each node group level, the total capacity as determined by the new
221 capacity iallocator mode.
222
223 Cache updates
224 +++++++++++++
225
226 The cache will be updated whenever a query for a node state returns
227 “full” node information (so as to keep the cache state for a given node
228 consistent). Partial results will not update the cache (see next
229 paragraph).
230
231 Since the there will be no way to feed the cache from outside, and we
232 would like to have a consistent cache view when driven by the watcher,
233 we'll introduce a new OpCode/LU for the watcher to run, instead of the
234 current separate opcodes (see below in the watcher section).
235
236 Updates to a node that change a node's specs “downward” (e.g. less
237 memory) will invalidate the capacity data. Updates that increase the
238 node will not invalidate the capacity, as we're more interested in “at
239 least available” correctness, not “at most available”.
240
241 Cache invalidations
242 +++++++++++++++++++
243
244 If a partial node query is done (e.g. just for the node free space), and
245 the returned values don't match with the cache, then the entire node
246 state will be invalidated.
247
248 By default, all LUs will invalidate the caches for all nodes and
249 instances they lock. If an LU uses the BGL, then it will invalidate the
250 entire cache. In time, it is expected that LUs will be modified to not
251 invalidate, if they are not expected to change the node's and/or
252 instance's state (e.g. ``LUConnectConsole``, or
253 ``LUActivateInstanceDisks``).
254
255 Invalidation of a node's properties will also invalidate the capacity
256 data associated with that node.
257
258 Cache lifetime
259 ++++++++++++++
260
261 The cache elements will have an upper bound on their lifetime; the
262 proposal is to make this an hour, which should be a high enough value to
263 cover the watcher being blocked by a medium-term job (e.g. 20-30
264 minutes).
265
266 Cache usage
267 +++++++++++
268
269 The cache will be used by default for most queries (e.g. a Luxi call,
270 without locks, for the entire cluster). Since this will be a change from
271 the current behaviour, we'll need to allow non-cached responses,
272 e.g. via a ``--cache=off`` or similar argument (which will force the
273 query).
274
275 The cache will also be used for the iallocator runs, so that computing
276 allocation solution can proceed independent from other jobs which lock
277 parts of the cluster. This is important as we need to separate
278 allocation on one group from exclusive blocking jobs on other node
279 groups.
280
281 The capacity calculations will also use the cache—this is detailed in
282 the respective sections.
283
284 Watcher operation
285 ~~~~~~~~~~~~~~~~~
286
287 As detailed in the cluster cache section, the watcher also needs
288 improvements in order to scale with the the cluster size.
289
290 As a first improvement, the proposal is to introduce a new OpCode/LU
291 pair that runs with locks held over the entire query sequence (the
292 current watcher runs a job with two opcodes, which grab and release the
293 locks individually). The new opcode will be called
294 ``OpUpdateNodeGroupCache`` and will do the following:
295
296 - try to acquire all node/instance locks (to examine in more depth, and
297   possibly alter) in the given node group
298 - invalidate the cache for the node group
299 - acquire node and instance state (possibly via a new single RPC call
300   that combines node and instance information)
301 - update cache
302 - return the needed data
303
304 The reason for the per-node group query is that we don't want a busy
305 node group to prevent instance maintenance in other node
306 groups. Therefore, the watcher will introduce parallelism across node
307 groups, and it will possible to have overlapping watcher runs. The new
308 execution sequence will be:
309
310 - the parent watcher process acquires global watcher lock
311 - query the list of node groups (lockless or very short locks only)
312 - fork N children, one for each node group
313 - release the global lock
314 - poll/wait for the children to finish
315
316 Each forked children will do the following:
317
318 - try to acquire the per-node group watcher lock
319 - if fail to acquire, exit with special code telling the parent that the
320   node group is already being managed by a watcher process
321 - otherwise, submit a OpUpdateNodeGroupCache job
322 - get results (possibly after a long time, due to busy group)
323 - run the needed maintenance operations for the current group
324
325 This new mode of execution means that the master watcher processes might
326 overlap in running, but not the individual per-node group child
327 processes.
