Statistics
| Branch: | Revision:

root / hw / lm32_boards.c @ 0200db65

History | View | Annotate | Download (10 kB)

1
/*
2
 *  QEMU models for LatticeMico32 uclinux and evr32 boards.
3
 *
4
 *  Copyright (c) 2010 Michael Walle <michael@walle.cc>
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "sysbus.h"
21
#include "hw.h"
22
#include "net.h"
23
#include "flash.h"
24
#include "devices.h"
25
#include "boards.h"
26
#include "loader.h"
27
#include "blockdev.h"
28
#include "elf.h"
29
#include "lm32_hwsetup.h"
30
#include "lm32.h"
31
#include "exec-memory.h"
32

    
33
typedef struct {
34
    CPUState *env;
35
    target_phys_addr_t bootstrap_pc;
36
    target_phys_addr_t flash_base;
37
    target_phys_addr_t hwsetup_base;
38
    target_phys_addr_t initrd_base;
39
    size_t initrd_size;
40
    target_phys_addr_t cmdline_base;
41
} ResetInfo;
42

    
43
static void cpu_irq_handler(void *opaque, int irq, int level)
44
{
45
    CPUState *env = opaque;
46

    
47
    if (level) {
48
        cpu_interrupt(env, CPU_INTERRUPT_HARD);
49
    } else {
50
        cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
51
    }
52
}
53

    
54
static void main_cpu_reset(void *opaque)
55
{
56
    ResetInfo *reset_info = opaque;
57
    CPUState *env = reset_info->env;
58

    
59
    cpu_reset(env);
60

    
61
    /* init defaults */
62
    env->pc = (uint32_t)reset_info->bootstrap_pc;
63
    env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
64
    env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
65
    env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
66
    env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
67
        reset_info->initrd_size);
68
    env->eba = reset_info->flash_base;
69
    env->deba = reset_info->flash_base;
70
}
71

    
72
static void lm32_evr_init(ram_addr_t ram_size_not_used,
73
                          const char *boot_device,
74
                          const char *kernel_filename,
75
                          const char *kernel_cmdline,
76
                          const char *initrd_filename, const char *cpu_model)
77
{
78
    CPUState *env;
79
    DriveInfo *dinfo;
80
    MemoryRegion *address_space_mem =  get_system_memory();
81
    MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
82
    qemu_irq *cpu_irq, irq[32];
83
    ResetInfo *reset_info;
84
    int i;
85

    
86
    /* memory map */
87
    target_phys_addr_t flash_base  = 0x04000000;
88
    size_t flash_sector_size       = 256 * 1024;
89
    size_t flash_size              = 32 * 1024 * 1024;
90
    target_phys_addr_t ram_base    = 0x08000000;
91
    size_t ram_size                = 64 * 1024 * 1024;
92
    target_phys_addr_t timer0_base = 0x80002000;
93
    target_phys_addr_t uart0_base  = 0x80006000;
94
    target_phys_addr_t timer1_base = 0x8000a000;
95
    int uart0_irq                  = 0;
96
    int timer0_irq                 = 1;
97
    int timer1_irq                 = 3;
98

    
99
    reset_info = g_malloc0(sizeof(ResetInfo));
100

    
101
    if (cpu_model == NULL) {
102
        cpu_model = "lm32-full";
103
    }
104
    env = cpu_init(cpu_model);
105
    reset_info->env = env;
106

    
107
    reset_info->flash_base = flash_base;
108

    
109
    memory_region_init_ram(phys_ram, NULL, "lm32_evr.sdram", ram_size);
110
    memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
111

    
112
    dinfo = drive_get(IF_PFLASH, 0, 0);
113
    /* Spansion S29NS128P */
114
    pflash_cfi02_register(flash_base, NULL, "lm32_evr.flash", flash_size,
115
                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
116
                          flash_size / flash_sector_size, 1, 2,
117
                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
118

    
119
    /* create irq lines */
120
    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
121
    env->pic_state = lm32_pic_init(*cpu_irq);
122
    for (i = 0; i < 32; i++) {
123
        irq[i] = qdev_get_gpio_in(env->pic_state, i);
124
    }
125

    
126
    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
127
    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
128
    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
129

    
130
    /* make sure juart isn't the first chardev */
131
    env->juart_state = lm32_juart_init();
132

    
133
    reset_info->bootstrap_pc = flash_base;
134

    
135
    if (kernel_filename) {
136
        uint64_t entry;
137
        int kernel_size;
138

    
139
        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
140
                               1, ELF_MACHINE, 0);
141
        reset_info->bootstrap_pc = entry;
142

    
143
        if (kernel_size < 0) {
144
            kernel_size = load_image_targphys(kernel_filename, ram_base,
145
                                              ram_size);
146
            reset_info->bootstrap_pc = ram_base;
147
        }
148

    
149
        if (kernel_size < 0) {
150
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
151
                    kernel_filename);
152
            exit(1);
153
        }
154
    }
155