328
329 This change allows us to keep (almost) the same parallelism when using a
330 bigger cluster with node groups versus two separate clusters.
331
332
333 Cost of periodic cache updating
334 +++++++++++++++++++++++++++++++
335
336 Currently the watcher only does “small” queries for the node and
337 instance state, and at first sight changing it to use the new OpCode
338 which populates the cache with the entire state might introduce
339 additional costs, which must be payed every five minutes.
340
341 However, the OpCodes that the watcher submits are using the so-called
342 dynamic fields (need to contact the remote nodes), and the LUs are not
343 selective—they always grab all the node and instance state. So in the
344 end, we have the same cost, it just becomes explicit rather than
345 implicit.
346
347 This ‘grab all node state’ behaviour is what makes the cache worth
348 implementing.
349
350 Intra-node group scalability
351 ++++++++++++++++++++++++++++
352
353 The design above only deals with inter-node group issues. It still makes
354 sense to run instance maintenance for nodes A and B if only node C is
355 locked (all being in the same node group).
356
357 This problem is commonly encountered in previous Ganeti versions, and it
358 should be handled similarly, by tweaking lock lifetime in long-duration
359 jobs.
360
361 TODO: add more ideas here.
362
363
364 State file maintenance
365 ++++++++++++++++++++++
366
367 The splitting of node group maintenance to different children which will
368 run in parallel requires that the state file handling changes from
369 monolithic updates to partial ones.
370
371 There are two file that the watcher maintains:
372
373 - ``$LOCALSTATEDIR/lib/ganeti/watcher.data``, its internal state file,
374   used for deciding internal actions
375 - ``$LOCALSTATEDIR/run/ganeti/instance-status``, a file designed for
376   external consumption
377
378 For the first file, since it's used only internally to the watchers, we
379 can move to a per node group configuration.
380
381 For the second file, even if it's used as an external interface, we will
382 need to make some changes to it: because the different node groups can
383 return results at different times, we need to either split the file into
384 per-group files or keep the single file and add a per-instance timestamp
385 (currently the file holds only the instance name and state).
386
387 The proposal is that each child process maintains its own node group
388 file, and the master process will, right after querying the node group
389 list, delete any extra per-node group state file. This leaves the
390 consumers to run a simple ``cat instance-status.group-*`` to obtain the
391 entire list of instance and their states. If needed, the modify
392 timestamp of each file can be used to determine the age of the results.
393
394
395 Capacity calculations
396 ~~~~~~~~~~~~~~~~~~~~~
397
398 Currently, the capacity calculations are done completely outside
399 Ganeti. As explained in the current problems section, this needs to
400 account better for the cluster state changes.
401
402 Therefore a new OpCode will be introduced, ``OpComputeCapacity``, that
403 will either return the current capacity numbers (if available), or
404 trigger a new capacity calculation, via the iallocator framework, which
405 will get a new method called ``capacity``.
406
407 This method will feed the cluster state (for the complete set of node
408 group, or alternative just a subset) to the iallocator plugin (either
409 the specified one, or the default is none is specified), and return the
410 new capacity in the format currently exported by the htools suite and
411 known as the “tiered specs” (see :manpage:`hspace(1)`).
412
413 tspec cluster parameters
414 ++++++++++++++++++++++++
415
416 Currently, the “tspec” calculations done in :command:`hspace` require
417 some additional parameters:
418
419 - maximum instance size
420 - type of instance storage
421 - maximum ratio of virtual CPUs per physical CPUs
422 - minimum disk free
423
424 For the integration in Ganeti, there are multiple ways to pass these:
425
426 - ignored by Ganeti, and being the responsibility of the iallocator
427   plugin whether to use these at all or not
428 - as input to the opcode
429 - as proper cluster parameters
430
431 Since the first option is not consistent with the intended changes, a
432 combination of the last two is proposed:
433
434 - at cluster level, we'll have cluster-wide defaults
435 - at node groups, we'll allow overriding the cluster defaults
436 - and if they are passed in via the opcode, they will override for the
437   current computation the values
438
439 Whenever the capacity is requested via different parameters, it will
440 invalidate the cache, even if otherwise the cache is up-to-date.
441
442 The new parameters are:
443
444 - max_inst_spec: (int, int, int), the maximum instance specification
445   accepted by this cluster or node group, in the order of memory, disk,
446   vcpus;
447 - default_template: string, the default disk template to use
448 - max_cpu_ratio: double, the maximum ratio of VCPUs/PCPUs
449 - max_disk_usage: double, the maximum disk usage (as a ratio)
450
451 These might also be used in instance creations (to be determined later,
452 after they are introduced).
453
454 OpCode details
455 ++++++++++++++
456
457 Input:
458
459 - iallocator: string (optional, otherwise uses the cluster default)
460 - cached: boolean, optional, defaults to true, and denotes whether we
461   accept cached responses
462 - the above new parameters, optional; if they are passed, they will
463   overwrite all node group's parameters
464
465 Output:
466
467 - cluster: list of tuples (memory, disk, vcpu, count), in decreasing
468   order of specifications; the first three members represent the
469   instance specification, the last one the count of how many instances
470   of this specification can be created on the cluster
471 - node_groups: a dictionary keyed by node group UUID, with values a
472   dictionary:
473
474   - tspecs: a list like the cluster one
475   - additionally, the new cluster parameters, denoting the input
476     parameters that were used for this node group
477
478 - ctime: the date the result has been computed; this represents the
479   oldest creation time amongst all node groups (so as to accurately
480   represent how much out-of-date the global response is)
481
482 Note that due to the way the tspecs are computed, for any given
483 specification, the total available count is the count for the given
484 entry, plus the sum of counts for higher specifications.
485
486 Also note that the node group information is provided just
487 informationally, not for allocation decisions.
488
489
490 Job priorities
491 --------------
492
493 Current state and shortcomings
494 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
495
496 Currently all jobs and opcodes have the same priority. Once a job
497 started executing, its thread won't be released until all opcodes got
498 their locks and did their work. When a job is finished, the next job is
499 selected strictly by its incoming order. This does not mean jobs are run
500 in their incoming order—locks and other delays can cause them to be
501 stalled for some time.
502
503 In some situations, e.g. an emergency shutdown, one may want to run a
504 job as soon as possible. This is not possible currently if there are
505 pending jobs in the queue.
506
507 Proposed changes
508 ~~~~~~~~~~~~~~~~
509
510 Each opcode will be assigned a priority on submission. Opcode priorities
511 are integers and the lower the number, the higher the opcode's priority
512 is. Within the same priority, jobs and opcodes are initially processed
513 in their incoming order.
514
515 Submitted opcodes can have one of the priorities listed below. Other
516 priorities are reserved for internal use. The absolute range is
517 -20..+19. Opcodes submitted without a priority (e.g. by older clients)
518 are assigned the default priority.
519
520   - High (-10)
521   - Normal (0, default)
522   - Low (+10)
523
524 As a change from the current model where executing a job blocks one
525 thread for the whole duration, the new job processor must return the job
526 to the queue after each opcode and also if it can't get all locks in a
527 reasonable timeframe. This will allow opcodes of higher priority
528 submitted in the meantime to be processed or opcodes of the same
529 priority to try to get their locks. When added to the job queue's
530 workerpool, the priority is determined by the first unprocessed opcode
531 in the job.
532
533 If an opcode is deferred, the job will go back to the "queued" status,
534 even though it's just waiting to try to acquire its locks again later.
535
536 If an opcode can not be processed after a certain number of retries or a
537 certain amount of time, it should increase its priority. This will avoid
538 starvation.
539
540 A job's priority can never go below -20. If a job hits priority -20, it
541 must acquire its locks in blocking mode.
542
543 Opcode priorities are synchronized to disk in order to be restored after
544 a restart or crash of the master daemon.
545
546 Priorities also need to be considered inside the locking library to
547 ensure opcodes with higher priorities get locks first. See
548 :ref:`locking priorities <locking-priorities>` for more details.