    
156
    qemu_register_reset(main_cpu_reset, reset_info);
157
}
158

    
159
static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
160
                          const char *boot_device,
161
                          const char *kernel_filename,
162
                          const char *kernel_cmdline,
163
                          const char *initrd_filename, const char *cpu_model)
164
{
165
    CPUState *env;
166
    DriveInfo *dinfo;
167
    MemoryRegion *address_space_mem =  get_system_memory();
168
    MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
169
    qemu_irq *cpu_irq, irq[32];
170
    HWSetup *hw;
171
    ResetInfo *reset_info;
172
    int i;
173

    
174
    /* memory map */
175
    target_phys_addr_t flash_base   = 0x04000000;
176
    size_t flash_sector_size        = 256 * 1024;
177
    size_t flash_size               = 32 * 1024 * 1024;
178
    target_phys_addr_t ram_base     = 0x08000000;
179
    size_t ram_size                 = 64 * 1024 * 1024;
180
    target_phys_addr_t uart0_base   = 0x80000000;
181
    target_phys_addr_t timer0_base  = 0x80002000;
182
    target_phys_addr_t timer1_base  = 0x80010000;
183
    target_phys_addr_t timer2_base  = 0x80012000;
184
    int uart0_irq                   = 0;
185
    int timer0_irq                  = 1;
186
    int timer1_irq                  = 20;
187
    int timer2_irq                  = 21;
188
    target_phys_addr_t hwsetup_base = 0x0bffe000;
189
    target_phys_addr_t cmdline_base = 0x0bfff000;
190
    target_phys_addr_t initrd_base  = 0x08400000;
191
    size_t initrd_max               = 0x01000000;
192

    
193
    reset_info = g_malloc0(sizeof(ResetInfo));
194

    
195
    if (cpu_model == NULL) {
196
        cpu_model = "lm32-full";
197
    }
198
    env = cpu_init(cpu_model);
199
    reset_info->env = env;
200

    
201
    reset_info->flash_base = flash_base;
202

    
203
    memory_region_init_ram(phys_ram, NULL, "lm32_uclinux.sdram", ram_size);
204
    memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
205

    
206
    dinfo = drive_get(IF_PFLASH, 0, 0);
207
    /* Spansion S29NS128P */
208
    pflash_cfi02_register(flash_base, NULL, "lm32_uclinux.flash", flash_size,
209
                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
210
                          flash_size / flash_sector_size, 1, 2,
211
                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
212

    
213
    /* create irq lines */
214
    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
215
    env->pic_state = lm32_pic_init(*cpu_irq);
216
    for (i = 0; i < 32; i++) {
217
        irq[i] = qdev_get_gpio_in(env->pic_state, i);
218
    }
219

    
220
    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
221
    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
222
    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
223
    sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
224

    
225
    /* make sure juart isn't the first chardev */
226
    env->juart_state = lm32_juart_init();
227

    
228
    reset_info->bootstrap_pc = flash_base;
229

    
230
    if (kernel_filename) {
231
        uint64_t entry;
232
        int kernel_size;
233

    
234
        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
235
                               1, ELF_MACHINE, 0);
236
        reset_info->bootstrap_pc = entry;
237

    
238
        if (kernel_size < 0) {
239
            kernel_size = load_image_targphys(kernel_filename, ram_base,
240
                                              ram_size);
241
            reset_info->bootstrap_pc = ram_base;
242
        }
243

    
244
        if (kernel_size < 0) {
245
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
246
                    kernel_filename);
247
            exit(1);
248
        }
249
    }
250

    
251
    /* generate a rom with the hardware description */
252
    hw = hwsetup_init();
253
    hwsetup_add_cpu(hw, "LM32", 75000000);
254
    hwsetup_add_flash(hw, "flash", flash_base, flash_size);
255
    hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
256
    hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
257
    hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
258
    hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
259
    hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
260
    hwsetup_add_trailer(hw);
261
    hwsetup_create_rom(hw, hwsetup_base);
262
    hwsetup_free(hw);
263

    
264
    reset_info->hwsetup_base = hwsetup_base;
265

    
266
    if (kernel_cmdline && strlen(kernel_cmdline)) {
267
        pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
268
                kernel_cmdline);
269
        reset_info->cmdline_base = cmdline_base;
270
    }
271

    
272
    if (initrd_filename) {
273
        size_t initrd_size;
274
        initrd_size = load_image_targphys(initrd_filename, initrd_base,
275
                initrd_max);
276
        reset_info->initrd_base = initrd_base;
277
        reset_info->initrd_size = initrd_size;
278
    }
279

    
280
    qemu_register_reset(main_cpu_reset, reset_info);
281
}
282

    
283
static QEMUMachine lm32_evr_machine = {
284
    .name = "lm32-evr",
285
    .desc = "LatticeMico32 EVR32 eval system",
286
    .init = lm32_evr_init,
287
    .is_default = 1
288
};
289

    
290
static QEMUMachine lm32_uclinux_machine = {
291
    .name = "lm32-uclinux",
292
    .desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
293
    .init = lm32_uclinux_init,
294
    .is_default = 0
295
};
296

    
297
static void lm32_machine_init(void)
298
{
299
    qemu_register_machine(&lm32_uclinux_machine);
300
    qemu_register_machine(&lm32_evr_machine);
301
}
302

    
303
machine_init(lm32_machine_init);