549
550 Worker pool
551 +++++++++++
552
553 To support job priorities in the job queue, the worker pool underlying
554 the job queue must be enhanced to support task priorities. Currently
555 tasks are processed in the order they are added to the queue (but, due
556 to their nature, they don't necessarily finish in that order). All tasks
557 are equal. To support tasks with higher or lower priority, a few changes
558 have to be made to the queue inside a worker pool.
559
560 Each task is assigned a priority when added to the queue. This priority
561 can not be changed until the task is executed (this is fine as in all
562 current use-cases, tasks are added to a pool and then forgotten about
563 until they're done).
564
565 A task's priority can be compared to Unix' process priorities. The lower
566 the priority number, the closer to the queue's front it is. A task with
567 priority 0 is going to be run before one with priority 10. Tasks with
568 the same priority are executed in the order in which they were added.
569
570 While a task is running it can query its own priority. If it's not ready
571 yet for finishing, it can raise an exception to defer itself, optionally
572 changing its own priority. This is useful for the following cases:
573
574 - A task is trying to acquire locks, but those locks are still held by
575   other tasks. By deferring itself, the task gives others a chance to
576   run. This is especially useful when all workers are busy.
577 - If a task decides it hasn't gotten its locks in a long time, it can
578   start to increase its own priority.
579 - Tasks waiting for long-running operations running asynchronously could
580   defer themselves while waiting for a long-running operation.
581
582 With these changes, the job queue will be able to implement per-job
583 priorities.
584
585 .. _locking-priorities:
586
587 Locking
588 +++++++
589
590 In order to support priorities in Ganeti's own lock classes,
591 ``locking.SharedLock`` and ``locking.LockSet``, the internal structure
592 of the former class needs to be changed. The last major change in this
593 area was done for Ganeti 2.1 and can be found in the respective
594 :doc:`design document <design-2.1>`.
595
596 The plain list (``[]``) used as a queue is replaced by a heap queue,
597 similar to the `worker pool`_. The heap or priority queue does automatic
598 sorting, thereby automatically taking care of priorities. For each
599 priority there's a plain list with pending acquires, like the single
600 queue of pending acquires before this change.
601
602 When the lock is released, the code locates the list of pending acquires
603 for the highest priority waiting. The first condition (index 0) is
604 notified. Once all waiting threads received the notification, the
605 condition is removed from the list. If the list of conditions is empty
606 it's removed from the heap queue.
607
608 Like before, shared acquires are grouped and skip ahead of exclusive
609 acquires if there's already an existing shared acquire for a priority.
610 To accomplish this, a separate dictionary of shared acquires per
611 priority is maintained.
612
613 To simplify the code and reduce memory consumption, the concept of the
614 "active" and "inactive" condition for shared acquires is abolished. The
615 lock can't predict what priorities the next acquires will use and even
616 keeping a cache can become computationally expensive for arguable
617 benefit (the underlying POSIX pipe, see ``pipe(2)``, needs to be
618 re-created for each notification anyway).
619
620 The following diagram shows a possible state of the internal queue from
621 a high-level view. Conditions are shown as (waiting) threads. Assuming
622 no modifications are made to the queue (e.g. more acquires or timeouts),
623 the lock would be acquired by the threads in this order (concurrent
624 acquires in parentheses): ``threadE1``, ``threadE2``, (``threadS1``,
625 ``threadS2``, ``threadS3``), (``threadS4``, ``threadS5``), ``threadE3``,
626 ``threadS6``, ``threadE4``, ``threadE5``.
627
628 ::
629
630   [
631     (0, [exc/threadE1, exc/threadE2, shr/threadS1/threadS2/threadS3]),
632     (2, [shr/threadS4/threadS5]),
633     (10, [exc/threadE3]),
634     (33, [shr/threadS6, exc/threadE4, exc/threadE5]),
635   ]
636
637
638 IPv6 support
639 ------------
640
641 Currently Ganeti does not support IPv6. This is true for nodes as well
642 as instances. Due to the fact that IPv4 exhaustion is threateningly near
643 the need of using IPv6 is increasing, especially given that bigger and
644 bigger clusters are supported.
645
646 Supported IPv6 setup
647 ~~~~~~~~~~~~~~~~~~~~
648
649 In Ganeti 2.3 we introduce additionally to the ordinary pure IPv4
650 setup a hybrid IPv6/IPv4 mode. The latter works as follows:
651
652 - all nodes in a cluster have a primary IPv6 address
653 - the master has a IPv6 address
654 - all nodes **must** have a secondary IPv4 address
655
656 The reason for this hybrid setup is that key components that Ganeti
657 depends on do not or only partially support IPv6. More precisely, Xen
658 does not support instance migration via IPv6 in version 3.4 and 4.0.
659 Similarly, KVM does not support instance migration nor VNC access for
660 IPv6 at the time of this writing.
661
662 This led to the decision of not supporting pure IPv6 Ganeti clusters, as
663 very important cluster operations would not have been possible. Using
664 IPv4 as secondary address does not affect any of the goals
665 of the IPv6 support: since secondary addresses do not need to be
666 publicly accessible, they need not be globally unique. In other words,
667 one can practically use private IPv4 secondary addresses just for
668 intra-cluster communication without propagating them across layer 3
669 boundaries.
670
671 netutils: Utilities for handling common network tasks
672 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
673
674 Currently common util functions are kept in the utils modules. Since
675 this module grows bigger and bigger network-related functions are moved
676 to a separate module named *netutils*. Additionally all these utilities
677 will be IPv6-enabled.
678
679 Cluster initialization
680 ~~~~~~~~~~~~~~~~~~~~~~
681
682 As mentioned above there will be two different setups in terms of IP
683 addressing: pure IPv4 and hybrid IPv6/IPv4 address. To choose that a
684 new cluster init parameter *--primary-ip-version* is introduced. This is
685 needed as a given name can resolve to both an IPv4 and IPv6 address on a
686 dual-stack host effectively making it impossible to infer that bit.
687
688 Once a cluster is initialized and the primary IP version chosen all
689 nodes that join have to conform to that setup. In the case of our
690 IPv6/IPv4 setup all nodes *must* have a secondary IPv4 address.
691
692 Furthermore we store the primary IP version in ssconf which is consulted
693 every time a daemon starts to determine the default bind address (either
694 *0.0.0.0* or *::*. In a IPv6/IPv4 setup we need to bind the Ganeti
695 daemon listening on network sockets to the IPv6 address.
696
697 Node addition
698 ~~~~~~~~~~~~~
699
700 When adding a new node to a IPv6/IPv4 cluster it must have a IPv6
701 address to be used as primary and a IPv4 address used as secondary. As
702 explained above, every time a daemon is started we use the cluster
703 primary IP version to determine to which any address to bind to. The
704 only exception to this is when a node is added to the cluster. In this
705 case there is no ssconf available when noded is started and therefore
706 the correct address needs to be passed to it.
707
708 Name resolution
709 ~~~~~~~~~~~~~~~
710
711 Since the gethostbyname*() functions do not support IPv6 name resolution
712 will be done by using the recommended getaddrinfo().
713
714 IPv4-only components
715 ~~~~~~~~~~~~~~~~~~~~
716
717 ============================  ===================  ====================
718 Component                     IPv6 Status          Planned Version
719 ============================  ===================  ====================
720 Xen instance migration        Not supported        Xen 4.1: libxenlight
721 KVM instance migration        Not supported        Unknown
722 KVM VNC access                Not supported        Unknown
723 ============================  ===================  ====================
724
725
726 Privilege Separation
727 --------------------
728
729 Current state and short comings
730 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
731
732 As of Ganeti 2.2 we introduced privilege separation. This was affecting
733 just Ganeti RAPI and also that just in a quickly short term solution. In
734 this release we iterate again over it and make it more advanced and
735 stable. This also means we'll remove the privilege separation again from
736 the core and put it completely external so the daemons will be started
737 on the final user already.
738
739 Additionally this involves removing SSH code out auf bootstrap and core
740 component and put it into a separate script. This means every
741 daemon/script will assume that a working ssh setup is in place.
742
743 Implementation
744 ~~~~~~~~~~~~~~
745
746 We need to partially revert changes done in Ganeti 2.2 to move on the
747 long term solution. This involves removing the drop privileges code in
748 ``daemons.py`` as this is already done on startup time by
749 ``start-stop-daemon`` util.
750
751 The ssh code will be separated into one single script called upon
752 ``gnt-node add`` which guarantees that the SSH setup is done and
753 functioning.
754
755 Additionally some of the utils.WriteFile calls needs to be adjusted
756 for the new permissions and ownerships.
757
758 Security Domains
759 ~~~~~~~~~~~~~~~~
760
761 In order to separate the permissions of file sets we separate them
762 into the following 3 overall security domain chunks:
763
764 1. Public: ``0755`` respectively ``0644``
765 2. Ganeti wide: shared between the daemons (gntdaemons)
766 3. Secret files: shared just between a specified set of daemons/users
767
768 So for point 3 this tables shows the correlation of the sets to groups
769 and their users:
770
771 === ========== ============================== ==========================
772 Set Group      Users                          Description
773 === ========== ============================== ==========================
774 A   gntrapi    gntrapi, gntmasterd            Share data between
775                                               gntrapi & gntmasterd
776 B   gntadmins  gntrapi, gntmasterd, *users*   Shared between users who
777                                               needs to call gntmasterd
778 C   gntconfd   gntconfd, gntmasterd           Share data between
779                                               gntconfd & gntmasterd
780 D   gntmasterd gntmasterd                     masterd only; Currently
781                                               only to redistribute the
782                                               configuration, has access
783                                               to all files under
784                                               ``lib/ganeti``
785 E   gntdaemons gntmasterd, gntrapi, gntconfd  Shared between the various
786                                               Ganeti daemons to exchange
787                                               data
788 === ========== ============================== ==========================
789
790 Restricted commands
791 ~~~~~~~~~~~~~~~~~~~
792
793 The following commands needs still root to fulfill their functions:
794
795 ::
796
797   gnt-cluster {init|destroy|command|copyfile|rename|masterfailover|renew-crypto}
798   gnt-node {add|remove}
799   gnt-instance {console}
800
801 Directory structure & permissions
802 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
803
804 Here's how we propose to change the filesystem hierachy and their
805 permissions.
806
807 Assuming it follows the defaults: ``gnt${daemon}`` for user and
808 the groups from the section `Security Domains`_::
809
810   ${localstatedir}/lib/ganeti/ (0755; gntmasterd:gntmasterd)
811      cluster-domain-secret (0600; gntmasterd:gntmasterd)
812      config.data (0640; gntmasterd:gntconfd)
813      hmac.key (0440; gntmasterd:gntconfd)
814      known_host (0644; gntmasterd:gntmasterd)
815      queue/ (0700; gntmasterd:gntmasterd)
816        archive/ (0700; gntmasterd:gntmasterd)
817          * (0600; gntmasterd:gntmasterd)
818        * (0600; gntmasterd:gntmasterd)
819      rapi.pem (0440; gntrapi:gntrapi)
820      rapi_users (0640; gntrapi:gntrapi)
821      server.pem (0440; gntmasterd:gntmasterd)
822      ssconf_* (0444; root:gntmasterd)
823      uidpool/ (0750; root:gntmasterd)
824      watcher.data (0600; root:gntmasterd)
825   ${localstatedir}/run/ganeti/ (0770; gntmasterd:gntdaemons)
826      socket/ (0750; gntmasterd:gntadmins)
827        ganeti-master (0770; gntmasterd:gntadmins)
828   ${localstatedir}/log/ganeti/ (0770; gntmasterd:gntdaemons)
829      master-daemon.log (0600; gntmasterd:gntdaemons)
830      rapi-daemon.log (0600; gntrapi:gntdaemons)
831      conf-daemon.log (0600; gntconfd:gntdaemons)
832      node-daemon.log (0600; gntnoded:gntdaemons)
833
834
835 Feature changes
836 ===============
837
838
839 External interface changes
840 ==========================
841
842
843 .. vim: set textwidth=72 :
844 .. Local Variables:
845 .. mode: rst
846 .. fill-column: 72
847 .. End: